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Guillain-Barré syndrome and
COVID-19 vaccines: focus on
adenoviral vectors

Piotr Rzymski*

Department of Environmental Medicine, Poznan University of Medical Sciences, Poznan, Poland
COVID-19 vaccination is a life-saving intervention. However, it does not come up

without a risk of rare adverse events, which frequency varies between vaccines

developed using different technological platforms. The increased risk of Guillain-

Barré syndrome (GBS) has been reported for selected adenoviral vector vaccines

but not for other vaccine types, including more widely used mRNA preparations.

Therefore, it is unlikely that GBS results from the cross-reactivity of antibodies

against the SARS-CoV-2 spike protein generated after the COVID-19

vaccination. This paper outlines two hypotheses according to which increased

risk of GBS following adenoviral vaccination is due to (1) generation of anti-

vector antibodies that may cross-react with proteins involved in biological

processes related to myelin and axons, or (2) neuroinvasion of selected

adenovirus vectors to the peripheral nervous system, infection of neurons and

subsequent inflammation and neuropathies. The rationale behind these

hypotheses is outlined, advocating further epidemiological and experimental

research to verify them. This is particularly important given the ongoing interest

in using adenoviruses in developing vaccines against various infectious diseases

and cancer immunotherapeutics.
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1 Introduction

The COVID-19 pandemic has been met with unprecedented scientific efforts, including

developing and clinical testing numerous vaccine candidates at an unseen pace (1, 2).

China reported the first cluster of cases in late December 2019, the first genomic data of its

etiological agent, later named severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), became publicly available in the first half of January 2020 (3), while the first

COVID-19 vaccines were authorized by the end of 2020. By the end of 2021, over twenty

different COVID-19 vaccines were already in use in various world regions (4). These

included preparations based on the inactivated virus (e.g., BIBP-CorV by Sinopharm and

CoronaVac by Sinovac Biotech), mRNA technology (e.g., BNT162b2 by BioNTech/Pfizer,

and mRNA-1273 by Moderna), non-replicating adenoviral vector (e.g., AZD1222 by

AstraZeneca, Ad26.COV2.S by Janssen/Johnson&Johnson, Ad5-nCoV by Cansino
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Biologics, and Sputnik V by Gamaleya Research Institute of

Epidemiology and Microbiology), plasmid DNA (ZyCoV-D by

Cadila Healthcare), and subunit protein (e.g., NVX-CoV2373 by

Novavax) (4).

The COVID-19 vaccination has been proven to be a life-saving

intervention. As estimated, it reduced COVID-19 mortality by two-

thirds in 2021, averting globally 19.8 million deaths (5). It was also

associated with lower admissions rates to intensive care units and

hospitalizations (6–8), and evidence shows that it also reduced long-

term consequences of SARS-CoV-2 infections, known as post-

COVID syndrome (6, 7). With time it became evident that

booster doses are required to restore gradually decreasing levels of

neutralizing antibodies and address the novel SARS-CoV-2 variants

that revealed varying levels of immune evasion (8, 9). Moreover, in

response to the emergence of the Omicron variant and its further

evolution, the bivalent mRNA vaccines, containing the second

component optimized for Omicron BA.1 or BA.4/BA.5

subvariants, were authorized in the second half of 2022. All in all,

this resulted in repeated administration of COVID-19 vaccines,

with over 13 billion doses administrated by the end of 2022 and 69%

of the world population receiving at least one dose (10).

Although the clinical trials have demonstrated a good safety

profile of COVID-19 vaccines, with the reactogenicity represented

mainly by short-term local (e.g., injection-site pain, redness,

swelling) or systemic responses (e.g., fatigue, fever, headache), one

should note that these studies, despite thousands of participants,

were not designed to detect very rare adverse events that may occur

during the massive vaccination campaign. For example, after

authorization, mRNA vaccination has been associated with an

increased risk of myocarditis and pericarditis (11), while unusual

thrombotic events associated with thrombocytopenia have been

recorded following the administration of adenoviral vector vaccines

(12, 13). Moreover, some adenoviral vaccines were also associated

with the risk of Guillain-Barré syndrome (GBS), a rare, immune-

mediated neurologic disorder characterized by varying degrees of

weakness, sensory abnormalities, and autonomic dysfunction due to

damage to peripheral nerves and nerve roots (14). GBS is usually

reversible, but in severe cases, it may lead to breathing difficulties,

require mechanical ventilation, and leave permanent neurological

alterations (15). Its worldwide annual incidence is estimated at 0.8-

1.9 cases per 100,000 persons, with frequency increasing with age

and being more common in men (16).

In 2021, the population-based study employing data from the

National Health Service in England identified that administration of

the first dose of AZD1222, based on a modified chimpanzee

adenovirus (ChAdOx1), was associated with an excess of GBS

risk of 0.58 cases per 100,000 doses (17). In India, the reported

frequency of GBS following AZD1222 was 1.4- to 10-fold higher

than expected for a population and included severe cases

progressing to areflexic quadriplegia (18), while in Australia, it

exceeded the background level by 4.7-fold (19). In 2021, a

preliminary safety concern for GBS following a single dose of

Ad26.COV2.S vaccination, based on modified human adenovirus

serotype 26 (HAdV26), was detected in the United States, with the

observed-to-expected ratio of 4.2 over the 42-day observation (20).

More recently, this concern was confirmed by the analysis of the
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U.S. Vaccine Adverse Event Reporting System (21). As observed,

the administration of Ad26.COV2.S vaccine was associated with an

increased risk of GBS, with the observed-to-expected ratio of 3.8

and 2.3 within 21 and 42 days of vaccination, respectively (21).

Analysis of VigiBase, which contains spontaneous reports of

adverse drug reactions from 149 countries, again indicated that

adenoviral vector COVID-19 vaccines AZD1222 and Ad26.COV2.S

are associated with the increased observed-to-expected ratio of GBS

consistently exceeding 2.0 for all analyzed countries (22). Cases of

GBS were also reported following the administration of the first

dose of the Sputnik V adenoviral vaccine (containing HAdV26),

and its modification Sputnik Light (that is also based on the same

adenoviral vector), was also reported in the literature (23, 24).

However, no comprehensive epidemiological surveillance data for

these vaccines encompassing GBS was published. Interestingly

though, no increased risk of GBS was seen in the case of Ad5-

nCoV (although GBS cases after its administration were reported)

(25, 26), which is the only adenoviral COVID-19 vaccine based

solely on human adenovirus serotype 5 (HAdV5) given as a single

dose (27).

Although the GBS risk is increased following the administration

of certain adenoviral COVID-19 vaccines, cases of this condition

remain rare. This indicates the potential existence of a susceptible

group of individuals among vaccinees. Such a susceptibility may be

due to genetic predisposition linked, albeit not without

controversies, to genes encoding human leukocyte antigens, a

cluster of differentiation 1A, FAS, Fc gamma receptors,

intercellular adhesion molecule-1, nucleotide oligomerization

domain, toll-like receptor 4, tumor necrosis factor-a, and various

interleukins (28). However, the association between COVID-19

vaccination and polygenic GBS risk was not subject to any study

that the author of this paper is aware of. Nevertheless, such genetic

predisposition cannot solely explain why GBS cases following

COVID-19 vaccination are biased toward some of the adenoviral

vector vaccines. Examining the mechanisms behind this

phenomenon is pivotal in taking precautionary measures,

adjusting recommendations, and managing vaccine hesitancy.

Similarly to the need to understand whether an increased risk of

peri- and myocarditis is associated solely with COVID-19 mRNA

vaccines or mRNA technology in general (29, 30), it is essential to

elucidate the exact nature of the relationship between GBS and

adenoviral vaccines. Such knowledge can be potentially beneficial in

improving the technological platforms employing adenoviruses as

gene delivery systems. It is also imperative given that non-replicating

and single-cycle adenoviruses have been recognized as suitable vaccine

vectors as they can be easily modified and manufactured, revealing a

broad spectrum of host cell tropism and high gene expression, and,

consequently, inducing a robust innate and adaptive response (31).

Currently, adenoviruses are utilized in authorized vaccines against

COVID-19 (Table 1) and filoviruses (Ad26.ZEBOV by Janssen/

Johnson&Johnson) (32). No safety signals regarding GBS were

observed during clinical trials of Ad26.ZEBOV vaccine (based on

adenovirus type 26, similarly to Ad26.COV2.S) (33–36), although one

should note that such studies are not designed to detect very rare

adverse events,while at the same time, contrary toAd26.COV2.S, there

is no broad post-authorization experience with this vaccine.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1183258
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rzymski 10.3389/fimmu.2023.1183258
The clinical trials of various adenoviral vector vaccine

candidates are ongoing, including preparations against other

coronaviruses (MERS-CoV), influenza, malaria, RSV, tuberculosis,

and Chikungunya virus, and even more candidates are in earlier

stages of testing (37–40). In addition to classical intramuscular

injections, adenoviral vaccine candidates for oral, intradermal, and

intranasal administration have also been developed. Such routes are

substantially less invasive and painless, hence more attractive for

individuals with needle phobia, while potentially offering additional

immunological benefits (e.g., sterilizing immunity in the case of

intranasal preparations) (41–43). There is also an interest in

exploring adenoviral-based cancer gene therapies (44, 45). In

other words, a portfolio of medical use of adenoviruses is likely to

increase in the future; thus, understanding all potential safety issues

of their administration is highly important.
2 The hypotheses

This paper hypothesizes that the administration of selected

adenoviruses employed in the vector vaccines is triggering the

adaptive response to the viral vector that can eventually lead to

autoimmunity against proteins of the peripheral nervous system

and induce GBS. An alternative hypothesis is also presented and

implies the neuroinvasion of selected adenoviral vectors, their

interaction with peripheral neurons, and the induction of

subsequent inflammation and neuropathies associated with GBS.
3 Evaluating the hypotheses

3.1 Guillain-Barré syndrome
and spike protein

In general, the etiology of GBS remains not fully known. It is

suggested to be predominantly an autoimmune condition resulting

from molecular mimicry. Under this scenario, autoantibodies,

induced by an external factor, target epitopes on peripheral

nerves and induce axonal damage and neuronal demyelination

(46, 47). Therefore, some authors suggested that GBS following

the administration of the COVID-19 adenoviral vector vaccine is
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CoV-2 spike protein and neuronal proteins (48–50). Moreover,

using a bioinformatic approach the molecular mimicry was

predicted between spike protein epitopes and sequences of eight

proteins involved in biological processes related to myelin and

axons, i.e., neural cell adhesion molecule, receptor-type tyrosine-

protein phosphatase zeta, teneurin-4, receptor tyrosine-protein

kinase erbB-2-, integrin alpha-X, integrin beta-1, attractin, and

myelin-associated glycoprotein (51). Therefore, the cross-

reactivity of anti-spike antibodies with these proteins could

potentially lead to severe neurological conditions, such as GBS.

However, if this assumption holds, GBS should be frequently

observed in COVID-19 patients and individuals vaccinated with any

COVID-19 vaccine since they all use spike protein as an antigen. A

systematic reviewof79paperspublisheduntil February2021 identified

109 GBS cases related to COVID-19, including 16 cases in the United

States (52). However, by the time this review was performed, over 103

million cases of SARS-CoV-2hadbeen confirmedworldwide, ofwhich

nearly 26.5millionwere reported in the United States (10). It indicates

that the frequency of GBS in COVID-19 is much lower than expected

when assuming the involvement of anti-spike antibodies, especially

considering that most infected patients produce their detectable levels

(53–55).Moreover, someCOVID-19patientswhopresentedwithGBS

tested positive for antibodies against antigangliosides (52), which can

be implicated in selected variants of this condition (56). Furthermore,

the reported GBS cases weremore common inmen, which aligns with

the general tendency observed for this condition (16). Therefore, it can

be suggested that GBS is a rare complication in COVID-19, which

pathogenesis is unlikelydue to cross-reactive anti-spike antibodies, but

possibly result from other causes, e.g., neuroinvasion of SARS-CoV-2

(as there are reports on its presence in cerebrospinal fluid and brain

tissue) (57). It may also be due to particular genetic predispositions

postulated to influence the GBS risk (28).

Moreover, although GBS cases were observed in individuals

vaccinated with different COVID-19 vaccines, its increased risk was

only found for adenoviral vector vaccines (19, 21, 22, 58). Therefore,

European Medicine Agency included a warning of GBS in the

updated versions of package information of AZD1222 and

Ad26.COV2.S vaccines (59, 60), but not for other COVID-19

vaccines. In many developed regions, e.g., the United States and

European Union, the vaccination campaigns were disproportionally
TABLE 1 Authorized COVID-19 vaccines using adenoviral vectors.

Name Manufacturer Doses
(primary regime) Vector Encoded spike

protein GBS risk

AZD1222 Oxford/AstraZeneca 2 ChAdOx1 Wild-type Increased

Ad26.COV2.S
Janssen/

Johnson&Johnson
1 HAdV26 Stabilized prefusion Increased

Ad5-nCoV Cansino Biologics 1 HAdV5 Wild-type
Not

increased

Sputnik V Gamaleya Research
Institute

2
Heterologous. First dose: HAdV26

Second dose: HAdV5
Wild-type Not enough

data
Sputnik Light 1 HAdV26 Wild-type
fr
ChAdOx1, adenoviral vector based on chimpanzee adenovirus Y25; GBS, Guillain-Barré syndrome; HAdV26, human adenovirus serotype 26; HAdV5, human adenovirus serotype 5.
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based on mRNA vaccines (e.g., nearly 1 billion doses of mRNA

vaccines vs. approximately 185 million doses of adenoviral vector

vaccines were given in the European Economic Area by early

February 2023) (61). Therefore, if the post-vaccination GBS was

related to cross-reactive anti-spike antibodies generated after

immunization, it should be predominantly observed after mRNA,

not adenoviral vaccination, but the evidence points to the contrary

(19, 21, 58). Moreover, the varying risk of GBS observed for

COVID-19 vaccines cannot be explained by the difference in the

prefusion stability of full-length spike protein encoded by

adenoviral, and mRNA vaccines, and present in subunit protein

vaccines. Although ChAdOx1 adenovirus in AZD1222 encodes

wild-type viral spike, which can lead to the sporadic presentation

of post-fusion spike conformation on the cell surface (62),

Ad26.COV2.S vaccine utilizes modified human adenovirus

encoding stabilized prefusion spike protein (by substituting two

residues with proline), similar to the spike encoded by both mRNA

vaccines and present in NVX-CoV2373 subunit vaccine (63–66).

In summary, the evidence indicates that the increased risk of

GBS following adenoviral vector vaccines against COVID-19 is

more likely related to the response to administrated adenoviruses

than the effect of cross-reactivity of anti-spike antibodies induced

following immunization. This tentatively supports the hypothesis

presented in this paper and suggests focusing further on selected

adenoviral vectors as potential etiological agents of GBS.
3.2 Natural adenoviral infections and
Guillain-Barré syndrome

Pathogen infections, including the gram-negative bacteria

Campylobacter jejuni (32% of cases) and Mycoplasma pneumoniae

(5%), and DNA viruses human cytomegalovirus (10-15%) and

Epstein-Barr virus (8-10%), were implicated as one of the

precipitants of GBS (67, 68). Such association with adenoviruses,

potentially providing additional clues in understanding the increased

risk of GBS after adenoviral vector vaccines, was substantially less

explored. This is likely because adenoviral infections in

immunocompetent individuals are mostly asymptomatic or self-

limiting and do not require any specific treatment apart from

supportive care (69). The first study addressing the potential

association between adenoviral infections and GBS that included 92

GBS cases was published in 1977 and did not find such a relationship;

instead, it highlighted that cytomegalovirusmight be a common agent

involved in the pathogenesis of GBS (70). The second study was

published 25 years ago, analyzed 154GBS cases, and reported the anti-

adenovirus antibodies in 1% of samples while highlighting the

association between antecedent C. jejuni infection and GBS and

antiganglioside antibodies (68). However, the employed

determinations in these studies were based on complement fixation,

an old method, later suppressed by more accurate enzyme-linked

immunosorbent assays (71, 72). Nevertheless, the findings of these

studies likely caused no interest in further exploration of links between

adenovirus infections and GBS using a more sensitive approach. The

necessity to conduct such research reemergences now, after increased

GBS risk was evidenced for selected adenoviral vector vaccines against
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present paper, such investigations should distinguish between

infections caused by different adenoviruses, with a primary focus on

HAdV26, a component of Ad26.COV2.S vaccine, which

administration was associated with an excess of GBS cases. In this

context, the research should primarily focus on selected African and

Asian populations since they demonstrate the highest seroprevalence

of HAdV26 (73, 74). Although these regions are characterized by the

lower reported GBS morbidity, it is acknowledged that this might be

due to resource-limited settings resulting in a significant

underestimation of cases (75). Including HAdV5 infections for

comparison in such research would also be informative in

understanding why no association between Ad5-nCoV vaccination

and GBS was observed.
3.3 Adenovirus vaccination and
Guillain-Barré syndrome

Most human adenoviruses are not associated with severe disease,

and their infections are often asymptomatic (69). Therefore, there was

no urgent need to develop, test and authorize the broadly available

vaccine against adenoviruses. However, human adenovirus serotype 4

(HAdV4) and serotype 7 (HAdV7) have been reported to induce

febrile acute respiratory disease and became a leading cause of

hospitalization of U.S. Army personnel. To mitigate it, live oral

vaccines have been used since the 1970s to protect U.S. soldiers from

severe HAdV4 and HAdV7 infections (76, 77). The latest vaccine

against these viruses, developed by Barr Labs, Inc., was licensed by the

U.S. Food and Drug Administration in 2011 for military personnel

aged 17-50. If exposure to adenoviral vectors was potentially a

precipitant of GBS, one could expect to see cases of this condition

following the administration of the adenovirus vaccine. In line with

this, the analysis of the U.S. Vaccine Adverse Event Reporting System

for reports among individuals who were immunized with the

adenovirus vaccine between 2011 and 2018 found that GBS was the

most frequently reported severe adverse events with the median onset

time of 24 days from vaccination (78). However, one should note that

the frequency of GBS was approximately 1.0 per 100,000 vaccinated

individuals, which is within the background level (16). The authors

speculate that these cases may also be due to the common co-

administration of other vaccines and prophylactic intramuscular

antibiotics in military personnel, complicating an understanding of

the direct link with vaccination against adenoviruses (78).

Nevertheless, such a link cannot be excluded and advocates further

research, particularly in the light of GBS cases reported following

adenoviral vector COVID-19 vaccines and the hypothesis outlined in

the present paper.
3.4 Adenoviral vector vaccination and
anti-vector antibodies

Administration of adenoviruses as vaccine vectors is associated

with the induction of anti-vector antibodies, also in the case of

modified non-replicating adenoviruses, which are classically
frontiersin.org
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obtained by deletion of E1/E3 region and lead to transient infection.

As shown in phase 1 and 2/3 clinical trials of the AZD1222 vaccine,

the administration of the first dose elicited anti-vector (anti-

ChAdOx1) antibodies across different age groups, which

remained detectable at high levels at least 84 days (last time point

assessed) since vaccination (79, 80). ChAdOx1 is based on

chimpanzee adenovirus Y25 with a very low baseline

seroprevalence in the human population, which predisposed it as

a good vector candidate (since pre-existing anti-vector immunity

may decrease the efficacy of the vaccination). However, it was

known that its broad use during the COVID-19 vaccination

campaigns would increase the seroprevalence of anti-ChAdOx1

antibodies, while the potential cross-reactivity of these antibodies

was not investigated.

Other authorized vector COVID-19 vaccines were based on

human adenoviruses, HAdV5 and HAdV26 (Table 2).

Administration of both of them should generate adaptive responses

against them. For example, immunization with Ad26.COV2.S was

associated with increased titers of antibodies neutralizing a HAdV26

that persisted for at least 71 days post-vaccination (last time point

assessed) (88). According to the comprehensive international

seroepidemiological study, the pre-pandemic seroprevalence of

HAdV26 was significantly lower in all studied regions than that of

HAdV5, for which it was widespread (73). This predisposed HAdV26

as a better candidate for the vaccine vector due to concern that pre-

existing immunity to it could decrease the efficacy of immunization

(89). However, further studies have shown that pre-existing

immunity to a vector does not necessarily always prevent them

from inducing a robust adaptive response to the target antigen, or

if this is the case, such an effect can be overcome by increasing the

dose of viral particles (90, 91). Pre-existing anti-HAdV26 antibodies

did not compromise SARS-COV-2 neutralizing antibody responses

to a booster (third) dose of the Sputnik V vaccine (based on the

HAdV26 vector) (92). Moreover, as shown experimentally, anti-

HAdV5 antibodies did not prevent HAdV5 from infecting muscle

cells but contributed to the more rapid elimination of the vector,

likely via effector mechanisms (93). Considering that the large

epidemiological studies did not detect an increased risk of GBS

following the administration of the Ad5-nCoV vaccine (25, 26)

suggests that the pre-existing immunity to HAdV5 may play a

protective role or that GBS risk is increased only during the first
Frontiers in Immunology 05
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HAdV5-based vaccines, a substantial number of individuals

vaccinated with Ad26.CoV2.S did not have pre-existing immunity

to a vector. Whether anti-HAdV26 antibodies may reveal cross-

reaction with neuronal proteins associated with axonal and myelin

function remains unclear.

Therefore, to address this knowledge gap and test the

hypothesis outlined in the present paper, research based on a

bioinformatic approach (e.g., through the construction of a

protein-protein interaction network) and experimental studies

(e.g., using purified anti-ChAdOx1, anti-HAdV26, and anti-

HAdV5 antibodies and neuronal cell lines) are encouraged.
3.5 Alternative hypothesis: adenovirus
infection of peripheral neurons

In addition to the above-discussed hypothesis on the role of

anti-vector antibodies in GBS induction after administering

adenoviral vector vaccines, this paper also offers an alternative

hypothesis. According to it, the adenoviruses used in such

vaccines can invade the peripheral nervous system, interact with a

receptor on the surface of neurons, infect them, and trigger the

immunological response that, sporadically, leads to GBS.

Experimental in vivo studies have demonstrated that

intramuscular injection of adenoviral vectors, including

replication-deficient ones, can be transferred to the peripheral

nervous system and deliver the genes of interest (94–96). As

evidenced in animal studies, the administrated adenoviral vectors,

including those which are replication-defective, can persist for

weeks, not only locally but also in distant sites, e.g., the liver (97,

98). This makes their transfer to the peripheral nervous system

more possible. In turn, as shown by the studies focusing on the

central nervous system, the presence of adenovirus can stimulate T-

cell responses leading to the elimination of the vector, but

accompanied by inflammation (99, 100). What is important in

light of the outlined hypothesis, this process can lead to local

demyelination in the central nervous system (100–102). If this

phenomenon is also plausible in the peripheral nervous system

following intramuscular delivery of adenoviral vectors, it would

explain the increased risk of GBS associated with administering
TABLE 2 The overview of adenovirus vectors employed in COVID-19 vaccines.

Adenoviral
vector

Code
name Group

NCBI
taxonomy
ID (txid)

Natural seroprevalence in human1
Replication
competency
of vector

Primary
entry

receptor 2

Human
adenovirus
type 5

HAdV5 C 28285 Very high: 60-70% in Europe, USA, >90% in Africa, Asia incompetent CAR

Human
adenovirus
type 26

HAdV26 D 46928
Moderate: 3-7% in Europe, 12-15% in the USA, 20-45% in Africa
(over 60% in some regions, e.g., Botswana, Cameroon, Kenya,

Uganda), 35-60% in Asia.
incompetent sialic glycans

Chimpanzee
adenovirus
Y25

ChAdOx1 E 1123958 Very low: 0% in the UK, 9% in Gambia incompetent CAR
CAR, coxsackie and adenovirus receptor; 1, references (73, 74, 81–85); 2, references (86, 87).
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selected adenoviral vector vaccines against COVID-19. As shown,

the ChAdOx1 vector reveals a high affinity to the coxsackie and

adenovirus receptor (CAR) (86), which is also expressed on the

surface of neurons (103). Therefore, it is plausible that ChAdOx1

trafficking to the peripheral nervous system could, in some cases,

induce the cascade leading to GBS. Whether the risk of such events

is modified by the genetic predisposition postulated in GBS (28)

remains to be studied. However, it has to be noted that HAdV5 also

utilizes CAR as a primary cell receptor (104). Thus, the question

arises as to why, contrary to AZD1222, the HAdV5-based Ad5-

nCoV vaccination was not associated with excess GBS. One of the

potential explanations that would require confirmatory studies is

that pre-existing immunity to HAdV5 in vaccinated individuals,

which had to be widespread, was efficient enough to suppress the

translocation of vector to the peripheral nerves. The experimental

observations support this scenario that increased baseline levels of

anti-HadV5 antibodies contributed to more rapid elimination of the

vector (93).

HAdV26 can also interact with CAR but reveals only a weak

affinity. It has been previously suggested that this adenovirus utilizes

the CD46 (105), which is also expressed on the surface of human

neurons. More recent investigations have shown that CD46 is also

unlikely a primary cell entry receptor for HAdV26 and established

that this role is played by sialic acid–bearing glycans (87).

Importantly, gangliosides, sialylated glycosphingolipids, are the

most prevalent sialoglycans of nerve cells that reside primarily in

the outer leaflet of the plasma membrane (106). Immune responses

against gangliosides have been recognized to play a role in

demyelinating immune-mediated neuropathies, including GBS

(107). These observations tentatively favor the hypothesis

outlined in this paper’s subsection. Whether HAdV26 can

interact with gangliosides and induce such events remains to be

studied in vitro and in vivo.
4 Conclusion

The risk of GBS following COVID-19 vaccination appears to be

increased exclusively in the case of selected adenoviral vaccines,

indicating that it is not the encoded antigen (spike protein) but a

vector that is likely responsible for this neuropathy. This paper

hypothesizes that some adenoviruses employed in vector vaccines

can trigger an adaptive humoral immune response against

themselves that, in some cases, can lead to the interaction of

antibodies with neurological factors and induce GBS. Indeed,

immunization with such vaccines is known to induce the

production of anti-vector antibodies, which before the COVID-19

pandemic, were nearly non-existence in the case of anti-ChAdOx1

antibodies or had a relatively low prevalence for anti-HAdV26. In

turn, the cross-reactivity of these antibodies was not studied.

According to the second hypothesis outlined in the present paper,

the adenoviral particles in vector vaccines can, in some cases, invade the
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peripheral nervous system, interact with surface receptors (e.g., CAR),

infect neurons, and induce an immune response that leads to GBS, the

severity of which depends on the spectrum of neuronal inflammation.

Such penetration and further consequences are plausible because the

adenoviral vectors, including those devoid of replication potency, will

persist at low levels for weeks after administration. Interestingly, GBS

risk was not increased when using the COVID-19 vaccine based on the

HAdV5 vector, for which the pre-existing immunity was widespread

prior to the COVID-19 vaccination campaign. This suggests that using

HAdV5 as a vaccine vector may potentially be beneficial in decreasing

the vaccination-associated GBS risk due to pre-existing immunity to

the vector and increased pace of vector elimination. However, this

assumption would require further research confirmation.

Research testing the hypotheses mentioned above is urgently

needed due to the ongoing interest in using adenoviruses in

preventive vaccines against various infectious diseases and as

immunotherapeutic agents in cancer treatment. Elucidating the

underlying mechanism behind the GBS following adenoviral

administration should be perceived as a pathway to increase the

acceptance of vector vaccines because such knowledge will bring a

better understanding of the risks and enable its elimination or

precautionary actions.
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Syndrome after COVID-19 vaccination: report of two cases from Vietnam. J Infect Dev
Ctries (2022) 16:1703–5. doi: 10.3855/jidc.16998

49. Thant HL, Morgan R, Paese MM, Persaud T, Diaz J, Hurtado L. Guillain-Barré
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