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Background: lung adenocarcinoma (LUAD) remains one of the most common

and lethal malignancies with poor prognosis. Programmed cell death (PCD) is an

evolutionarily conserved cell suicide process that regulates tumorigenesis,

progression, and metastasis of cancer cells. However, a comprehensive

analysis of the role of PCD in LUAD is still unavailable.

Methods:We analyzedmulti-omic variations in PCD-related genes (PCDRGs) for

LUAD. We used cross-validation of 10 machine learning algorithms (101

combinations) to synthetically develop and validate an optimal prognostic cell

death score (CDS) model based on the PCDRGs expression profile. Patients were

classified based on their median CDS values into the high and low-CDS groups.

Next, we compared the differences in the genomics, biological functions, and

tumor microenvironment of patients between both groups. In addition, we

assessed the ability of CDS for predicting the response of patients from the

immunotherapy cohort to immunotherapy. Finally, functional validation of key

genes in CDS was performed.

Results: We constructed CDS based on four PCDRGs, which could effectively

and consistently stratify patients with LUAD (patients with high CDS had poor

prognoses). The performance of our CDS was superior compared to 77 LUAD

signatures that have been previously published. The results revealed significant

genetic alterations like mutation count, TMB, and CNV were observed in patients

with high CDS. Furthermore, we observed an association of CDS with immune

cell infiltration, microsatellite instability, SNV neoantigens. The immune status of

patients with low CDS was more active. In addition, CDS could be reliable to

predict therapeutic response in multiple immunotherapy cohorts. In vitro
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experiments revealed that high DNA damage inducible transcript 4 (DDIT4)

expression in LUAD cells mediated protumor effects.

Conclusion: CDS was constructed based on PCDRGs using machine learning.

This model could accurately predict patients’ prognoses and their responses to

therapy. These results provide new promising tools for clinical management and

aid in designing personalized treatment strategies for patients with LUAD.
KEYWORDS

programmed cell death, lung adenocarcinoma, machine learning, prognosis,
tumor microenvironment
Introduction

Globally, lung cancer (LC) accounts for approximately 18% of

all cancer-related mortalities and is also the leading cause of cancer-

related mortalities in both sexes (1). Non-small cell LC (NSCLC)

accounts for 90% of LC cases. NSCLC can be further categorized

based on histology into two subtypes: lung adenocarcinoma

(LUAD) and lung squamous cell carcinoma (LUSC). Of these,

LUAD cases are more common (2). The factors underlying the

poor prognosis of patients with mid to late-stage LUAD include the

lack of symptoms and tumor specificity at an early stage, local

infiltration, and distant metastases of cancer (3). Rapid

advancements in biotechnology and precision medicine have

helped develop targeted drugs and therapeutic approaches specific

to patients with LUAD. Further biomarkers for LUAD, like EGFR,

E17K, and PTEN, have been identified (4–6), which are currently

used in combination with surgical resection, radio, and

chemotherapies. However, only a small proportion of patients

with LUAD have benefitted from these advancements and

improvements in therapeutic efficacy. No significant improvement

in the overall survival (OS) and progression-free survival of patients

has been observed (7, 8). Therefore, an in-depth understanding of

the underlying mechanisms of LUAD and identifying new

biomarkers is crucial for predicting the prognoses and designing

personalized therapeutic strategies for patients with LUAD.

Programmed cell death (PCD) is a crucial process for the

growth and development of living organisms. Studies have shown

that apoptosis, pyroptosis, ferroptosis, autophagy, necroptosis,

cuproptosis, parthanatos, entotic and lysosome-dependent cell

death, Alkaliptosis, NETosis, and oxeiptosis-related PCDs are

classical cell death pathways (9). Apoptosis is a non-inflammatory

response to PCD characterized by the activation of caspases, leading

to the contraction of cells, coalescence, and the nucleus, as well as

nucleosomal DNA fragmentation (10). Apoptosis is required for the

maintenance of the cell death-cell survival balance. Furthermore,

abnormal apoptosis escape is a characteristic of cancer cells (11).

Pyroptosis is programmed necrosis of cells induced by

inflammatory vesicles, wherein activated Gasdermin protein (a

scorching substrate for inflammatory caspases-1/4/5/11) forms

pores in the plasma membrane, thereby leading to cell death (12,
02
13). In 2012, ferroptosis was discovered as a novel iron-dependent

PCD characterized by its ability to disrupt the redox homeostasis of

cells and the absence of apoptosis (14). During ferroptosis, the

cytoplasm appears round and detached, the mitochondrial

membranes are condensed, the number of mitochondrial cristae

is reduced or absent, and the outer mitochondrial membranes are

ruptured (15). Autophagy is an apoptosis-independent cell death

form. It is characterized by no chromatin condensation, the

accumulation of autophagic vacuole, and autophagosome

formation, which fuses with lysosomes to form autolysosomes in

the cytoplasm (16, 17). Unlike apoptosis, necroptosis destabilizes

cell membranes, and cause swelling and lysis of cells, thereby

leading to the release of cellular components (18). The

inactivation or deletion of caspases-8 and RIPK1 and RIPK3

activation, as well as autophosphorylation, induces necroptosis of

cells (19). During necroptosis, the cell membranes rupture and

release cellular contents, thereby activating immune responses (20).

In March 2022, a study by Peter et al. introduced a new mode of cell

death called cuproptosis (21). Unlike other forms of cell death,

copper toxicity occurs primarily through the direct binding of

cuproptosis to the fatty acylated components of the Krebs cycle.

This leads to fatty acylated protein accumulation and iron-sulfur

cluster protein loss, increase in proteotoxicity, which culminates in

cell death (22). Parthantos is characterized by an increase in the

activation of PARP-1 (23), PAR aggregates, and the translocation of

apoptosis-inducing factors from the mitochondria to the nucleus

(24). Unlike pyroptosis, parthanatos is independent of caspase and

is triggered by an excessive reactive oxygen species (ROS) response

(25). A study has shown that parthanatos induces mitochondrial

membrane dissipation and the condensation of extensively

fragmented DNA chromatin (26). Entotic cell death is the

byproduct of endocytosis, forms typical intercellular structures,

and is caused by the disassociation of cells from the basement

membrane. It primarily occurs in epithelial cells and carcinomas

(27). The entry of epithelial cells into other cells can eliminate

endosomal cells by specific autophagy-related processes regulating

the lysosomal degradation of cells (28). NETosis is a type of

neutrophils, granulocytes, or macrophage-related necrosis. During

NETosis, the granular contents of neutrophils are transferred to the

nucleus, which causes the decondensation of chromatins, and
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induces the formation of a neutrophil extracellular trap (29).

Lysosomal membrane permeabilization (LMP) is the primary

cause of lysosome-dependent cell death, characterized by the loss

of the lysosomal membrane integrity, thereby releasing the contents

of lysosomes into the cytosol (30). LMP-mediated cell death is

either dependent or independent of caspases (31). Alkalinization in

cells induces a novel mode of PCD called alkaliptosis (32). The

oxygen radicals trigger a novel form of regulated cell death called

oxeiptosis, which is independent of caspases, and driven by the

KEAP1-PGAM5-AIFM1 pathway activation (33). In organisms,

PCD eliminates harmful or redundant cells and maintains tissue

homeostasis. During PCD, damage-associated molecular patterns

are released, which act as a powerful stimulus for activating local

inflammatory or systemic immune responses. Therefore, selective

activation of the PCD pathway could be a novel strategy for

preventing and treating patients with LUAD. A study has shown

that A549 cells treated with chemotherapeutic drugs such as

cisplatin and paclitaxel trigger pyroptosis via the caspase 3/

Gasdermin E pathway. The efficacy of these drugs to stimulate

pyroptosis depends on the expression of Gasdermin E (34). CD8+ T

cells secrete IFNs, which reduce SLC7A11 and SLC3A2 expression,

thereby preventing the uptake of cystine by LUAD cells and

promoting ferroptosis as well as lipid peroxidation. Together, this

enhances the efficacy of immunotherapy. Hydroxychloroquine

inhibits LUAD cell autophagy, thereby reversing chemoresistance

in advanced-stage LUAD (35). Thus, escaping multiple types of

PCD is a hallmark of LUAD. Therefore, a comprehensive

understanding of the underlying mechanism of pan-PCD in

LUAD could aid in mitigating tumorigenesis, cancer progression,

and drug resistance in LUAD.

Previous studies on PCD have determined the involvement of a

single mode of cell death in LUAD. However, several modes of

PCDs mediate tumorigenesis, progression, and metastasis of cancer

cells. Moreover, no studies have analyzed the involvement of PCD

in LUAD systematically. In this study, we investigated the

alterations of PCD-related genes (PCDRGs) in LUAD. We used a

computational framework to construct and validate a novel cell

death score (CDS) based on PCDRGs. CDS can accurately stratify

patients with LUAD based on their prognostic status. Next, we

investigated the differences in genetic mutations, tumor

microenvironment (TME), and biological characteristics of

patients between both CDS groups. Furthermore, we determined

the efficiency of CDS in predicting the patients’ responses to

immunotherapy and screened suitable drugs for patients with

LUAD in different CDS groups. Finally, we determined the roles

of DNA damage inducible transcript 4 (DDIT4) in LUAD.
Materials and methods

Cohort and preprocessing

The transcriptional and clinical data of patients with LUAD

were downloaded from the Cancer Genome Atlas (TCGA, https://

portal.gdc.cancer.gov/) and Gene Expression Omnibus (GEO,

http://www.ncbi.nlm.nih.gov/geo) databases. In addition, the data
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from TCGA database. Next, we merged four cohorts, and the batch

effect was eliminated using the “Combat” algorithm. The TCGA-

LUAD cohort was used as the training cohort for constructing the

CDS. The GSE31210, GSE68465, and GSE72094 cohorts from GEO

were used as independent validation cohorts. We excluded patients

whose OS information was unavailable. Finally, we included 1569

patients with LUAD for the subsequent analysis. Supplementary

Table 1 shows detailed information on the patients. The study

flowchart is depicted in Figure 1.
The expression and variations of
PCDRGs in LUAD

The key regulatory genes of these 12 types of PCD were

included as PCDRGs. These genes were collected and compiled

from the Gene Set Enrichment Analysis (GSEA), Kyoto

Encyclopedia of Genes and Genomes (KEGG), and previously

published gene sets (9) (Supplementary Table 2). The

differentially expressed PCDRGs (DEPCDRGs) in LUAD and

paracancerous tissues of patients in the TCGA-LUAD cohort

were screened using the “limma” R package. The threshold for

screening DEPCDRGs was “P < 0.05” and “|log2 Fold change (FC)|

> 1”. The functional enrichment analysis was performed to identify

functions and pathways enriched by DEPCDRGs using the

“clusterprofiler” R package. Next, the “maftools” package was

employed to explore the somatic mutations in DEPCDRGs (36).

The frequencies of “Gain” or “Loss” CNV in DEPCDRGs were

screened and calculated. Finally, the chromosomal location of CNV

in patients was visualized as the circus plot with the aid of the

“circlize” R package (37). The transcription factors (TFs) within the

DEPCDRGs were predicted using Transcriptional Regulatory

Relationships Unraveled by Sentence-based Text mining

(TRRUST, www.grnpedia.org/trrust/). Subsequently, TF-gene

interaction pairs exhibiting P-values <0.05 were carefully chosen

to construct the regulatory network through the utilization

of Cytoscape.
PCDRGs signature generated by machine
learning-based integrated approach

The prognosis-related DEPCDRGs were screened using the

univariate Cox regression analysis. The threshold set to avoid

omission was “P < 0.05”. A PCDRGs signature was constructed

with high accuracy and stability using 10 machine learning

algorithms, including “Least Absolute Shrinkage and Selection

Operator”, “Ridge”, “Elastic network”, “StepCox”, “Survival

support vector machine (survival-SVM)” , “CoxBoost” ,

“Supervised principal components”, “partial least squares

regression for COX”, “random survival forest (RSF)”, “generalized

boosted regression modeling” to construct. These 10 machine

learning algorithms were used to cross-validate 101 combinations

of the “leave-one-out-cross validation (LOOCV)” framework for

constructing the models based on the TCGA-LUAD cohort and
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were subsequently validated in the GEO cohorts. The models with <

3 genes were excluded. Additionally, we calculated the C-index of

each model in all cohorts. CDS was the optimal model with the

highest mean C-index. All patients were classified using the median

CDS value set as a threshold into the high and low-CDS groups.
Consensus clustering

Consensus clustering was performed using the “Consensus

ClusterPlus” package based on the expression of PCDRGs in the

CDS. The clustering was based on dividing centromeres

with “Euclidean” distances. Finally, patients with LUAD were

classified into two subtypes based on the best classification of

“K=2-9”.
Mutation and CNV characteristics

The mutation profiles and types of the top 20 genes with the

highest mutation frequencies in patients in both CDS groups were

mapped using the “maftools” package. Tumor mutational burden

(TMB) is the total number of non-synonymous mutations in all

exomes of patients and is calculated according to the number of
Frontiers in Immunology 04
non-synonymous mutations/million bases. Simultaneous analysis

of significantly mutated genes and their interactions among

mutations between two CDS groups. “GISTIC 2.0” was employed

for screening significantly amplified and missing genomic regions

(38). The overall changes in the genome were quantified by

calculating fraction of genome alteration (FGA), fraction of

genome gained (FGG), and fraction of genome lost (FGL). FGA

is the percentage of fragmented bases of genomic variants. FGG/

FGL indicated the loss or gain of genomic variants.
TME annotations for CDS

Single Sample Gene Set Enrichment Analysis (ssGSEA), Tumor

IMmune Estimation Resource (TIMER), and “MCPcounter” were

used estimate the extent of immune cell infiltration in each patient.

Subsequently, the TME was characterized using the “Estimation of

STromal and Immune cells in MAlignant Tumor tissues using

Expression data (ESTIMATE)” algorithm. The ESTIMATE

algorithm was used for calculating the tumor purity and the

stromal, ESTIMATE, and immune scores. The data on the level

of activation of the seven-step tumor immune cycle were retrieved

f r om the tumor immunopheno t yp e (T IP ) (h t t p : / /

biocc.hrbmu.edu.cn/TIP/index.jsp) database (39). Additionally, we
FIGURE 1

Diagram of analytic workflow in this study. The Diagram was drawn from the FIGUREdraw. (https://www.FIGUREdraw.com/static/index.html).
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determined and compared the expression profile of 35 immune

checkpoint genes in patients between both CDS groups to elucidate

the to elucidate the ability of CDS to predict the response of patients

to immune checkpoint inhibitor therapy. The data on microsatellite

instability (MSI), single nucleotide variant (SNV) neoantigens, and

B-cell receptor (BCR) richness, as well as T-cell receptor (TCR)

richness of patients, were obtained from TCGA. The “GSEA”

package was used to compare the hallmark functions and

pathways enriched by patients in both CDS groups, and the

reliability of the enrichment analysis was validated using the

“Gene Set Variation Analysis (GSVA)” package. The gene sets

with “FDR < 0.05” were considered significantly enriched.
Predicting the patient’s response to
immunotherapy and chemotherapy

To predict the responses of patients to immunotherapy, we

calculated the CDS for all patients from IMvigor210 (40), GSE78220

(41), GSE79671 (42), and GSE103668 (43) cohorts. We used

“Tumor Immune Dysfunction and Exclusion (TIDE)” a web-

based tool for predicting the response of the patient’s to

immunotherapy (44). We performed the “submap” method to

determine the similarity in the expression in patients in both CDS

groups and different immunotherapeutic outcomes (45). The data

on drug sensitivity in cancer cell lines of human origin were

downloaded from the Cancer Therapeutics Response Portal

(CTRP, http://portals.broadinstitute.org/ctrp/) and Profiling

Relative Inhibition Simultaneously in Mixtures (PRISM), https://

depmap.org/portal/prism/) databases. We also plotted receiver

operating characteristic curve (ROC) and calculated the Area

Under the ROC (AUC) values for all patients using the

“pRRophtic” package (46). Generally, lower AUC values indicated

higher sensitivity to potential drugs (47).
Analysis of single-cell RNA
sequencing data

ScRNA-seq files of three patients with LUAD from GSE117570

were retrieved from GEO. The expression matrices were normalized

using the “Seurat” package, and the top 2000 highly variable genes

were identified. The batch effect was eliminated using the

“harmony” package (48). The “copyKAT” and “SingleR” packages

were used to annotate tumor and immune cells (49, 50). Cell

clustering analysis was performed using the “T-SNE” algorithm,

and the top 11 principal components were selected. Genes with “|

log2FC|>1” and “adjusted P < 0.01” were considered marker genes.
Tissue microarray and
immunohistochemistry staining

We procured the LUAD TM (HPan-Ade060CS-01) from

Shanghai Outdo Biotech Co., LTD (Shanghai, China).

HLugA060PG02 contains 30 LUAD and adjacent paraneoplastic
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tissues. All the raw data could be obtained at the Shanghai Outdo

Biotech Co. LTD’s official website. Due to the absence of two

paracancer samples in TM, we only performed IHC on 30 LUAD

samples and 28 paracancer samples according to the following

procedure. First, TM sections were dewaxed and rehydrated using

decreasing grade of ethanol solution. Next, antigen recovery was

performed in an autoclave using an acidic antigen repair solution

(pH 6.0), the endogenous peroxidase activity was attenuated, and

the antigenic sites were blocked using 5% bovine serum albumin.

TM sections were incubated with 1:200 diluted anti-DDIT4

monoclonal antibody (ProteinTech, Wuhan, China, Cat

No.10638-1-AP) for 16 hours at 4°C, followed by incubation with

horseradish peroxidase (Maixin, Fujian, China) conjugated

secondary antibody. 3,3’-diaminobenzidine (DAB, Maixin, Fujian,

China) was used for immunoreactivity, and the nuclei were

counterstained with hematoxylin. Finally, Interpret the results

and group the samples according to the following criteria: The

appearance of faint yellow to brownish granules in the cytoplasm is

considered positive, while their absence is considered negative.

Staining intensity in positive samples is scored as follows: no

positive staining, weakly positive: (+), yellow-brown: positive (++)

and dark brown: strongly positive (+++). Expression grouping of

sample: Negative and weakly positive expression is included in the

low expression group, while positive and strongly positive

expression is included in the high expression group.
Cell culture and transfection

H358 and H838 (LUAD cells) and BEAS-2B (normal bronchial

epithelial cells) were purchased from ATCC. All cell lines were of

human origin. We cultured H358 and H838 in RPMI 1640 medium

(Gibco, Shanghai, China) and BEAS-2B in DMEM (Gibco, Shanghai,

China). Both mediums were supplemented with 10% fetal bovine

serum (FBS, Gibco, Shanghai, China) and 1% penicillin/

streptomycin. All cells were maintained in an incubator at 5% CO2

and 37°C. Following the guidelines specified by the manufacturer, we

transfected small interfering RNA (siRNA) against DDIT4 (DDIT4-

siRNA) and the corresponding control siRNA (siRNA-NC) into

LUAD cells at the logarithmic growth stage using Lipofectamine

3000 transfection reagent (Invitrogen, MA, USA). The siRNA

sequences are shown in Supplementary Table 3.
RNA extraction and real-time quantitative
polymerase chain reaction

Following the manufacturer’s guidelines, we isolated total cellular

RNA using an RNA extraction kit (Analytik Jena AG, Jena,

Germany). Next, a Promega qRT-PCR kit (Promega, WI, USA)

was used to perform reverse transcription for synthesizing cDNA

using extracted RNA. RT-PCR was performed using SYBR Premix Ex

Taq II (Promega, WI, USA) on a real-time PCR detection system

480II (Roche, OR, USA). The PCR reaction conditions were 1 cycle of

95°C for 2 minutes, 40 cycles of 15 seconds, 60°C for 1 minute, 1 cycle

of 95°C for 15 seconds, 60°C for 15 seconds, 95°C for 15 seconds. We
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used b-Actin as the internal reference and the 2DDCt method for

quantifying relative gene expression. The primer sequences are

provided in Supplementary Table 4.
Cell counting kit-8 assay

We performed a CCK-8 assay (Cellcook, Guangzhou, China,

Cat No. CT01A) using the manufacturer’s guidelines to determine

the viability of cells transfected with DDIT4-siRNA and siRNA-NC.

We seeded these cells in the logarithmic growth phase into 96-well

plates. In order to evaluate the effect on cell proliferation capacity,

10 ml CCK-8 reagent was added in all wells and incubated for 2

hours at 37°C at 0, 24, 48, 72 h after culturing. For the sensitivity of

cells to the drug, cells were treated at 37˚C with Ispinesib (0, 20, 40,

80 or 100 nM, MedChem Express, Monmouth Junction, NJ, USA,

Cat No.HY-50759), Cabazitaxel (0, 10, 20, 40 or 80 nM, MedChem

Express, Monmouth Junction, NJ, USA, Cat No. HY-15459) and

Epothilone-b (0, 40, 80, 160 or 320 nM, MedChem Express,

Monmouth Junction, NJ, USA, Cat No. HY-17029) for 24 h,

respectively. 10 ml CCK-8 reagent was added in all wells and

incubated for 2 hours at 37°C. Finally, we measured the

absorbance of each well at 450 nm using a microplate reader.
Clone formation assays

The clone formation rate was determined using a plate clone

formation assay. 400 siRNA-NC and DDIT4-siRNA transfected

cells/well were seeded in 12-well plates and incubated at 37°C for 14

days. Next, we washed the cells with PBS and fixed them using 4%

paraformaldehyde. Finally, crystal violet was used for the purpose of

staining the fixed cells, and the viable clones with a minimum of 50

cells were counted.
Transwell assay

The invasive and migratory capacities of siRNA-NC and DDIT4-

siRNA transfected cells were tested by Transwell (pore size 8.0 µm;

Corning Inc, NY, USA) coated with Matrigel (BD Biosciences,

Bedford, USA). To determine the migratory capacity of cells, we

inoculated 2 × 104 cells in 100 ml serum-free medium in the upper

chamber. The lower chamber was supplemented with 800 ml 10%
FBS-containingmedium. The cells were incubated in an incubator for

24 hours, stained using crystal violet, and imaged under a light

microscope. The “ImageJ” software was used for counting cells. For

the invasion assay, the upper chamber was coated with 100 ml of 10%
Matrigel. The rest of the procedure was the same as described above.
TUNEL staining

We utilized TUNEL staining (Solarbio, Beijing, China, Cat No.

T2196) to examine apoptosis in tumor cells. An initial density of

1 × 105 cells per well was established in 12-well plates. These cells
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paraformaldehyde for 30 minutes at room temperature, followed

by two PBS washes. A treatment with 0.1% Triton X-100 was

applied for 10 minutes at room temperature. After another PBS

rinse, the cells were incubated in a 50 µl TUNEL reaction mixture at

37°C for 1 hour. To counterstain the cell nuclei, we employed 4,6-

diamidino-2-phenylindole (DAPI, Solarbio, Beijing, China, Cat No.

C0065) for 10 minutes at room temperature and washed cells twice

with PBS. Finally, images of TUNEL-labeled cells were procured

from three arbitrary fields using a fluorescent microscope.
Western blotting

To obtain total protein, cells were subjected to protein

extraction using 1% PMSF and RIPA buffer (Solarbio, Beijing,

China, Cat No. R0020) on ice for 30 minutes. The resulting

mixture was centrifuged at 12,000 rpm for 30 minutes, and the

protein suspension was collected from the liquid supernatant.

Protein concentration was determined using the BCA method

(Epizyme, Shanghai, China, Cat No. ZJ101). Subsequently, SDS-

PAGE protein loading buffer (5X) (Beyotime, China) was added to

the protein suspension, followed by boiling for 10 minutes. The

protein was then separated using either a 10% or 12.5% SDS-PAGE

gel (Epizyme, Shanghai, China, Cat No. PG113 or PG112) and

transferred onto a 0.45 mm polyvinylidene fluoride (PVDF)

membrane. To block the PVDF membranes, 5% skim milk was

applied for 1.5 hours. Next, the membranes were incubated with

primary antibodies including DDIT4 (ProteinTech, Wuhan, China,

Cat No. 67059-1-Ig, 1:1000), BCL2 (ProteinTech, Wuhan, China,

Cat No. 68103-1-Ig, 1:1000), Caspase-3 (Huaan, Hangzhou, China,

Cat No. ET1602-39, 1:1000), and GAPDH (Huaan, Hangzhou,

China, Cat No. ET1601-4, 1:5000), followed by incubation with

corresponding secondary antibodies. Finally, the protein bands

were visualized using chemiluminescence kits.
Statistical analysis

We used software including “GraphPad Prism (version 9.00)”

and “R (version 4.0.5) package” for statistically analyzing the data.

We determined the correlation between two continuous variables

using the “Pearson correlation”. Next, the chi-squared test was

employed for comparing categorical variables, and the “Wilcoxon

rank-sum” or student’s t-tests for continuous variables. All

statistical tests were two-sided. If not otherwise stated, P < 0.05

was considered statistically significant.
Results

Transcriptional and genetic alterations of
PCDRGs in patients with LUAD

The expression profiles of DEPCDRGs between normal and

LUAD tissues from the TCGA-LUAD cohort were compared, and
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200 DEGs were identified (Supplementary Table 5). The heatmap and

volcano plot shows DEGs in these samples (Figures 2A, B). The GO

and KEGG pathway enrichment analyses showed the enrichment of

these DEPCDRGs in various biological pathways like tumor necrosis

factor receptor superfamily binding, the TNF, regulation of apoptotic,

and IL-17 signaling pathways (Figures 2C, D, Supplementary
Frontiers in Immunology 07
Table 6). Next, we determined the status of DEPCDRGs mutation

in patients with LUAD. Approximately 73.88% (444/601) of patients

with LUAD harbored mutations in DEPCDRGs. Of the top 10

mutated DEPCDRGs, TP53 had the highest mutation frequency

(Figures 2E, F). The frequencies of CNV in DEPCDRGs analysis

showed that most DEPCDRGs harbored significant CNVs. The
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FIGURE 2

The landscape of Programmed cell death related genes (PCDRGs) in TCGA-LUAD cohort. (A) Heatmap of the differentially expressed PCDRGs
between tumor and paracancer tissues of LUAD. (B) Volcano plot of the DEPCDRGs. (C) GO categories [molecular function (MF), biological process
(BP) and cellular component (CC)] and (D) KEGG pathway analysis for DEPCDRGs. (E, F) The mutation summary and details of DEPCDRGs in the
LUAD patients (G) The location of CNV alterations of DEPCDRGs on chromosomes. (H) CNV mutation situation of the DEPCDRGs. (I) The Scatter
plot of gene expression for the top 10 DEPCDRGs with the highest CNV frequency. (J) Boxplot of gene expression for the top 10 DEPCDRGs with
the highest mutation frequency. (K) Network map of the DEPCDRGs transcription factors and DEPCDRGs. Blue triangular nodes represent
transcription factors, red oval nodes represent DEPCDRGs, and lines between nodes indicate regulatory relationships. ns, not significant, *P < 0.05,
**P < 0.01, ***P < 0.001.
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chromosomal locations of CNVs in DEPCDRGs are shown in

Figure 2G. Interestingly, the highest frequencies of CNV gain and

loss were observed in MLLT11 and CDKN2A, respectively

(Figure 2H). It is worth noting that DEPCDRGs undergoing CNV

often exhibit higher expression levels, but mutations and

corresponding gene expression show no significant correlation

(Figures 2I, J). 452 TF-target pairs were obtained by predicting the

TFs of the genes associated with DEPCDRGs, which included 106

predicted TFs and 84 target DEPCDRGs. Figure 2K illustrates the

regulatory relationships of these pairs.
CDS signature development

We performed univariate Cox regression analysis on 200

DEPCDRGs and identified 71 prognosis-related PCDRGs
Frontiers in Immunology 08
(Supplementary Table 7). These 71 PCDRGs were subjected to a

machine learning-based integration procedure for developing cell

death core (CDS). In addition, 101 prediction models were fitted in

the training cohort using the LOOCV framework and validated on

the test cohorts. Next, we calculated the C-index for all models in

whole cohorts (Figure 3A and Supplementary Table 8). The mean

C-index value of 0.727 was the highest in the RSF (including

GAPDH, DDIT4, KRT18, and ENO1) and was considered the best

model (Figures 3B, C, Supplementary Table 9). Subsequently, we

calculated the CDS for all patients based on the RSF model

(Supplementary Table 10). All patients were categorized using the

median CDS value as a threshold into high and low-CDS groups.

The survival duration of patients with high CDS from whole

cohorts was short (Figures 3D-H). In addition, we evaluated the

performance of CDS based on the patient’s clinical characteristics.

The results demonstrated that the ability of CDS to predict patients’
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FIGURE 3

A cell death score (CDS) was established and validated via the machine learning-based integrative procedure. (A) A total of 101 kinds of machine
learning algorithms were used to obtain the optimal model and calculated the C-index of each model for all cohorts. (B, C) The number of trees for
determining the CDS with minimal error and the importance of the 4 PCDRGs based on the RSF algorithm. (D-H) Kaplan–Meier curves of OS
according to the CDS in TCGA, GSE31210, GSE68465, GSE72094 and meta-cohort.
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survival was not influenced by their clinical characteristics

(Supplementary Figure 1).
CDS assessment

We conducted the “time-ROC” analysis to calculate the AUC

values of CDS for predicting the prognosis of patients in different

cohorts [Figures 4A-E; TCGA [0.95–0.98], GSE31210 (0.67–0.8),

GSE68465 (0.63–0.68), GSE72094 (0.68–0.78), and meta-cohort

(0.71–0.81)]. The C-index values of all cohorts are shown in

Figure 4F. Next, we compared the abilities of CDS and other

clinical as well as molecular variables in predicting patients’

prognoses. The accuracy of CDS in predicting patients’ prognoses

was better compared to other variables, including age, gender,

smoking, TP53, EGFR, KRAS, STK11, M, and T (Figures 4G-J).

The advancement in sequencing technology and bioinformatics

have aided in developing models based on the combination of the

expression profile of genes for predicting the patient’s diagnosis and

prognosis. Subsequently, we systematically searched LUAD-related

signatures published in the last 3 years. Finally, we included 77

biomarkers for comparison of predictive performance with CDS
Frontiers in Immunology 09
(Supplementary Table 11). The results revealed that the

performance of our CDS in almost all cohorts was better

compared to other signatures (Figure 5). Further, we analyzed the

correlation between CDS and other clinical variables. The chi-

squared test results showed a correlation between all variables

except for gender and both CDS groups (Supplementary

Figure 2). After incorporating clinical data of patients,

univariate and multivariate Cox regression analyses of the four

cohorts indiated that CDS could predict patients’ prognoses

independently (Tables 1-4).
Generation of CDS genetic subtypes

We performed consistent clustering on four genes included, and

the samples were grouped into distinct characteristic subtypes to

identify PCD-related subtypes of LUAD. Finally, we identified two

PCD-related phenotypes: clusters 1 and 2 (Figures 6A, B,

Supplementary Table 12). Kaplan-Meier (KM) curves showed

higher OS rate patients in cluster 1 compared to cluster 2 in all

cohorts (Figure 6C). In addition, the alluvial diagram showed that

most patients with high CDS were grouped in cluster 2 (Figure 6D).
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FIGURE 4

Evaluation of the CDS. (A–E) Time-dependent receiver operating characteristic curve of CDS for predicting the prognosis of LUAD patients from
TCGA, GSE31210, GSE68465, GSE72094 and meta-cohort. (F) The C-index of the CDS for the TCGA, GSE31210, GSE68465, GSE72094 cohorts. (G–

J) The C-index of the CDS and other clinical factors in the TCGA, GSE31210, GSE68465, GSE72094 cohorts. ns, not significant, *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001.
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Genetic variations in CDS groups

Figures 7A, B shows the top 20 genes with the highest mutation

frequencies in patients in both CDS groups. The results revealed

differences in mutated genes in patients between both CDS groups.

The frequency of sense, nonsense, or overall mutations in patients

in the high-CDS group was higher compared to the low-CDS group,

despite no correlation between CDS and mutation frequency

(Figures 7C-E). In addition, a significant difference in the

mutation frequency of 16 genes was observed in patients between

both CDS groups (Figure 7F), and there was extensive co-mutation
Frontiers in Immunology 10
between these genes (Figure 7G). Patients in the high-CDS group

had high TMB compared to the low-CDS group (Figure 7H,

Supplementary Table 13). KM analysis showed that the OS rates

of patients in the high-TMB group were significantly higher

compared to the low-TMB group (Figure 7I). Next, the prognosis

of patients was predicted based on their TMB and CDS. The

survival rate of patients in the low-CDS group with high TMB

was the highest, whereas the survival rate of patients in the high-

CDS group with low TMB was the lowest (Figure 7J). CNV analysis

revealed differences in chromosomal alteration patterns in patients

in different CDS groups (Figure 7K). The high-CDS group had a
FIGURE 5

Comparison of CDS and other gene expression-based prognostic signatures in LUAD based on the TCGA, GSE31210, GSE68465, GSE72094 and
meta-cohort. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
TABLE 1 Univariate and multivariate Cox analysis of the clinicopathological features and FA score with OS for TCGA cohort.

Univariate Cox Multivariate Cox

Characteristics HR(95%CI) P value HR(95%CI) P value

Stage 1.977(1.586-2.463) < 0.001 1.302(0.919-1.845) 0.137

M 1.727(1.18-2.527) 0.005 0.799(0.507-1.259) 0.333

N 1.942(1.575-2.394) < 0.001 1.306(0.972-1.753) 0.076

T 1.816(1.386-2.38) < 0.001 1.492(1.075-2.07) 0.017

Age 1.038(0.822-1.31) 0.754

Sex 1.041(0.847-1.28) 0.7

CDS 0.028(0.016-0.047) < 0.001 0.035(0.019-0.062) < 0.001
fron
Significant value is given in bold.
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greater percentage of FGA, FGL, and FGG detected. (Figure 7L,

Supplementary Table 14).
Characteristics of TME in CDS groups

To evaluate if CDS could be used to determine the immune

status of patients, we analyzed the correlation between CDS and

infiltrating immune cells (Supplementary Table 15, 16). The

proportion of infiltrating immune cells in patients in the low-

CDS group was high (Figure 8A). Next, our analysis of cancer

progression revealed that the majority of key steps, including cancer

antigen presentation, priming and activation and B cell recruiting,

displayed higher activity levels in the low CDS group (Figure 8B,
Frontiers in Immunology 11
Supplementary Table 17). Additionally, an increase in the

expression of most immune checkpoint genes was observed in

patients in the low-CDS group (Figure 8C, Supplementary

Table 18). Additionally, several factors associated with tumor

immunogenicity were analyzed, like the status of MSI, SNV

neoantigens, and BCR and TCR richness (Supplementary

Table 19). Patients in the high-CDS group had high MSI, SNV,

neoantigens, and low BCR and TCR richness (Figures 8D-G).

Together, these results suggest that patients with low CDS had

highly active immune status. GSEA analysis was performed to

compare the Hallmark pathways enriched in patients in both

CDS groups (Supplementary Table 20). We observed significant

enrichment of patients with high CDS in pathways and functions

related to cell cycle, hypoxia, glycolysis, and mTOR signaling, and
TABLE 2 Univariate and multivariate Cox analysis of the clinicopathological features and FA score with OS for GSE68465 cohort.

Univariate Cox Multivariate Cox

Characteristics HR(95%CI) P value HR(95%CI) P value

N 2.029(1.689-2.438) < 0.001 2.053(1.686-2.5) < 0.001

T 2.062(1.587-2.68) < 0.001 1.806(1.37-2.383) < 0.001

Sex 1.262(1.051-1.516) 0.013 1.239(1.021-1.503) 0.03

Chemotherapy 1.412(1.15-1.734) < 0.001 1.243(1.003-1.541) 0.047

CDS 0.655(0.544-0.788) < 0.001 0.658(0.544-0.797) < 0.001
fron
Significant value is given in bold.
TABLE 3 Univariate and multivariate Cox analysis of the clinicopathological features and FA score with OS for GSE31210 cohort.

Univariate Cox Multivariate Cox

Characteristics HR(95%CI) P value HR(95%CI) P value

Smoking 1.417(0.882-2.277) 0.15 NA NA

Sex 1.344(0.839-2.152) 0.219 NA NA

Age 1.263(0.777-2.052) 0.346 NA NA

Stage 2.774(1.732-4.441) < 0.001 2.313(1.413-3.787) < 0.001

CDS 0.434(0.254-0.743) 0.002 0.552(0.314-0.969) 0.038
Significant value is given in bold.
TABLE 4 Univariate and multivariate Cox analysis of the clinicopathological features and FA score with OS for GSE72094 cohort.

Univariate Cox Multivariate Cox

Characteristics HR(95%CI) P value HR(95%CI) P value

STK11 1.028(0.72-1.469) 0.879 NA NA

KRAS 0.767(0.588-0.999) 0.049 0.901(0.686-1.184) 0.454

Age 1.258(0.836-1.894) 0.27 NA NA

Gender 0.733(0.564-0.952) 0.02 0.714(0.546-0.934) 0.014

Stage 1.969(1.477-2.625) < 0.001 1.925(1.438-2.579) < 0.001

Smoking 1.248(0.694-2.245) 0.459 NA NA

CDS 0.536(0.407-0.707) < 0.001 0.605(0.456-0.801) < 0.001
Significant value is given in bold.
tiersin.org

https://doi.org/10.3389/fimmu.2023.1183230
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1183230
these results were validated in GSVA analysis (Figures 8H-L,

Supplementary Table 21).
Predicting immunotherapy efficacy and
identification of potential drugs

We calculated the CDS of patients from the immunotherapy

cohorts to determine if CDS could predict the response to

immunotherapy. In the IMvigor210 cohort, the OS rate of

patients with high CDS still was lower (Figure 9A), but the

response of them to PD-L1 immunotherapy was better

(Figure 9B). The response of patients from GSE78220 to

immunotherapy was similar to the IMvigor210 cohort

(Figure 9C). In addition, the response of patients with high CDS

in the GSE79671 and GSE103668 cohorts to immunotherapy was

better (Figures 9D, E). Subsequently, we analyzed patient immune

evasion and immunotherapy using TIDE scores and found that

patients in the high-CDS group were less likely to experience

immune evasion and had better immunotherapy outcomes

(Figure 9F, Supplementary Table 22). The “SubMap” algorithm
Frontiers in Immunology 12
results showed that patients in the high-CDS group were more

likely to respond to PD-1 immunotherapy (Figure 9G). Next, we

screened for potential drugs for treating patients with LUAD using

the CTRP and PRISM-derived drug response cohorts. Finally, we

obtained two compounds, paclitaxel and SB-743921 from the CTRP

cohort (Figure 9H) and six compounds including cabazitaxel,

daunorubicin, epothilone-b, ispinesib, litronesib, and volasertib

from the PRISM cohort (Figure 9I). Interestingly, patients in the

high-CDS group demonstrated sensitivity to these drugs.
Single-cell level analysis of CDS

We performed principle component analysis to reduce the

dimensionality of all cells using 2000 highly variable genes. Seven

cell types, like monocytes, T cells, B cells, macrophages, cancer cells,

tissue stem cells, and endothelial cells, were annotated (Figures 10A,

B). Additionally, marker genes for each cell type were identified

(Figures 10C, D), and the CDS of each cell type was calculated.

Cancer cells, T cells, and monocytic regions had high CDS

(Figure 10E). Pseudotime trajectory analysis shows the
B
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FIGURE 6

Generation of clusters by Unsupervised clustering of CDS gene expression for TCGA, GSE31210, GSE68465, GSE72094 cohorts. (A) Consensus clustering
matrix of LUAD patients for k = 2. (B) Consensus clustering cumulative distribution function for k = 2 to 9. (C) Kaplan–Meier curves for patients in two
different molecular clusters (D) Alluvial diagram of clusters distributions in groups with different CDS groups, clusters and survival outcomes.
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chronological order of cell differentiation. The cells with low CDS

were mainly disturbed at the end of the differentiation pathway, and

the cells with high CDS were primarily distributed at the early stage

of the differentiation pathway (Figures 10F-H).
DDIT4 affects tumor cell proliferation,
invasion, migration and apoptosis

The expression of four genes of CDS in LUAD and normal cells

was verified by RT-qPCR. Compared to normal cell lines, all genes

were highly expressed in LUAD cells, withDDIT4 showing the most

significant difference (Figure 11A). Owing to the highest expression
Frontiers in Immunology 13
of DDIT4 among the four genes within LUAD cells, coupled with

the absence of reports regarding its progression in LUAD, we

elected to conduct subsequent experiments involving DDIT4. IHC

confirmed high DDIT4 expression in LUAD tissues (Figures 11B,

C). Next, we performed several experiments to determine the roles

of DDIT4 in LUAD. RT-qPCR andWB results revealed a significant

decrease in DDIT4 expression in cells transfected with DDIT4-

siRNAs (Figures 12A, B). The CCK-8 and clone formation assays

showed a reduction in the viability and clone formation of cells in

the DDIT4-siRNAs transfected cells compared to the siRNA-NC

transfected cells (Figures 12C, D). Next, we performed transwell

assay to evaluate the mobility, migratory, and invasive abilities of

LUAD cells. Compared to the siRNA-NC transfected cells, a loss of
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FIGURE 7

Integrated comparisons of somatic mutation and CNVs between high and low CDS groups in the TCGA cohort. (A, B) Waterfall plots showing the
mutation information of the top 20 genes with the highest mutation frequency in the CDS groups. (C-E) Association between all mutation counts,
synonymous mutation counts, nonsynonymous mutation counts, and CDS and their distribution in the CDS groups. (F) Differentially mutated genes
between high and low CDS groups are displayed as a forest plot. (G) Interaction effect of genes mutating differentially in patients in the CDS groups.
(H) Distribution of TMB in the CDS groups. (I) Kaplan–Meier curves for the OS of the high‐TMB and low‐TMB groups. (J) Kaplan–Meier curves for
patients stratified by both TMB and CDS. (K) Gene fragments profiles with amplification (red) and deletion (green) among the CDS groups.
(L) Comparison of the fraction of the genome altered, lost, and gained between the CDS groups. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001.
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FIGURE 8

Immune-related characteristics of the CDS. (A) Heatmap displaying the correlation between the CDS and immune infiltrating cells in the meta-cohort.
(B) Boxplot showing the differences of anti-cancer immunity score between CDS groups. (C) Comparison of immune checkpoint-related genes levels
between CDS groups in the meta-cohort. (D–G) The distribution of MSI, neoantigens, BCR richness, TCR richness levels in different CDS groups from
TCGA cohort. (H–K) The GSEA results for the 12 overlapping upregulated hallmark pathways in terms of the high CDS groups. (L) The difference in the
hallmark gene sets between different CDS groups by GSVA. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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FIGURE 9

Differential putative immunotherapy and chemotherapy response for patients from high and low CDS groups. (A) Kaplan-Meier curve for patients in
high and low CDS groups in the IMvigor cohort. (B-E) Box plot showing different CDS from patients with immunotherapy responses in the IMvigor,
GSE103668, GSE79671 and GSE78220 cohorts. (F) Violin plot showing different TIDE scores from patients with different CDS. (G) Submap analysis of
the meta-cohort and melanoma patients with detailed immunotherapeutic information. (H)The results of correlation analysis and differential drug
response analysis of CTRP-derived drugs. (I) The results of correlation analysis and differential drug response analysis of PRISM-derived drugs. ns, not
significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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invasive and migratory abilities of cells in the DDIT4 siRNAs

transfected cells was observed (Figure 12E). Besides, knockdown

of DDTI4 promotes apoptosis and increases sensitivity to ispinesib

and cabazitaxel in LUAD cells (Figures 12F, G and Figure 13).

Together, these results suggest that the DDIT4 may play a pro-

oncogenic role and a therapeutic target in LUAD.
Discussion

Despite ongoing efforts, the treatment of LUAD remains

challenging, as the disease is often aggressive and associated with

poor prognosis (51, 52). Therefore, studies should focus on

identifying molecular markers and therapeutic targets for LUAD.

It is well established that cell death has vital anticancer effects and

serves as a therapeutic target. Studies have shown that several PCDs

could influence the TME and attenuate tumorigenesis, cancer

progression, and cancer treatment, thus improving the prognosis
Frontiers in Immunology 15
and survival of patients with cancer (53, 54). Commonly used

chemotherapy agents and immune checkpoint inhibitors trigger cell

death, thereby attenuating cancer progression (55). However,

several cancers have an innate resistance to cell death (56).

Therefore, deciphering the underlying mechanisms and functions

of cell death, specifically PCD types and the steps involved in

regulated cell death, holds great promise for providing insights into

cancer development and anti-cancer therapeutics. In clinical

practice, the pathological stage of LUAD determines the patient’s

prognosis (57). However, the clinical outcomes of patients with

similar pathological stages of LUAD are often different, which

indicates the inadequacy of current staging systems in providing

reliable predictions and reflecting LUAD heterogeneity (58). As

next-generation sequencing technologies continue to advance,

RNA-seq has emerged as a potent approach for discovering novel

biomarkers and therapeutic targets (59, 60). In recent years,

numerous models based on gene assemblies of various PCD types

have demonstrated commendable prognostic and therapeutic
B C

D E

F G H

A

FIGURE 10

Exploration of CDS in LUAD scRNA-seq data. (A) t-SNE plot colored by 11 cell subpopulations. (B) t-SNE plot of the distribution of 7 cell types. (C, D) Marker
gene expression of each cell type. (E) CDS distributions in the different single cells. (F-H) Pseudotime trajectory analysis in LUAD cells (Cells are colored
based on states, pseudotime and CDS groups, labels 1, 2, and 3 correspond to the node identifiers and their respective quantities in the figures.
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predictive value, underscoring the potent latent capabilities and

clinical implications of PCD-related genes (61, 62). Nevertheless, a

comprehensive analysis examining PCD-associated genes in LUAD

has not yet been reported. In this study, we comprehensively

analyzed PCDRGs from 12 PCD types. Using the gene expression

profiles of these genes, we developed and validated 101 models

through the “LOOCV” framework across multiple cohorts,

resulting in the identification of the optimal RFS model. This

approach not only utilizes various algorithms to fit models with

consistent prognostic value for LUAD patients but also enables the

models to become simpler and more interpretable. The “The “KM”,

“Time-ROC” and “C-index” analyses showed higher accuracy and

stability of CDS in stratifying the prognosis of patients with LUAD

in multiple cohorts. Furthermore, multivariate Cox regression

analysis showed that CDS could independently predict the

prognosis of patients with LUAD. Next, we compared our CDS

with 77 previously published genetic LUAD models, and the C-

index results revealed that the performance of our CDS was better

than these 77 published models. Therefore, CDS could be a novel

and reliable tool for stratifying patients with LUAD.

All four PCDRGs included in CDS were associated with tumor

initiation and progression. GAPDH is a key enzyme in step 6 of the

glycolytic pathway (63). Studies have demonstrated an increase in

GAPDH expression levels in various tumor tissues and cells (64–
Frontiers in Immunology 16
66). Malignant cells prefer aerobic glycolysis for producing

adenosine triphosphate to oxidative phosphorylation (67). An

increase in the expression of glycolytic enzymes is considered a

hallmark of cancer metabolism (66). Studies have shown the

involvement of GAPDH in several processes, like the apoptosis of

cells, maintaining DNA integrity, and angiogenesis. Antisense

oligonucleotides or anticancer agents targeting GAPDH could

inhibit the proliferation of colon cancer cells and trigger the

apoptosis of cervical cancer cells (68, 69). DDIT4 is a novel HIF-

responsive gene (70). Studies have shown a close association

between increased DDIT4 expression in hypoxic or stressful

conditions and DNA damage, inflammation, ROS, and autophagy

during cancer occurrence and development. DDIT4 activates the

TSC1/2 and NF-kB pathways, thereby endogenously inhibiting the

mTORC1 pathway. High DDIT4 expression is observed in several

cancers and is linked to poor patient prognosis (71, 72). Conversely,

the prognosis of patients with lung or pancreatic cancers harboring

RAS mutations and DDIT4 deletion is poor. This could be due to

reprogramming the oxidation of fatty acids and the accumulation of

pyruvate and lactate (73). Our in vitro experiments showed high

DDIT4 expression in LUAD tissues and cells, which promoted

proliferation, invasion, migration of and inhibited apoptosis of

LUAD cells. KRT18 is a keratin protein and intermediate

filaments necessary for tissue integrity (74). KRT18 is one of the
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FIGURE 11

Cellular and histological and validation candidate gene expression changes. (A) CDS genes expression in cancer and normal cell lines. beta-actin was
used as the internal reference gene and experiment was performed in triplicate and at least three times. (B, C) IHC analysis of DDIT4 in 30 LUAD and
28 adjacent tissues. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001.
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most abundant keratin proteins of epithelial and endothelial cells. It

is expressed in many malignant tumors, including NSCLC, gastric

cancer (GC), hepatocellular carcinoma (HCC) and breast cancer

(BC), making it widely used as a diagnostic and prognostic marker

for cancers (75–78). In addition, KRT18 is an important regulator of

tumors. EGR1 enhances KRT18 expression and promotes the

apoptosis of NSCLC cells (76). Studies have shown that reduced

KRT18 expression enhances the susceptibility of cervical cancer

cells to cytokine-induced cell death, inhibits cell migration (79), and

enhances the sensitivity to paclitaxel in LC (75). ENO1 is an enzyme

involved in metabolism, the pyruvate synthesis and triggers the

activation of the fibrinolytic enzyme and the degradation of the

extracellular matrix (80). Several studies have demonstrated the

involvement of ENO1 in several physiological processes like
Frontiers in Immunology 17
metabolism, the remodeling of the extracellular matrix,

controlling the growth of cells, and metastasis (81, 82). Studies

have demonstrated that ENO1 promotes the migration and

metastasis of cancer cells via the mechanism of regulating

intravascular and pericyte fibrinolytic activity (83, 84). Besides,

ENO1 could be a valuable prognostic marker. The relapse-free

survival and OS of patients with NSCLC expressing high ENO1

level is relatively shorter (85). Moreover, a study has indicated that

targeting ENO1 could be a novel and effective approach to

overcoming drug resistance (86).

PCD regulates TME by triggering the crosstalk between innate

and adaptive immunity to induce immunostimulatory responses

(87). TME is critical for cancer development and response to

treatment (88). Our results of single-cell RNA sequencing
B C

D E

F

G

A

FIGURE 12

DDIT4 promoted proliferation, migration, invasion and inhibited apoptosis of LUAD cell lines. (A, B) Knockdown of DDIT4 was confirmed by RT-PCR
and WB. beta-actin and GAPDH was used as the internal reference gene. (C, D) CCK8 and clone formation assays were performed to assess cell
viability and proliferation of H358 and H838 cells. (E) Transwell assay was performed to assess cell migration and invasion of H358 and H838 cells.
(F) TUNEL staining of H358 and H838 cells. (G) WB analysis of BCL2 and caspase-3 proteins in H358 and H838 cells. *P < 0.05, ***P < 0.001.
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analyses and clustering showed that high CDS scoring cells are

mainly concentrated in the areas of T cells, endothelial cells, and

tumor cells. Monocytes have increasingly been recognized as critical

influencers in cancer evolution and progression, with various

subtypes displaying contradictory roles in facilitating tumor

expansion and impeding the metastasis of malignant cells (89).

Macrophages, notably prominent in the pulmonary cancer milieu,

are significant inflammatory entities that modulate both innate and

adaptive immune responses in cancer. The M1 subtype of

macrophages exudes tumor-suppressing molecules like ROS and

NO, eliciting cytotoxic reactions on cancer cells (90, 91). Contrarily,

M2 macrophages can synthesize a range of cytokines that foster the

proliferation and survival of tumor cells. Additional research

indicates that an established positive feedback mechanism

involving CCL5 and CCL18 between M2 macrophages and

myofibroblasts contributes to the malignant progression of
Frontiers in Immunology 18
phyllodes tumors (92). T cells represent the predominant tumor-

infiltrating immune cells in the TME (93), including various t-cell

subsets. These subsets, along with select other immune cell types,

perform dual roles within the lung TME, engaging in both tumor-

suppressing and tumor-promoting activities (94). CD8+ T cells are

pivotal in orchestrating anti-tumor immunity, effectively

eliminating tumor cells through the recognition of tumor-

associated antigens exhibited in major histocompatibility complex

class I (95). Conversely, regulatory T cells (Tregs) are capable of

suppressing anti-cancer immunity. This suppression undermines

protective immunosurveillance of neoplasia and obstructs potent

anti-tumor immune responses in hosts carrying tumors, thereby

fostering tumor evolution and advancement (96). These cells

exhibit high CDS, indicating that they may have some interaction

in TME. In this study, multiple immune cells including CD4 T, CD8

T and macrophages showed high infiltration in patients with low
FIGURE 13

Effect of DDIT4 on chemotherapy sensitivity of H358 and H838 cells.
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CDS, whereas Treg cells showed low infiltration. Moreover, studies

have shown that poor prognosis were closely associated with an

imbalance in the ratio of immune cells in patients with cancers (97,

98). The results showed that the patients in the low-CDS group had

better OS rate and higher immune scores, suggesting that patients

with highly active immune state have a better prognosis. Tumor

cells with lower levels of differentiation often exhibit faster growth

rates, higher invasiveness, and are typically associated with poorer

prognosis (99). The results of pseudotime analysis indicated that

tumor cells with high CDS levels were positioned at the front end of

the differentiation pathway, while tumor cells with low CDS levels

were located at the terminal end of the differentiation pathway.

Therefore, we found that the levels of CDS may be associated with

the degree of differentiation and invasiveness in tumor cells. CNV is

a prevalent type of variation in tumors and serves as a pivotal factor

propelling the initiation and progression of cancer. Studies suggest

that elevated levels of CNV can stimulate tumor cell proliferation

and immune evasion, often resulting in a poorer prognosis for

patients (100, 101). The levels of FGA, FGG, and FGL were

significantly high in patients in the high-CDS group in our study,

which corroborates previous research reports. Numerous studies

suggest that patients with higher levels of TMB, MSI, and SNV

neoantigens are more likely to respond to immune therapy, while

those with higher TIDE scores tend to exhibit the opposite trend

(102–105). Therefore, we compared TMB, MSI, SNV neoantigen,

and TIDE scores in patients in both CDS groups to predict patients’

response to immunotherapy. As expected, patients in the high-CDS

group had higher TMB, MSI, SNV neoantigens, and lower TIDE

scores. Furthermore, patients in the high-CDS group responded

better to immunotherapy and could gain more benefit from

immunotherapy in multiple cohorts. These results validate the

efficacy of our CDS in predicting patients’ responses to

immunotherapy. Several studies are focusing on the combined

use of chemo and immunotherapies for treating patients with

cancer. Immunotherapy can reduce damage caused to the

immune system by chemotherapy, and the combined use of

chemo and immunotherapies could exert synergistic antitumor

effects (106, 107). Finally, we performed an interaction analysis

between CDS and drug response to screen for drugs that can be

used in combination with immunotherapy in patients in the high-

CDS group and aid in guiding personalized therapy. As a result, 8

potential anti-tumor drugs that are more sensitive to patients with

high CDS were identified. Ispinesib is a highly selective small

molecule inhibitor of KSP that inhibits the formation of bipolar

mitotic spindles, leading to cell cycle arrest without centrosome

separation (108). It exhibits broad-spectrum antitumor activity in

various in vitro tumor cell lines and xenograft models. Cabazitaxel

is a chemotherapy drug approved for the treatment of prostate

cancer, primarily exerting its antiproliferative effect by inhibiting

spindle formation and function (109). Cabazitaxel exhibits broad-

spectrum antitumor activity against various tumors, including

Furthermore, colorectal cancer, pancreatic cancer, and lung

cancer (110). Cabazitaxel promotes autophagic cell death in

LUAD by targeting the PI3K/Akt/mTOR pathway (111).

Moreover, self-assembled micelles loaded with cabazitaxel exhibit

good hydrophilicity and enhanced anticancer effects, making them
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potential candidates for lung cancer treatment (112). Similar to

cabazitaxel, epothilone-b belongs to the class of microtubule

stabilizers. Epothilone-b exerts its anticancer effect mainly by

activating the extrinsic apoptosis pathway involving caspase-3 and

caspase-8 (113). Furthermore, epothilone-b has been confirmed as

one of the clinical drugs capable of inducing genuine immunogenic

cell death (114). For lung cancer, epothilone-b enhances the

radiosensitivity of LUAD cells by reducing DNA repair capacity

(115). However, possibly due to the limitations of cell line types, our

experimental results found that knockdown of DDIT4 can only

stably affect the sensitivity of LUAD cells to ispinesib. Moreover, the

results of GSEA and GSVA analyses indicate a significant

enrichment in cell proliferation and metabolism in patients with

high CDS, such as “OXIDATIVE_PHOSPHORYLATION”,

“DNA_REPAIR”, “G2M_CHECKPOINT”, and “GLYCOLYSIS”

(116–119). This could potentially elucidate the heightened

sensitivity of patients in the high-CDS group to these

chemotherapeutic drugs.

However, our study has several limitations. Firstly, due to the

fact that research on PCD is a rapidly evolving and emerging field, it

is possible that an increasing number of PCDRGs will be identified

beyond the 1215 genes included in this study. Second, the patients

included in our study were from retrospective studies conducted at

single centers. Therefore, prospective studies at multiple centers

should be conducted to validate the reliability and validity of CDS.

Finally, we have only explored the effect of DDIT4 on LUAD cells

using siRNA. Therefore, more genetic modification and

intervention strategies are required to determine the involvement

and mechanism of DDIT4 in LUAD.
Conclusions

In conclusion, we have developed and validated an accurate and

robust CDS based on four PCDRGs using extensive machine

learning algorithms. Our CDS could effectively predict the

survival and response of patients with LUAD to immunotherapy.

CDS is a powerful tool for predicting the patient’s prognosis and

designing personalized therapy. These results provide new

directions and shed light on the molecular mechanisms of LUAD.
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18. González-Juarbe N, Bradley KM, Shenoy AT, Gilley RP, Reyes LF, Hinojosa CA,
et al. Pore-forming toxin-mediated ion dysregulation leads to death receptor-
independent necroptosis of lung epithelial cells during bacterial pneumonia. Cell
Death Differ (2017) 24(5):917–28. doi: 10.1038/cdd.2017.49

19. Tanzer MC, Khan N, Rickard JA, Etemadi N, Lalaoui N, Spall SK, et al.
Combination of IAP antagonist and IFNg activates novel caspase-10- and RIPK1-
dependent cell death pathways. Cell Death Differ (2017) 24(3):481–91. doi: 10.1038/
cdd.2016.147

20. Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging
therapeutic strategies. Nat Rev Rheumatol (2016) 12(1):49–62. doi: 10.1038/
nrrheum.2015.169

21. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al.
Copper induces cell death by targeting lipoylated TCA cycle proteins. Science (2022)
375(6586):1254–61. doi: 10.1126/science.abf0529

22. Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, et al. Connecting
copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer
(2022) 22(2):102–13. doi: 10.1038/s41568-021-00417-2

23. Ma D, Lu B, Feng C, Wang C, Wang Y, Luo T, et al. Deoxypodophyllotoxin
triggers parthanatos in glioma cells via induction of excessive ROS. Cancer Lett (2016)
371(2):194–204. doi: 10.1016/j.canlet.2015.11.044

24. Liccardi G, Ramos Garcia L, Tenev T, Annibaldi A, Legrand AJ, Robertson D,
et al. RIPK1 and caspase-8 ensure chromosome stability independently of their role in
cell death and inflammation. Mol Cell (2019) 73(3):413–428.e7. doi: 10.1016/
j.molcel.2018.11.010

25. Akhiani AA, Werlenius O, Aurelius J, Movitz C, Martner A, Hellstrand K, et al.
Role of the ERK pathway for oxidant-induced parthanatos in human lymphocytes. PloS
One (2014) 9(2):e89646. doi: 10.1371/journal.pone.0089646

26. Donizy P, Halon A, Surowiak P, Pietrzyk G, Kozyra C, Matkowski R.
Correlation between PARP-1 immunoreactivity and cytomorphological features of
parthanatos, a specific cellular death in breast cancer cells. Eur J Histochem (2013) 57
(4):e35. doi: 10.4081/ejh.2013.e35

27. Mackay HL, Muller PAJ. Biological relevance of cell-in-cell in cancers. Biochem
Soc Trans (2019) 47(2):725–32. doi: 10.1042/bst20180618

28. Florey O, Kim SE, Sandoval CP, Haynes CM, Overholtzer M. Autophagy
machinery mediates macroendocytic processing and entotic cell death by targeting
single membranes. Nat Cell Biol (2011) 13(11):1335–43. doi: 10.1038/ncb2363
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1183230/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1183230/full#supplementary-material
https://doi.org/10.3322/caac.21492
https://doi.org/10.1016/j.cell.2012.08.029
https://doi.org/10.1097/cco.0000000000000703
https://doi.org/10.1073/pnas.0710370104
https://doi.org/10.1038/onc.2008.170
https://doi.org/10.1016/j.lungcan.2009.11.012
https://doi.org/10.1038/d41586-020-03152-0
https://doi.org/10.1016/j.ccm.2019.10.001
https://doi.org/10.1038/s41422-019-0164-5
https://doi.org/10.1002/path.1711530404
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1038/nature15514
https://doi.org/10.1038/nature15541
https://doi.org/10.1016/j.freeradbiomed.2020.02.027
https://doi.org/10.1038/cdd.2015.158
https://doi.org/10.1038/nrm2529
https://doi.org/10.1007/978-1-59745-157-4_3
https://doi.org/10.1038/cdd.2017.49
https://doi.org/10.1038/cdd.2016.147
https://doi.org/10.1038/cdd.2016.147
https://doi.org/10.1038/nrrheum.2015.169
https://doi.org/10.1038/nrrheum.2015.169
https://doi.org/10.1126/science.abf0529
https://doi.org/10.1038/s41568-021-00417-2
https://doi.org/10.1016/j.canlet.2015.11.044
https://doi.org/10.1016/j.molcel.2018.11.010
https://doi.org/10.1016/j.molcel.2018.11.010
https://doi.org/10.1371/journal.pone.0089646
https://doi.org/10.4081/ejh.2013.e35
https://doi.org/10.1042/bst20180618
https://doi.org/10.1038/ncb2363
https://doi.org/10.3389/fimmu.2023.1183230
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1183230
29. Ravindran M, Khan MA, Palaniyar N. Neutrophil extracellular trap formation:
physiology, pathology, and pharmacology. Biomolecules (2019) 9(8):365. doi: 10.3390/
biom9080365

30. Zhou W, Guo Y, Zhang X, Jiang Z. Lys05 induces lysosomal membrane
permeabilization and increases radiosensitivity in glioblastoma. J Cell Biochem (2020)
121(2):2027–37. doi: 10.1002/jcb.29437

31. Stoka V, Turk V, Turk B. Lysosomal cysteine cathepsins: signaling pathways in
apoptosis. Biol Chem (2007) 388(6):555–60. doi: 10.1515/bc.2007.064

32. Song X, Zhu S, Xie Y, Liu J, Sun L, Zeng D, et al. JTC801 induces pH-dependent
death specifically in cancer cells and slows growth of tumors in mice. Gastroenterology
(2018) 154(5):1480–93. doi: 10.1053/j.gastro.2017.12.004

33. Holze C, Michaudel C, Mackowiak C, Haas DA, Benda C, Hubel P, et al.
Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway.
Nat Immunol (2018) 19(2):130–40. doi: 10.1038/s41590-017-0013-y

34. Zhang CC, Li CG, Wang YF, Xu LH, He XH, Zeng QZ, et al. Chemotherapeutic
paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via
caspase-3/GSDME activation. Apoptosis (2019) 24(3-4):312–25. doi: 10.1007/s10495-
019-01515-1

35. Malhotra J, Jabbour S, Orlick M, Riedlinger G, Guo Y, White E, et al. Phase Ib/II
study of hydroxychloroquine in combination with chemotherapy in patients with
metastatic non-small cell lung cancer (NSCLC). Cancer Treat Res Commun (2019)
21:100158. doi: 10.1016/j.ctarc.2019.100158

36. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and
comprehensive analysis of somatic variants in cancer. Genome Res (2018) 28(11):1747–
56. doi: 10.1101/gr.239244.118

37. Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize Implements and enhances
circular visualization in R. Bioinformatics (2014) 30(19):2811–2. doi: 10.1093/
bioinformatics/btu393

38. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0.
Nat Genet (2006) 38(5):500–1. doi: 10.1038/ng0506-500

39. Xu L, Deng C, Pang B, Zhang X, Liu W, Liao G, et al. TIP: A web server for
resolving tumor immunophenotype profiling. Cancer Res (2018) 78(23):6575–80.
doi: 10.1158/0008-5472.Can-18-0689

40. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFb
attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells.
Nature (2018) 554(7693):544–8. doi: 10.1038/nature25501

41. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al.
Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic
melanoma. Cell (2017) 168(3):542. doi: 10.1016/j.cell.2017.01.010

42. Urup T, Staunstrup LM, Michaelsen SR, Vitting-Seerup K, Bennedbæk M, Toft
A, et al. Transcriptional changes induced by bevacizumab combination therapy in
responding and non-responding recurrent glioblastoma patients. BMC Cancer (2017)
17(1):278. doi: 10.1186/s12885-017-3251-3

43. Birkbak NJ, Li Y, Pathania S, Greene-Colozzi A, Dreze M, Bowman-Colin C,
et al. Overexpression of BLM promotes DNA damage and increased sensitivity to
platinum salts in triple-negative breast and serous ovarian cancers. Ann Oncol (2018)
29(4):903–9. doi: 10.1093/annonc/mdy049

44. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response.NatMed (2018) 24(10):1550–8.
doi: 10.1038/s41591-018-0136-1

45. Roh W, Chen PL, Reuben A, Spencer CN, Prieto PA, Miller JP, et al. Integrated
molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals
markers of response and resistance. Sci Transl Med (2017) 9(379):aah3560.
doi: 10.1126/scitranslmed.aah3560

46. Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of
clinical chemotherapeutic response from tumor gene expression levels. PloS One (2014)
9(9):e107468. doi: 10.1371/journal.pone.0107468

47. Yang C, Huang X, Li Y, Chen J, Lv Y, Dai S. Prognosis and personalized
treatment prediction in TP53-mutant hepatocellular carcinoma: an in silico strategy
towards precision oncology. Brief Bioinform (2021) 22(3):bbaa164. doi: 10.1093/bib/
bbaa164

48. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast,
sensitive and accurate integration of single-cell data with Harmony. Nat Methods
(2019) 16(12):1289–96. doi: 10.1038/s41592-019-0619-0

49. Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. Reference-based analysis
of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat
Immunol (2019) 20(2):163–72. doi: 10.1038/s41590-018-0276-y

50. Gao R, Bai S, Henderson YC, Lin Y, Schalck A, Yan Y, et al. Delineating copy
number and clonal substructure in human tumors from single-cell transcriptomes. Nat
Biotechnol (2021) 39(5):599–608. doi: 10.1038/s41587-020-00795-2

51. Nasim F, Sabath BF, Eapen GA. Lung cancer. Med Clin North Am (2019) 103
(3):463–73. doi: 10.1016/j.mcna.2018.12.006

52. D’Amico AG, Maugeri G, Rasà DM, Reitano R, Saccone S, Federico C, et al.
Modulatory role of PACAP and VIP on HIFs expression in lung adenocarcinoma.
Peptides (2021) 146:170672. doi: 10.1016/j.peptides.2021.170672

53. Yu J, Wang Q, Zhang X, Guo Z, Cui X. Mechanisms of neoantigen-targeted
induction of pyroptosis and ferroptosis: from basic research to clinical applications.
Front Oncol (2021) 11:685377. doi: 10.3389/fonc.2021.685377
Frontiers in Immunology 21
54. Yang B, Zhong W, Gu Y, Li Y. Emerging mechanisms and targeted therapy of
pyroptosis in central nervous system trauma. Front Cell Dev Biol (2022) 10:832114.
doi: 10.3389/fcell.2022.832114

55. Liu W, Zhang L, Xiu Z, Guo J, Wang L, Zhou Y, et al. Combination of immune
checkpoint inhibitors with chemotherapy in lung cancer. Onco Targets Ther (2020)
13:7229–41. doi: 10.2147/ott.S255491

56. Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors in cancer therapy: a
focus on T-regulatory cells. Immunol Cell Biol (2018) 96(1):21–33. doi: 10.1111/
imcb.1003
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