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Objective:Mitochondrial dysfunction and oxidative stress are known to involved

in tumor occurrence and progression. This study aimed to explore the molecular

subtypes of lower-grade gliomas (LGGs) based on oxidative stress-related and

mitochondrial-related genes (OMRGs) and construct a prognostic model for

predicting prognosis and therapeutic response in LGG patients.

Methods: A total of 223 OMRGs were identified by the overlap of oxidative

stress-related genes (ORGs) and mitochondrial-related genes (MRGs). Using

consensus clustering analysis, we identified molecular subtypes of LGG

samples from TCGA database and confirmed the differentially expressed genes

(DEGs) between clusters. We constructed a risk score model using LASSO

regression and analyzed the immune-related profiles and drug sensitivity of

different risk groups. The prognostic role of the risk score was confirmed using

Cox regression and Kaplan-Meier curves, and a nomogram model was

constructed to predict OS rates. We validated the prognostic role of OMRG-

related risk score in three external datasets. Quantitative real-time PCR (qRT-

PCR) and immunohistochemistry (IHC) staining confirmed the expression of

selected genes. Furthermore, wound healing and transwell assays were

performed to confirm the gene function in glioma.

Results: We identified two OMRG-related clusters and cluster 1 was significantly

associated with poor outcomes (P<0.001). The mutant frequencies of IDH were

significantly lower in cluster 1 (P<0.05). We found that the OMRG-related risk

scores were significantly correlated to the levels of immune infiltration and

immune checkpoint expression. High-risk samples were more sensitive to most

chemotherapeutic agents. We identified the prognostic role of OMRG-related
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risk score in LGG patients (HR=2.665, 95%CI=1.626-4.369, P<0.001) and

observed that patients with high-risk scores were significantly associated with

poor prognosis (P<0.001). We validated our findings in three external datasets.

The results of qRT-PCR and IHC staining verified the expression levels of the

selected genes. The functional experiments showed a significant decrease in the

migration of glioma after knockdown of SCNN1B.

Conclusion:We identified twomolecular subtypes and constructed a prognostic

model, which provided a novel insight into the potential biological function and

prognostic significance of mitochondrial dysfunction and oxidative stress in LGG.

Our studymight help in the development of more precise treatments for gliomas.
KEYWORDS

mitochondrial dysfunction, oxidative stress, glioma, molecular subtype, prognosis
Introduction

Glioma is a type of neoplastic disease that originates from glial

cells, and it is the most common intracranial malignancy (1).

According to the WHO classification, gliomas are classified as

lower-grade glioma (grade II/III, LGG) and glioblastoma (grade

IV, GBM) (2, 3). LGG is typically a slow-growing indolent

precursor compared to GBM (4). However, due to its invasive

growth pattern, it is difficult to achieve complete tumor removal

with surgical treatment, and patients are often at a high risk of local

recurrence and malignant progression into secondary high-grade

gliomas (5). Given the genetic heterogeneity in LGG, patients with

similar clinical characteristics may have different overall survival

(OS) rates (6). Recent advances in molecular and genetic profiling

have improved our understanding of the underlying biology of

gliomas and have provided new opportunities for prognostic

prediction and targeted therapy. For example, mutations in the

isocitrate dehydrogenase (IDH) gene are common in LGG and are

associated with a more favorable prognosis (7). Additionally, other

genetic alterations such as mutations in the TP53 and ATRX genes

appear to be potential therapeutic targets (8, 9). Despite the

advances, LGG remains a challenging clinical problem with a

wide range of clinical and molecular heterogeneity. Therefore,

further studies are needed to identify molecular subtypes that

could contribute to the development of novel prognostic

biomarkers and effective therapeutic targets.

Mitochondria are critical organelles involved in energy

metabolism and cellular homeostasis. Mitochondria play a key

role in providing energy for cell metabolism, differentiation, and

apoptosis through oxidative phosphorylation, as well as in other

cellular processes such as calcium signaling, lipid metabolism, and

the production of reactive oxygen species (ROS) (10).

Mitochondrial dysfunction has been shown to contribute to

tumor initiation, progression, and therapy resistance by altering

cellular metabolism, redox homeostasis, and signal transduction

pathways. It has been well-documented that mitochondrial
02
dysfunction could increase the ROS accumulation (11), leading to

oxidative damage, which further contributes to mitochondrial

dysfunction and generates more ROS (12). This creates a vicious

cycle of increased oxidative stress and mitochondrial dysfunction.

Excess ROS is associated with the cellular component damage,

inhibition of energy metabolism, mtDNA oxidation and mutation,

and genetic instability (13). Additionally, ROS can activate signaling

pathways that promote tumor cell proliferation and survival, such

as the MAPK and PI3K/Akt pathways (14, 15). Accumulating

evidence has suggested that mitochondrial dysfunction and

oxidative stress are related to the occurrence, progression, and

drug resistance of tumors (16). Targeting mitochondrial

dysfunction and oxidative stress is a promising therapeutic

strategy for tumor treatment. Therefore, exploring molecular

characteristics related to mitochondrial dysfunction and oxidative

stress may aid in developing new therapeutic strategies for

LGG patients.

In this study, we aimed to identify molecular subtypes in LGG

patients based on oxidative stress and mitochondrial-related genes

(OMRGs). We analyzed the differentially expressed genes (DEGs)

between different OMRG subtypes, and constructed an OMRG-

related risk score model with TCGA database. We further

investigated and validated the prognostic value of the OMRG-

related signature using four independent datasets. Overall, this

study contributed to the classification of molecular subtype on

mitochondrial dysfunction and oxidative stress, as well as the

accurate prognosis in LGG patients.
Methods

Information collection

We collected the data of 529 LGG samples from TCGA

database. A list of 1399 oxidative stress-related genes (ORGs) was

obtained from Genecards database, which has been used in previous
frontiersin.org
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studies (17, 18). The mitochondrial-related gene (MRG) list

containing a total of 1136 MRGs was obtained from the

MitoCarta3.0 database (19). The overlapping genes between

ORGs and MRGs were identified as oxidative stress and

mitochondrial-related genes (OMRGs). The potential biological

functions of OMRGs were further investigated by GO and KEGG

analyses using the ClusteProfiler package (20).
Consensus clustering

To classify samples into distinct clusters, consensus clustering

has been performed by ConsensuClusterPlus package based on the

OMRG expression data (21). Then 500 bootstrapping operations

were performed using the km method and Canberra as the metric

distance, and each bootstrap contained 80% of the samples. The

clustering variable k varied from 2 to 10. We performed PCA

analysis to distinguish OMRG clusters. Then mutation profiles of

the samples in different clusters have been shown. Furthermore, the

frequencies of the top 10 mutant genes in LGGs have been

compared between clusters.
Construction of OMRG-related
prognostic model

DEGs between different clusters were confirmed by the DESeq2

package (|logFC|>2, Adjusted P<0.05) (22). The genetic interaction

of DEGs has been analyzed by GeneMANIA platform (23). The

DEGs with prognostic value were further included in LASSO

regression via glmnet package and the lambda with minimized

deviations has been selected (24). Then the filtered genes were used

to establish the risk system (25).

All patients were stratified into two groups based on the median

risk score. The prognostic role of the risk score was identified by

Cox regression and Kaplan-Meier curves. And nomogram

generated by RMS package was used to predict the OS rates. The

predictive accuracy of nomogram has been evaluated by ROC

curves and calibration plots.
Gene set enrichment analysis (GSEA)

We performed GSEA to explore the functional annotations

between the two groups using the ClusteProfiler package. For each

analysis, the gene set permutation has been defined for 1000 times.

As the filter condition, adjusted P-value was set to <0.05 and FDR

value was set to <0.25.
Immune and drug sensitivity analyses

The correlations between infiltrating immune cells and risk score

were identified using single-sample GSEA (ssGSEA) function of GSVA

package (26, 27). The levels of documented immune checkpoints were

compared between different risk groups. The sensitivity of patients in
Frontiers in Immunology 03
different risk groups to chemotherapeutic agents has been compared

using IC50 value by pRRophetic package (28).
Validation of the prognostic role

The validation of the prognostic role of the OMRG-related risk

score was performed in a total of 961 LGG samples from three

external datasets, including 625 samples from CGGA-sequencing

set, 174 samples from CGGA-microarray set, and 162 samples from

REMBRANDT cohort.
Quantitative Real-Time PCR (qRT-PCR)

Total RNA was isolated from 12 glioma tissues, including 3

grade II, 3 grade III, and 6 grade IV, and 5 paired normal tissues

using TRIzol reagent (Takara, Kyoto, Japan). All tissues were

collected after surgical resection and stored at −80°C until tested.

The isolated RNA was reverse transcribed by PrimeScript™ RT

reagent Kit (Takara, Kyoto, Japan), and qRT-PCR was performed

by TB Green Premix Ex Taq (Takara, Kyoto, Japan) on the ABI

Prism 7900 System. The relative quantification of signature-gene

expression was performed by the 2−DDCT method, and GAPDH was

used as the internal normalization control. The primer pairs used

for qRT-PCR were listed in Supplementary Table S1.
Immunohistochemistry (IHC) staining

To verify the protein levels of genes in the OMRG-related risk

model between different grades of gliomas, IHC results from the

Human Protein Atlas (HPA) database were used. This verified the

consistency between protein level and gene expression (29).
Cell culture and transfection

The SNB-19 cell line was obtained from the American Type

Culture Collection (ATCC, USA) and cultured in DMEM (Gibco,

USA) supplemented with 10% FBS (Gibco, USA), penicillin, and

streptomycin. The cells were maintained in a humidified incubator at

37°C with 5% carbon dioxide and allowed to grow to confluence before

transfection. For siRNA knockdown experiments, cells were transfected

with siRNA kit (Ribobio, geneOFF h-SCNN1B) using Lipofectamine

3000 (Invitrogen, Carlsbad, CA) according to the manufacturer’s

instructions. The control groups were transfected with siNC

(negative control). The transfection efficiency was assessed by

qRT-PCR.
Wound healing assay

The wound healing assays were performed using Ibidi Culture-

Insert (Ibidi, Germany). The SNB-19 cell line was suspended in

complete medium at 20,000 cells/ml, and 70µl of cell suspensions
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were pipetted into each chamber of the cell culture insert. After 24

hours, the Culture-Insert was gently removed using sterile tweezers,

and the well was filled with serum-free medium to exclude the effect

of cell proliferation. Images were photographed at 24 hours after the

scratch was made using an inverted-phase microscope (IX51,

Olympus, Japan).
Transwell assay

The cell migration ability was determined using transwell

chamber (8mm, 24-well insert, Costar, USA). For the migration

assay, cells after 24h transfection were added to the upper chamber,

and medium containing 10% FBS was added to the lower chamber.

Then, the migrated cells were fixed and stained with 0.1%

crystal violet.
Statistical analysis

The R project (3.6.3) has been utilized for all statistical analyses.

The comparison of continuous data between different groups was

conducted using Wilcoxon rank-sum and Kruskal-Wallis tests.

Spearman correlation tests were used for correlation evaluation.

The prognostic role of the OMRG-related risk score was evaluated

by Cox regression. The survival probabilities were estimated by
Frontiers in Immunology 04
Kaplan-Meier curves. A two-sided P-value <0.05 was considered to

be statistical significance in this study.
Results

Identification of OMRGs and functional
enrichment analyses

After overlapping the 1399 ORGs and 1136 MRGs, a total of

223 OMRGs were identified (Figure 1A). The results of GO analyses

have been shown (Figure 1B). The biological process category

included cellular respiration, energy derivation by oxidation of

organic compounds, electron transport chain, response to

oxidative stress, ATP metabolic process, and small molecule

catabolic process. The cellular component category included

mitochondrial matrix, mitochondrial inner membrane,

mitochondrial membrane part, mitochondrial protein complex,

oxidoreductase complex, and mitochondrial respiratory chain.

The molecular function category included coenzyme binding,

electron transfer activity, oxidoreductase activity acting on NAD

(P)H, NADH dehydrogenase activity, flavin adenine dinucleotide

binding, and metal cluster binding (Figure 1B). KEGG analyses

showed an enrichment in oxidative phosphorylation, carbon

metabolism, apoptosis, fatty acid metabolism, peroxisome, and

necroptosis (Figure 1C).
Oxidative stress−related genes Mitochondrial−related genes

1176 223 913

A

B C

FIGURE 1

Identification and functional enrichment analyses of OMRGs. (A) Identification of OMRGs. (B) GO enrichment analyses. (C) KEGG analysis annotation.
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Identification of oxidative stress and
mitochondrial function-related clusters

After identifying the OMRGs, we performed consensus

clustering and classified two clusters based on OMRG expression

in LGG patients (Figures 2A–C). The principal component analysis

(PCA) result showed a separation between the two OMRG clusters

(Figure 2D). We then compared the survival distribution and found

a significantly worse prognosis in cluster 1 (P<0.001, Figure 2E).
Frontiers in Immunology 05
Moreover, we found a significantly higher mortality rate in cluster 1

(P<0.001, Figure 2F). We described the clinical features and gene

expression in the two OMRG clusters by a heat map (Figure 2G).

We also analyzed the frequencies of the top 10 mutant genes in the

two clusters and found that the mutant frequencies of IDH1, IDH2,

and CHD4 were significantly higher in cluster 2, while the mutant

frequency of FLG was significantly lower (Figure 2H). Furthermore,

we found a significant increase in the levels of macrophages,

eosinophils, neutrophils, aDC (activated dendritic cells), T cells, T
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FIGURE 2

Molecular subtypes of LGG classified by OMRGs. (A) CDF curves for consensus scores. (B) CDF Delta area curves. (C) Two OMRG clusters were
defined by consensus clustering analyses. (D) Distinction between two OMRG clusters by PCA. (E) Kaplan-Meier survival analyses of two OMRG
clusters. (F) Survival status of patients in different OMRG clusters. (G) Heatmap of OMRG expression, clusters, and clinical features. (H) Mutation
profiles of two OMRG clusters. (I) Difference in immune infiltration of two OMRG clusters; ns, not significant; *P<0.05; **P<0.01; ***P<0.001.
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helper cells, Th2 cells, and Th17 cells in cluster 1 (P<0.05 for

all, Figure 2I).
Identification of DEGs and risk
model construction

We identified a total of 132 DEGs, including 127 up-regulated

in cluster 1 and 5 up-regulated in cluster 2 (Figure 3A). We used

GeneMANIA to create genetic interaction networks of these DEGs
Frontiers in Immunology 06
(Figure 3B). To identify prognostic genes within the 132 DEGs of

LGG, we performed univariate Cox analyses, which identified 47

genes. We confirmed the gene expression in HPA database, and

excluded untested genes and those with poor consistency with

protein levels. Eventually, we included 12 genes for LASSO

regression, and selected 5 genes to construct the risk model:

ABCC3, HOXA4, HOXC10, NNMT, and SCNN1B (Figures 3C–

E). We found that the levels of these five genes increased

significantly with the grade of gliomas (P<0.001 for all,

Figures 3F, G). Kaplan-Meier analyses revealed significant
A B

C D

E

F G

H

FIGURE 3

Construction of the prognostic model. (A) Identification of DEGs between two OMRG clusters. (B) Genetic interaction network of OMRG-related
DEGs. (C) Cross-validation of the LASSO model parameters. (D) Coefficient profiles in LASSO regression model. (E) HRs, 95% CIs, and coefficients of
signature-genes. (F) Difference in expression levels of 5 signature-genes between LGGs and GBMs; ***P<0.001. (G) Difference in expression levels of
5 signature-genes among WHO grade II, III, and IV; ***P<0.001. (H) Kaplan-Meier curves and log-rank tests of 5 signature-genes.
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correlations between high expression levels of these 5 genes and

poor prognosis in LGG (P<0.001 for all, Figure 3H).
GSEA analyses

GSEA has been conducted to identify potential biological

function between different risk groups. It showed an enrichment in

immune response and signaling in the high-risk group, including

TNFa signaling via NFkB, IL6/JAK/STAT3 signaling, inflammatory

response, complement, and IL2/STAT5 signaling (Figure 4).
Immune analyses and
chemotherapy efficacy

The comparison of immune infiltration showed significant

increase in most immune cells in the high-risk group (Figure 5A),

and there were significantly positive correlations between OMRG-

related risk score and the infiltrating levels of macrophages,

eosinophils, aDC, and neutrophils (P<0.001 for all, Figure 5B).

The levels of immune checkpoints were also compared to predict

immunotherapy sensitivity between the two groups and we found

significant increase in the levels of most immune checkpoints in the

high-risk group (Figure 5C). Furthermore, the drug sensitivity

between different risk groups was assessed with the IC50 value,

and the results revealed that patients in the high-risk group were
Frontiers in Immunology 07
more sensitive to Bortezomib, Rapamycin, Cyclopamine,

Metformin, Gemcitabine, Roscovitine, Paclitaxel, CMK, and

Etoposide, while patients in the low-risk group were more

sensitive to Camptothecin (P<0.001 for all, Figure 5D).
Risk score distribution and prognostic role

We compared the distribution of risk scores across different

clinical subgroups (Figure 6). And we compared the survival

distribution and levels of the five signature-genes (Figure 7A).

The Kaplan-Meier curve indicated that the prognosis of the high-

risk group was significantly worse (P<0.001, Figure 7B). Cox

analyses identified the prognostic role of OMRGs-related risk

score in LGG (HR=2.665, 95%CI=1.626-4.369, P<0.001, Table 1).

Then we used the same variables to create a nomogram predicting

the probabilities of OS rates (Figure 7C). The AUCs of time-

dependent ROC curves have been shown (1-year=0.879, 3-

year=0.857, 5-year=0.776, Figure 7D). Calibration plots showed

satisfactory consistency between the nomogram and the ideal

model (Figure 7E).
Validation of prognostic role

A total of 961 LGG samples from three external databases were

used for validation. Cox regression in CGGA-seq dataset verified
FIGURE 4

GSEA analyses, including TNFa signaling via NFkB, IL6/JAK/STAT3 signaling, inflammatory response, complement, and IL2/STAT5 signaling.
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B

C

D

A

FIGURE 5

Landscape of immune infiltration, immune checkpoint expression, and drug sensitivity in different risk groups. (A) Infiltrating levels of immune cells in
low-risk and high-risk groups. (B) Correlation between risk score and immune infiltrating levels. (C) Expression levels of immune checkpoints in low-
risk and high-risk groups. (D) Drug sensitivity analyses between low-risk and high-risk groups. *P<0.05; **P<0.01; ***P<0.001.
FIGURE 6

Risk score distribution in different subgroups of LGG, including age, gender, WHO grade, IDH mutation, 1p/19q co-deletion, and OMRG clusters;
ns, not significant; ***P<0.001.
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the prognostic role of OMRG-related risk score (HR=1.489, 95%

CI=1.102-2.012, P=0.010, Table 2). Furthermore, Kaplan-Meier

analyses by the CGGA-sequencing set, CGGA-microarray set, and

REMBRANDT cohort showed a significant association between

high-risk score and poor prognosis in LGG (P<0.001 for all,

Figures 8A–C).
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Validation of gene expression

To verify the expression of the five signature-genes, we

conducted qRT-PCR analyses on glioma tissues with different

grades. The expression levels of ABCC3, HOXA4, HOXC10,

NNMT, and SCNN1B significantly increased with the elevation in
B

C

D E

A

FIGURE 7

Evaluation of the prognostic efficiency of risk score in the OS of LGG patients. (A) The distribution of risk score, survival status, and signature-gene
expression in low-risk and high-risk groups. (B) Kaplan-Meier analysis for survival probability estimation in different risk groups. (C) Nomogram for 1-
year, 3-year, and 5-year OS rate prediction of LGG patients. (D) Time-dependent ROC curves. (E) Calibration plots of the nomogram model.
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WHO grades (Figure 9A). To further validate our findings, we

analyzed the protein expression levels of these genes using IHC

results from the HPA database. The results showed that the protein

expression levels of these genes were up-regulated with the

malignant degree of gliomas, which was consistent with the trend

observed in the gene expression (Figure 9B).
Knockdown of SCNN1B decreased the
migration in vitro

To further determine the biological function of SCNN1B, we

utilized siRNAs to knockdown SCNN1B in SNB-19 glioma cell line

(Figure 10A). The results demonstrated a significant decrease in the

ability of wound healing in SNB-19 cells after knockdown of

SCNN1B (Figure 10B). Additionally, the transwell assay revealed

a consistent decrease in migration ability in SNB-19 cells after

SCNN1B knockdown (Figures 10C, D; #1, P<0.001; #2, P<0.001),

indicating the crucial role of SCNN1B in gliomas.
Discussion

As the most prevalent type of malignant intracranial tumor,

glioma shows an infiltrative growth pattern (30). Despite the
Frontiers in Immunology 10
development of effective therapeutic options, the OS rates of LGG

patients exhibit a considerable interindividual variability due to the

high incidence of local recurrence, malignant progression (31, 32). In

recent years, molecular biomarkers have been found to have

prognostic significance in gliomas. However, accurately predicting

the prognosis of LGG patients has remained challenging.

Mitochondria play a key role in cellular energy production and

calcium homeostasis. The mtDNA mutations, respiratory chain

malfunction, and oxidative phosphorylation disruption caused by

ROS accumulation could lead to mitochondrial dysfunction, which in

turn exacerbated oxidative stress (33). Previous studies have

confirmed that mitochondrial dysfunction resulted in metabolic

reprogramming, cell metabolic pathway alternation, and redox

balance damage, which are closely associated with genetic

instability and the occurrence of tumors. Mitochondrial

dysfunction-related metabolic reprogramming is a hallmark of

tumor cells to meet the energy and biosynthetic demands required

for uncontrolled proliferation and survival (34). Mitochondrial

dysfunction can induce metabolic reprogramming in tumor cells,

including Warburg effect, glutaminolysis, and fatty acid oxidation.

The Warburg effect is a well-known phenomenon in which tumor

cells preferentially use glycolysis for energy production, even in the

presence of oxygen (35). Glutaminolysis is an important metabolic

pathway in tumor cells that utilizes glutamine as a carbon source for

the synthesis of nucleotides, amino acids, and lipids (36). Fatty acid
TABLE 1 Univariate and multivariate Cox analyses of LGG patients from TCGA dataset.

Characteristics
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age

≤40 Reference Reference

>40 2.889 (2.009-4.155) <0.001* 3.432 (2.202-5.349) <0.001*

Gender

Female Reference

Male 1.124 (0.800-1.580) 0.499

WHO grade

II Reference Reference

III 3.059 (2.046-4.573) <0.001* 1.598 (1.021-2.502) 0.040*

IDH status

Wild-type Reference Reference

Mutant 0.186 (0.130-0.265) <0.001* 0.440 (0.276-0.703) <0.001*

19q codeletion

Non-codel Reference Reference

Codel 0.401 (0.256-0.629) <0.001* 0.551 (0.328-0.927) 0.025*

Risk score

Low Reference Reference

High 4.144 (2.784-6.168) <0.001* 2.665 (1.626-4.369) <0.001*
*P<0.05, significant difference.
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oxidation is also upregulated in tumor cells to meet the increased

demand for energy and biosynthesis (37). Mitochondrial dysfunction

can alter cell metabolic pathways, leading to the accumulation of

oncometabolites, such as 2-hydroxyglutarate (2-HG), which can

promote oncogenic signaling and epigenetic alterations (38). It can

also lead to changes in redox imbalance. As a byproduct of oxidative

phosphorylation, ROS can cause oxidative damage to cellular

components, including DNA, proteins, and lipids. Increased ROS

levels could contribute to tumorigenesis by promoting genomic

instability, activating oncogenic signaling pathways, and

suppressing immune surveillance (39). Mitochondrial dysfunction-
Frontiers in Immunology 11
related alterations in metabolic reprogramming, cell metabolic

pathways and redox balance are closely associated with the

occurrence and progression of tumors. Furthermore, glycolysis and

lactic acid synthesis caused by mitochondrial dysfunction and

chronic inflammation caused by oxidative stress might contribute

to immune infiltration in the tumor immune microenvironment

(TIM) (40). Therefore, it is of great significance to identify different

molecular subtypes and explore potential glioma prognostic

biomarkers in LGG patients based on OMRGs.

In this study, we first obtained the list of OMRGs as the

intersection of ORGs and MRGs. The potential functions of
TABLE 2 Univariate and multivariate Cox analyses of LGG patients from CGGA sequencing dataset.

Characteristics
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age

≤40 Reference

>40 1.249 (0.973-1.604) 0.081

Gender

Female Reference

Male 0.840 (0.654-1.080) 0.174

WHO grade

II Reference Reference

III 2.808 (2.141-3.682) <0.001* 2.906 (2.176-3.880) <0.001*

IDH status

Wild-type Reference Reference

Mutant 0.428 (0.327-0.561) <0.001* 0.738 (0.548-0.994) 0.046*

1p/19q codeletion

Non-codel Reference Reference

Codel 0.256 (0.179-0.364) <0.001* 0.341 (0.231-0.505) <0.001*

Risk score

Low Reference Reference

High 2.236 (1.725-2.898) <0.001* 1.489 (1.102-2.012) 0.010*
*P<0.05, significant difference.
B CA

FIGURE 8

Validation of survival analyses in different external datasets. (A) CGGA sequencing dataset. (B) CGGA microarray dataset. (C) REMBRANDT dataset.
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OMRGs were confirmed by functional enrichment analyses. We

then performed consensus clustering analysis to identify different

molecular subtypes. We identified two OMRG clusters and

compared the survival probabilities between the two clusters. We

observed that the outcome of patients in cluster 1 was significantly

worse, and the mortality in cluster 1 was significantly higher. These

were consistent with the results of mutant profiles. It showed a

significantly higher prevalence of IDH1 and IDH2 gene alterations

in cluster 2. According to previous studies, IDH mutant gliomas

exhibited less aggressive biological behaviors and showed a better

prognosis and chemotherapy response, independent of

histopathological grades (41). The increased level of infiltrating

immune cells in cluster 1 indicated an immunosuppressive and

chronic inflammatory microenvironment in these samples.
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We identified DEGs and confirmed the prognostic role of these

genes. Using LASSO regression, five genes were selected for risk

model construction, including ABCC3, HOXA4, HOXC10, NNMT,

and SCNN1B. These five genes were significantly increased with the

grade of glioma and the high expression levels were significantly

associated with the poor prognosis in LGG. ABCC3 is a member of

the ATP-binding cassette transporter superfamily, it is strongly

associated with tumor drug resistance, leading to chemotherapy

failure (42). ABCC3 has been found highly expressed in different

types of tumors, and high ABCC3 expression significantly predicted

a shorter OS in glioma (43). This has been considered to be

associated with the impaired temozolomide reaction. A recent

study identified two ABCC3-targeting nanobodies as novel

candidates for immunotargeting applications in GBM (44).
B

A

FIGURE 9

Validation of gene expression levels by qRT-PCR and IHC analyses. (A) Expression levels of the 5 signature-genes in glioma tissues by qRT-PCR
analyses. (B) Protein expression levels of the 5 signature-genes in glioma tissues by IHC results. *P<0.05; **P<0.01; ***P<0.001.
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HOXA4 belongs to the Homeobox gene family. HOX genes encode

transcription factors and control the process of cell differentiation

(45). HOXA4 overexpression promoted self-renewal and

overpopulation of colon cancer stem cells (46). A recent study

found that HOXA4 knockdown could block cell cycle pathway and

inhibit the proliferation, invasion, and chemotherapy resistance in

gliomas (47). A series of studies have explored the function of

HOXC10 in gliomas. Up-regulation of HOXC10 promoted an

aggressive phenotype in glioma and induced the expression of

genes involved in tumor immunosuppression (48). Additionally,

HOXC10 up-regulated the expression of VEGFA, enhancing the

capacity of glioma angiogenesis, which made it a potential

therapeutic target for antiangiogenic therapy (49). Interestingly, a

recent study revealed that upregulation of HOXC10 in ovarian

cancer could promote ABCC3 expression by transcriptional

upregulation of b-catenin, resulting in carboplatin resistance (50).

NNMT is a member of N-methyltransferase family and contributed

to tumorigenesis. NNMT overexpression was associated with the

invasion of glioma cells and cellular methylation reorganization,

leading to the down-regulation of downstream protein GAP43 (51).

In contrast, NNMT silencing could activate tumor suppressor PP2A

and inactivate oncogenic STKs, thereby inhibiting glioma-forming

ability and enhancing radiation sensitivity (52). SCNN1B is located
Frontiers in Immunology 13
on chromosome 16p12-p13. Previous studies have explored the role

of SCNN1B in gastrointestinal tumors. SCNN1B interacted with

GRP78 and induced its degradation, which led to Caspase-

dependent apoptosis and ultimately inhibited cell growth and

migration in gastric cancer (53). Furthermore, SCNN1B could

inhibit the growth of colorectal cancer by impairing the activation

of c-Raf and suppressing MAPK signaling (54).

We performed risk score calculations and stratified LGG

patients into different risk groups. The GSEA analyses revealed a

significant difference in immune response and signaling between

these two groups. We then analyzed the immune infiltration

patterns and the expression levels of immune checkpoints in both

groups. We found significant correlations between the risk score

and the infiltrating levels of macrophages, eosinophils, aDC,

neutrophils, and T cells. TIM has always been the focus of

research, which played a crucial role in tumorigenesis,

development, and chemotherapy resistance. Glioma-related

macrophages, DCs, and neutrophils contributed to glioma

microenvironment, which regulated and inhibited the tumor

immune response (55). In tumor microenvironment (TME), the

balance of macrophages shifted from anti-tumor activated M1 to

tumor-promoting activated M2 (56). The increased levels of M2

macrophages produced numerous cytokines, growth factors, and
B

C

DA

FIGURE 10

Biological function of SCNN1B in SNB-19 cell line. (A) Transfection efficiency of siRNA. (B) Wound healing assays. (C, D) Transwell assays.
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interleukins, which facilitated the immunological tolerance and

promoted a tumor-permissive microenvironment in glioma. As

professional antigen-presenting cells, DCs regulated the immune

response activation of T cells (57). The elevated levels of aDCs and

T cells indicated the chronic inflammation in TME that promoted

tumor progression. Eosinophils could produce matrix

metalloproteinases (MMP) and growth factors, which interacted

with epidermal growth factor receptors overexpressed in

glioma and promoted tumor progression (58). Neutrophils

have been shown to possess both protumorigenic and

antitumorigenic properties in TME (59). Neutrophils could

secrete immunosuppressive mediators, including ROS,

chemokines, and MMP-9, which contributed to a pro-tumor

microenvironment. Moreover, the vascular endothelial growth

factor (VEGF) produced by neutrophils in TME could promote

angiogenesis and tumor progression (60). The immunosuppressive

microenvironment and chronic inflammation might be the major

reason for poor outcome of LGG patients with high OMRG-related

risk score. The high levels of immune checkpoint expression in the

high-risk group suggested the potential efficacy of immunotherapy

in these patients. We performed drug sensitivity analyses and found

that the high-risk patients were more sensitive to most

chemotherapeutic agents, providing a novel perspective for

chemotherapy treatment.

Subgroup OMRg-related risk score comparisons suggested a

potential correlation between poor prognosis and high-risk score in

LGG patients. The subsequent survival analyses and Cox regression

analyses identified the prognostic role of OMRG-related risk score.

To predict the survival probability, we constructed a nomogram

model with the same clinical features as Cox regression. It showed a

favorable predictive efficiency of the model. We confirmed the

prognostic role of OMRG-related risk score with a total of 1490

LGG samples from four different datasets. The findings were

consistent and stable. The results of qRT-PCR and IHC staining

confirmed the expression of the five selected genes. Previous studies

have demonstrated the function of ABCC3, HOXA4, HOXC10, and

NNMT in gliomas. However, the function of SCNN1B has not been

studied. The results of in vitro experiments showed that high

SCNN1B expression promoted the migration of glioma cells.

However, there were still several limitations in our study. This

study was based on retrospective analyses and the prognostic role of

the signature should be verified in multi-center large-sample

prospective cohorts. Additionally, the signature gene-related

signaling pathways and regulatory mechanisms remained to be

further studied.
Conclusion

In this study, we have identified two molecular subtypes of LGG

based on OMRGs, providing insights into the potential combined

effect of mitochondrial dysfunction and oxidative stress in LGG.

Moreover, we have established a novel OMRG-related gene

signature that could be utilized for predicting outcomes, immune

status, and therapeutic efficiency in LGG patients.
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