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Vaccine efficacy determined within the controlled environment of a clinical trial

is usually substantially greater than real-world vaccine effectiveness. Typically,

this results from reduced protection of immunologically vulnerable populations,

such as children, elderly individuals and people with chronic comorbidities.

Consequently, these high-risk groups are frequently recommended tailored

immunisation schedules to boost responses. In addition, diverse groups of

healthy adults may also be variably protected by the same vaccine regimen.

Current population-based vaccination strategies that consider basic clinical

parameters offer a glimpse into what may be achievable if more nuanced

aspects of the immune response are considered in vaccine design. To date,

vaccine development has been largely empirical. However, next-generation

approaches require more rational strategies. We foresee a generation of

precision vaccines that consider the mechanistic basis of vaccine response

variations associated with both immunogenetic and baseline health

differences. Recent efforts have highlighted the importance of balanced and

diverse extra-neutralising antibody functions for vaccine-induced protection.

However, in immunologically vulnerable populations, significant modulation of

polyfunctional antibody responses that mediate both neutralisation and effector

functions has been observed. Here, we review the current understanding of key

genetic and inflammatory modulators of antibody polyfunctionality that affect

vaccination outcomes and consider how this knowledge may be harnessed to

tailor vaccine design for improved public health.

KEYWORDS

antibody, allotype, polymorphism, Fc receptor, Fc function, computational modelling,
vaccine design, IgG glycosylation
Introduction

Vaccines provide variable protection to different demographics as a result of complex

interactions between host and environmental factors (1). This host diversity, if

appropriately defined and characterised, may inform an era of precision vaccinology

that accounts for inherent immunological differences between both individuals and
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populations (2–7). As vaccine clinical trials typically only recruit

healthy adults and, unintentionally, often only from dominant

ethnicities in developed countries, the data is typically not

representative of vaccine efficacy in vulnerable populations (8–

10). In an attempt to counter these known biases, vaccination

recommendations frequently suggest prioritising early and

additional doses for elderly and other immunocompromised

individuals who experience reduced vaccine immunogenicity, as

well as increased susceptibility to disease (11–15). Consequently,

present vaccination regimens targeting specific populations are

largely guided by rudimentary demographic and clinical

parameters such as age and baseline health status (16–20).

However, rapid advances in molecular and systems biology

along with materials science may facilitate a new frontier in

population-based vaccination strategies informed by molecular

mechanisms (6, 21–28). Technological and conceptual

developments in vaccinology have led to numerous vaccination

strategy modifications that can enhance immunogenicity and

protection (1, 20, 29, 30). Concurrently, systems biology analyses

of these vaccine regimens are beginning to elucidate the spectrum of

protective immune interactomes (24, 27, 31, 32). These

computational approaches facilitate investigation of complex

biological interactions. As such, in-depth immune profiling of

antibody features beyond the typically examined measures of titre

and neutralisation has revealed nuanced qualitative features of

antibodies that promote protection and distinguish individuals

with impaired immunity (21, 33–37). Notably, a common

signature associated with protection is the presence of antibody

features that promote polyfunctional antibody effector functions

(21, 33–37). These data may be key to informing the design of

vaccines tailored to vulnerable populations.
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Importance of antibodies for vaccine-
induced protection

Antibodies have been identified as a correlate of protection or

control of numerous infectious diseases (38). Neutralising antibodies

provide sterilising immunity by binding target epitopes leading to steric

hindrance that prevents pathogen entry into host cells or inhibits toxin

activity. As such, elevated neutralising titres are the principal goal of

most vaccination strategies and are highly predictive of protection

against many viral and bacterial diseases (38, 39). However, while

neutralisation is ideal as a primary humoral defence, eliciting broadly

neutralising antibodies (bnAbs) via vaccination against complex,

rapidly evolving, or diverse pathogens such as malaria (40), influenza

(41), human immunodeficiency virus type 1 (HIV-1) (42), and severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (43) remains

an elusive goal.

Antibodies comprise of two functional components: the

fragment antigen binding (Fab) region which determines target

specificity and is essential for neutralisation, and the fragment

crystallisable (Fc) region which engages the innate immune

system via numerous mechanisms (Figure 1). As such, Fc

functions bridge the innate and adaptive immune systems by

enhancing viral, bacterial, and parasite degradation and clearance

as well as lysis of infected host cells in an antigen-specific manner

(44). Importantly, unlike neutralising antibodies, the specificities of

Fc functional antibodies are not restricted by proximity to amino

acids involved in pathogen binding and fusion with host cells.

Instead, Fc functional antibodies can target any conformationally

accessible epitope, making these antibodies less sensitive to

pathogen mutation (45–53). Nevertheless, studies of HIV-1,

influenza A virus, Ebola, and SARS-CoV-2 have demonstrated
FIGURE 1

Antibodies comprise two fragment antigen binding (Fab) regions and one fragment crystallisable (Fc) region connected by a ladder-like hinge region.
The Fab is responsible for antigen recognition and mediates pathogen and toxin neutralisation. The Fc engages effector cells and molecules of the
innate immune system to mediate Fc effector functions. Neutralisation and Fc effector functions each have various advantages and disadvantages
but largely counterbalance the shortcomings of the other. *Durable neutralisation capacity and prophylactic Fc functions observed for antibodies
against some bacterial pathogens.
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that antibody specificity can substantially alter Fc potency (49, 54–

57). For this reason, vaccination strategies eliciting robust extra-

neutralising functions against carefully selected epitopes may be an

effective approach to counter the challenges associated with

bnAb generation.
Fc effector functions enhance
antibody-mediated protection

Beyond neutralisation, target-bound antibodies can initiate a

range of potent effector functions via simultaneous Fc region

engagement with host activating Fc receptors (FcR) on various

phagocytic and cytotoxic effector cells. In addition, engagement

with the neonatal Fc receptor (FcRn) increases antibody half-life

(58, 59). Table 1 and Figure 2 detail the multifaceted Fc functions

that antibodies mediate along with the key effector cells and

molecules involved in each process. Figure 2 also defines

abbreviations of key antibody mediated functions that are

referenced subsequently throughout this review.

Fc effector functions are appreciated as correlates of protection for

multiple bacterial pathogens (38). Bactericidal antibodies underpin

protection following meningococcal vaccination (67), and vaccine-

induced antibody-dependent neutrophil phagocytosis (ADNP) is

recognised as a correlate of protection against Streptococcus

pneumoniae (68). Fc effector functions have also been highlighted as

a key correlate of malaria protection in studies of the RTS,S/AS01

vaccine (69–72). Antibody titres alone were not associated with

protection, however, protection following parasite challenge was

predicted by capacity for antibody-dependent cellular phagocytosis

(ADCP) and FcgRIIIa engagement (69, 71) as well as an

immunoglobulin G (IgG) subclass distribution skewed towards IgG3

and away from IgG2 which would favour enhanced FcR engagement

and effector functions (70, 72). Furthermore, in the case of HIV-1 (73),

human papillomavirus (HPV) (74, 75), influenza (76, 77), and SARS-

CoV-2 (78), neutralising antibodies do not fully explain vaccination-

induced humoral protection, suggesting a pertinent role for Fc effector

functions in antibody-mediated immunity (51, 79, 80). This

phenomenon has been well-described for the only moderately

protective HIV-1 vaccine trial, RV144, which demonstrated partial

efficacy in the absence of bnAbs (73, 81); further antibody profiling

indicated this phenomenon to be a consequence of robust Fc effector

functions (73, 82, 83). Similarly, protection from respiratory syncytial

virus (RSV) is poorly predicted by serum IgG levels or neutralising

titres. Instead, Fc effector functions may be a better correlate of vaccine-

induced protection (84, 85).

The importance of Fc functions in protection against pathogens

has been demonstrated in animal models of HIV-1 (86), SARS-

CoV-2 (87–89) and influenza challenge (49) in which neutralising

monoclonal antibodies (mAbs) required Fc-functional capacity for

optimal prophylaxis and treatment. The value of Fc functions was

demonstrated in macaque models of HIV-1 infection whereby

administration of neutralising mAbs with an Fc LALA mutation

(two consecutive leucine to alanine substitutions which abolish

antibody binding to FcgRs) impaired protection compared to intact

mAbs (86). In the case of SARS-CoV-2, humanised mice and Syrian
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hamsters administered Fc-functional mAbs exhibited reduced viral

load and immunopathology compared to those administered mAbs

with an Fc LALA mutation (88). These protective effects were only

observed in the presence of monocytes, but the absence of

neutrophils or NK cells had no effect on weight loss, indicating a

dominant role for ADCP (88). In addition, mAbs containing the

GASDALIE mutation that promotes enhanced FcgRIIIa binding

showed improved protection against lethal SARS-CoV-2 challenge

compared to wild-type mAbs (87). In the case of influenza, while

bnAbs against the variable head region of the hemagglutinin (HA)

protein did not require Fc functional capacity for protection, bnAbs

directed against the conserved stalk region required FcgR-driven
antibody-dependent cellular cytotoxicity (ADCC) to confer

protection against lethal H1N1 challenge (49). Given the

importance of cross-reactive anti-HA stalk antibodies to counter

the high mutation rates of influenza, Fc functions have great value

in influenza protection (90).

Immune responses associated with reduced infection risk and

severity can guide vaccine development. Indeed, the parallel

identification of ADCP and antibody-dependent natural killer cell

activation (ADNKA) as correlates of protection against malaria in

both vaccinated and unvaccinated individuals (69, 71, 91–93)

suggests a level of homology between the protective mechanisms

induced by vaccination and those required for disease resolution.

Similarly, ADNKA has been associated with protection against RSV

following vaccination or infection (84, 94, 95). In addition,

enhanced ADCC is associated with HIV-1 viremic control (96–

99) and was also identified as a correlate of protection following

RV144 HIV-1 vaccination (34, 82). Given the wide-ranging benefits

of a coordinated Fc response, it follows that robust Fc functions are

implicated in protection against most diseases for which vaccines

are licenced or in clinical trial (Table 2). Furthermore, for highly

fatal infections, such as Ebola virus disease (57, 193) and Marburg

virus disease (159), Fc effector functions promote protection and

survival, as well as reduction of long-term sequelae. Therefore,

targeting generation of broad and highly potent Fc effector

functions is likely a valuable goal of many vaccines currently

under development.
Advantages of Fc mediated functions

Even when sterilising immunity is achievable via vaccination,

neutralisation escape is frequent as a result of viral evolution. The

effect of even a few amino acid mutations upon neutralisation has

been extensively studied in the face of SARS-CoV-2 variants, where

significantly weaker neutralising titres are observed against Omicron

subvariants in comparison to the ancestral strain, and this remains

true despite repeated vaccine boosts (194–196). Although boosting

with Omicron BA.5 or BA.4/BA.5 adapted bivalent booster

vaccination recovers neutralisation of the BA.4/BA.5 variant,

neutralisation capacity is again lost against more recently emerged

variants such as BQ.1.1 and XBB.1 (195). Given that perpetually

updating vaccines to protect against continuously emerging viral

variants is highly challenging, design of vaccines eliciting broadly

protective functions, such as Fc-effector functions, is warranted.
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TABLE 1 Human Fc Receptors (FcRs) referenced throughout this review.

FcgRIIc FcgRIIIa FcgRIIIb FcRn

CD32C CD16A CD16B –

FCGR2C FCGR3A FCGR3B FCGRT

B cells, Macrophages,
Monocytes,
Neutrophils, NK cells

Dendritic cells,
Macrophages,
Monocytes, NK cells

Basophils, Eosinophils,
Neutrophils

B cells, Dendritic cells,
Epithelium, Endothelium,
Macrophages, Monocytes,
Neutrophils

V158 F158 NA1, NA2, SH

++ ++ ++ + ++++

+/- + +/- – ++++

++ +++ +++ ++ +++

++ + + – +++

– – – – –

Activation Activation & ITAMi
inhibition

Decoy & Activation IgG recycling & Transcytosis

ssociated signalling subunits or membrane anchoring domains. g2: gamma chain; ITAM: immunoreceptor tyrosine-based
pes in which the receptor has been identified; italicised cell types indicate that FcR expression may be either low, inducible, or
en 1b (HNA-1b); SH: human neutrophil-specific antigen 1c (HNA-1c). Subclass engagement ranks IgG subclass affinities for

P
u
rce

ll
e
t
al.

10
.3
3
8
9
/
fi
m
m
u
.2
0
2
3
.118

3
72

7

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
4

Human Fc Receptors

FcR FcaRI FcgRI FcgRIIa FcgRIIb

Cluster of
Differentiation

CD89 CD64 CD32A CD32B

Gene FCAR FCGR1A FCGR2A FCGR2B

Cellular Expression Dendritic cells,
Eosinophils,
Macrophages,
Monocytes,
Neutrophils

Basophils, Dendritic cells,
Eosinophils,
Macrophages,
Monocytes, Neutrophils

Basophils, Dendritic
cells, Eosinophils,
Macrophages, Mast
cells, Monocytes,
Neutrophils, Platelets

B cells, Basophils,
Dendritic cells,
Eosinophils,
Macrophages,
Monocytes,
Neutrophils

Functional Alleles H131 R131 I232 T232

Subclass
Engagement:

IgG1 – ++++ +++ +++ ++ ND

IgG2 – – ++ ++ +/- ND

IgG3 – ++++ +++ +++ ++ ND

IgG4 – ++++ ++ ++ ++ ND

IgA1/
IgA2

+++ – – – – –

Key Functions Activation & ITAMi
inhibition

Activation Activation & ITAMi
inhibition

Inhibition

Schematics represent FcR immunoglobulin-like domains and, in the case of FcRn, b2M (beta 2 microglobulin), as oval structures, along with a
activation motif; ITIM: immunoreceptor tyrosine-based inhibitory motif; GPI: glycosylphosphatidylinositol anchor. Cellular Expression lists cell ty
only present on a subset of the indicated population. NA1: human neutrophil-specific antigen 1a (HNA-1a); NA2: human neutrophil-specific antig
each respective FcR; +/- indicates very low to absent binding. Data compiled from (44, 58, 60–66).
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Indeed, the extent of this Fc functional antibody cross-reactivity is

demonstrated by the ability of a chimeric Japanese encephalitis virus

(JEV) vaccine (consisting of JEV structural genes upon the yellow

fever virus vaccine YFV-17D scaffold) to protect mice against lethal

yellow fever virus challenge via FcgRIIIa-mediated ADCC (187). Of

note, although ADCC-mediating antibodies may exert selective

pressure on HIV-1 evolution (197), the likelihood of Fc functions

to drive evolution of viral escape mutations is reduced compared to

that of neutralising antibodies (198, 199). This constraint of

neutralisation escape mechanisms further supports prioritisation of

Fc functions in vaccine development.

Fc-functional antibodies are also more durable than neutralising

antibodies (178) given the increased abundance of non-neutralising

antibodies, which, for example, may constitute up to 95% of antibodies

against the SARS-CoV-2 spike protein (46). In human cohorts, a study

characterising various antibody features of convalescent plasma from

36 mild-moderate coronavirus disease 2019 (COVID-19) recovered

patients up to five months post-infection, 100% and 94% of

participants maintained ADCP and ADCC functions, respectively,

while neutralisation was only detectable in 70% of participants (178).

Independent studies have also detected persistence of neutralising

antibodies against SARS-CoV-2 five months following infection

(200), however, the longevity of the response is dependent upon

disease severity (201). Similar to the kinetics of post-infection

responses, neutralising antibodies induced by SARS-CoV-2

vaccination have been found to decay within four to six months,

particularly against SARS-CoV-2 variants of concern (202) and among
Frontiers in Immunology 05
immunocompromised populations (43). As such, this data reinforces

the value of Fc functions in protecting vulnerable populations against

evolving pandemics.

A further benefit of Fc functional antibodies is their dual

capacity for both protection against infection as well as control of

disease through collaboration with neutralising antibodies and T

cells, respectively, as demonstrated by both mechanistic (203) and

systems serology (78, 204) studies of SARS-CoV-2. Furthermore,

enhanced Fc engagement with FcgRIIa supports increased dendritic

cell maturation and CD8+ T cell responses, facilitating improved

protection against influenza (205). In the case of SARS-CoV-2,

although neutralising titres remain predictive of protection against

symptomatic disease in the face of variants (206), with up to log-

fold reductions in neutralisation (195), cross-reactive Fc functions

likely mitigate, at least in part, the severe disease outcomes that

might be expected with such drastic losses in neutralisation. As

such, it is likely that, along with T cell responses (207), highly

conserved Fc effector functions directed against novel variants (47,

48) may protect against severe outcomes.
Fc modifications predict
effector functions

Despite the Fc portion belonging to the antibody constant

region, numerous Fc modifications contribute to antibody diversity
FIGURE 2

Antibody-dependent Fc effector functions referenced throughout this review. Fc effector functions are initiated upon simultaneous antibody
engagement with a pathogen antigen and an innate effector molecule (complement component 1q (C1q) or mannose-binding lectin (MBL)) or Fc
receptor (FcR) expressed by innate immune cells. Activation of C1q or MBL following antigen binding triggers the complement cascade leading to
pathogen or infected cell death via antibody-dependent complement deposition. FcR cross-linking via antibody-antigen complexes triggers downstream
signalling cascades within innate effector cells leading to pathogen killing and clearance via a range of antibody-dependent cellular effector functions,
listed in the figure. Finally, these effector functions trigger downstream cytokine release which may enable further recruitment of effector cells.
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TABLE 2 Infectious diseases for which Fc effector functions are involved in protection or antimicrobial activity, and for which vaccines are licenced or
in clinical trial.

Pathogen (Infectious disease) Evidence for Fc Effector Function Involvement

Fc Effector Functions Ab Features & FcR
Interaction

Outcome (Experimental model)

Bordetella pertussis (Pertussis/Whooping
cough)

ADNP & ADNOB Opsonic IgG & IgA; FcgRIIa,
FcgRIIIb & FcaRI

Anti-bacterial activity (human patient cohort) (100)

ADCD Bactericidal IgG3 Anti-bacterial activity (human patient cohort) (101,
102)

ADCD, ADNP & ADNOB Opsonic IgA, FcaRI & FcgR Protection & bacterial clearance (mouse model) (103–
107)

Dengue virus (Dengue fever) ADCD, ADCP & ADNKA ↑ IgG4; Coordinated FcgRIIIa
engagement

Protection against symptomatic infection (human
patient cohort) (108)

↑ NK cell ADCC, ADNKA Coordinated FcgRIIIa
engagement

↓ Symptomatic & Secondary DENV-3, but not
DENV-2, viremia (human patient cohort) (108, 109)

↑ ADCC ↑ IgG1 afucosylation; ↑
FcgRIIIa binding

↑ Disease severity, ADE activity (human patient
cohort) (110–112)

Haemophilus influenzae
serotype b (Hib)

ADCD, ADNP Bactericidal and opsonic IgG1
& IgG2

Bacterial lysis (human patient cohort) (113–115)

ADCD, ADNP Bactericidal IgM and IgG &
opsonic IgG

Protection (rat model) (116)

ADCD & ADCP or ADNP Bacterial clearance (mouse model) (117)

Hepatitis B virus (Hepatitis B) NK cell ADCC Resolution & remission (human patient cohort) (118,
119)

↓ ADCD ↓ FcgRIIb Chronic disease & ↑ ALT, AST (markers of liver
damage) (human patient cohort) (120, 121)

↓ IgG galactosylation Chronic disease & cirrhosis (human patient cohort)
(122)

NK cell and macrophage
ADCC & macrophage ADCP

Protection (in vitro and mouse model) (123)

Herpes Simplex Viruses 1 & 2 ↑ ADCC ↓ Neonatal disease severity (human patient cohort)
(124)

↑ ADCC ↑ IgG1 & ↓ IgG3 Antiviral activity during chronic infection (human
patient cohort) (125)

ADCC Non-neutralising antibodies Protection following vaccination (mouse model) (126,
127)

F(ab)’2 fragments ↓ Protection compared to intact IgG (mouse model)
(128, 129)

Human cytomegalovirus ADCP Non-neutralising IgG1 & IgG3 Vaccine immunogenicity (human vaccine trial) (130)

NK cell expansion FcgRIIIa expression Infection control (human case study) (131)

ADCP & NK cell ADCC Antiviral activity (in vitro) (132, 133)

Human immunodeficiency virus 1
(Acquired immunodeficiency syndrome)

↑ ADCC, ADCP, ADNKA &
ADCD

↑ IgG3, coordinated IgG1 &
IgG3, ↓ IgG2 & IgG4, ↓ IgA

Protection (human vaccine trials) (34, 73, 82, 83, 134,
135)

↑ ADCVI* ↑ Protection (human vaccine trial) (136)

↑ Fucosylated, agalactosylated
IgG; ↑ FcgRIIIa engagement

Disease control compared to acute infection (human
patient cohort) (79)

↑ ADCC ↓ Progression (human patient cohort) (99, 137, 138)

↓ ADCC ↓ FcgR engagement by
neutralising mAbs

↓ Protection (macaque model) (86)

(Continued)
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TABLE 2 Continued

Pathogen (Infectious disease) Evidence for Fc Effector Function Involvement

Fc Effector Functions Ab Features & FcR
Interaction

Outcome (Experimental model)

↑ ADCC, ADCD, ADCP,
ADNKA & ↑
polyfunctionality

↑ Protection (macaque model) (139–143)

Human papillomavirus
(HPV)

ADCD IgG3 Vaccine immunogenicity (human clinical trial) (75)

ADCP or ADNP; neutrophils FcgR Protection (mouse model) (144, 145)

Influenza A virus & Influenza B virus
(Influenza)

ADCC Survival of severe disease (human patient cohort)
(146)

ADCC, ADNKA & ADCP Non-neutralising mAbs;
FcgRIIIa & FcgRIIa

Cross-reactive antiviral activity (human patient
cohort) (51, 52, 147–153)

ADCC FcgRIIIa Protection (mouse model) (49, 154)

ADCC & ADCP Non-neutralising antibodies Protection (mouse model) (155)

ADCP FcgRI & FcgRIII ↑ Protection, viral clearance and ↓ disease
susceptibility (mouse model) (156, 157)

Lassa virus (Lassa fever) ADCC & ADCP FcgRII & FcgRIII Protection following vaccination (mouse and guinea
pig model) (158)

Marburg Virus (Marburg Virus Disease) ADCP, ADNP & ADNKA IgG3 Protection against death (159)

Measles morbillivirus
(Measles)

ADNP, ADCP, ADCD, &
ADCC

Vaccine immunogenicity (human patient cohort)
(160)

Mycobacterium tuberculosis
(Tuberculosis)

↑ ADNKA & ADCC ↑ IgG afucosylation Latent infection (human patient cohort) (53)

↑ ADCP Active infection (human patient cohort) (53)

↑ ADNKA ↓ IgG sialylation ↓ Disease susceptibility (human patient cohort) (161)

↑ IgG3 ↓ Recurrent infection (human patient cohort) (162)

↓ Inhibitory FcgRIIb expression ↓ Bacterial burden & ↑ survival (mouse model) (163)

Neisseria meningitidis
(Meningococcal disease)

ADCD, ADNP & ADNOB Bactericidal and opsonic IgG1
& IgG3

Vaccine immunogenicity (human clinical trial) (164–
166)

↑ Bactericidal antibodies ↓ Disease susceptibility (human patient cohort) (167)

ADNOB, ADCD & ADNP Bactericidal IgG1, IgG3 & IgA Infected cell lysis (in vitro) (168)

Plasmodium falciparum
(Malaria)

ADNP & ADCD Protection following vaccination (human challenge
trial) (71)

ADCP & ADNKA FcgRIIIa engagement Protection following vaccination (human challenge
trial) (69, 92)

ADCP Protection following previous exposure (human
challenge trial) (91)

ADNKA IgG1 & IgG3 Protection (human challenge trial) & ↓ clinical
episodes (human patient cohort) (93)

ADCP & ADNOB IgG1 & IgG3 Protection in endemic regions (human patient cohort)
(169–171)

ADCD IgG3 Vaccine immunogenicity (vaccine clinical trial) & ↓
clinical episodes
(human patient cohort) (172)

Salmonella enterica serotype Typhi
(Typhoid fever)

ADCC IgA Protection (human patient cohort) (173)

ADNP & ADNOB FcaRI Vaccine-induced protection (human patient cohort)
(174)

(Continued)
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(208, 209). Antibody quality can be enhanced by heritable and

inducible genetic variation of the Fc region in the form of antibody

isotypes, subclasses, and allotypes, as well as post-translational Fc

modifications such as glycosylation. This variation can greatly impact

FcR interactions, and therefore, alter potency of Fc functions, with

antibody isotype and subclass modulation typically having the
Frontiers in Immunology 08
greatest effects (208). Importantly, changes to the abundance of

various antibody isotypes, subclasses, and glycosylation patterns

can be induced via both vaccination and disease (110, 210–213).

Critically, regulation of these Fc modifications is a complex,

multilayered process influenced by a range of innate and adaptive

immune cells and cytokines (214–218).
TABLE 2 Continued

Pathogen (Infectious disease) Evidence for Fc Effector Function Involvement

Fc Effector Functions Ab Features & FcR
Interaction

Outcome (Experimental model)

ADCC FcgRI, II & III Vaccine-induced protection (mouse model) (175, 176)

SARS-CoV-2 (COVID-19) ↑ADCP & ADNKA Coordinated FcgR engagement ↑ Survival of severe disease (human patient cohort)
(177)

ADCC & ADCP Cross-reactive antiviral activity (human patient
cohort) (47, 48)

ADCP, ADCT, ADCC &
ADNKA

FcgRIIa & FcgRIIIa engagement ↑ Antiviral durability compared to neutralisation
(human patient cohort) (178)

ADCC & ADCP;
macrophages

↑ FcgRIII engagement ↓ Mortality & pathology (mouse and hamster models)
(56, 87–89)

Streptococcus pneumoniae
(pneumococcal disease)

ADNP IgG1, IgG2 & serum IgA;
FcgRIIa & FcaRI

Anti-bacterial activity (human patient cohort) (179,
180)

ADNP or ADCP ↑ Opsonic IgG ↑ Protection (Mouse model) (181)

Respiratory Syncytial Virus (RSV) ADCD, ADNKA, ADCP &
ADNP

Vaccine immunogenicity (human challenge trial) (84)

ADCP & ADNP ↑ FcgRIIb, likely as a surrogate
for ↑ FcgRIIa & FcgRIIIa
engagement

Protection (human challenge trial) (84)

↓ Global Fc functions ↑ IgG4; ↑ IgG digalactosylation
& fucosylation

↓ Protection (human challenge trial) (84)

↓ ADNKA ↑ IgG fucosylation Severe infection (human patient cohort) (94)

Varicella-zoster virus
(Chickenpox or Shingles)

ADCC Early-stage viral control (human patient cohort) (182)

NK cell & monocyte ADCC Clearance of infected cells (in vitro and human patient
cohort) (183, 184)

Vibrio cholerae (Cholera) ADCD Vibriocidal antibodies Long-term protection (human clinical trial & human
patient cohort) (185, 186)

Yellow Fever virus (Yellow Fever) ADCC FcgRIIIa Cross-reactive protection following Japanese
encephalitis vaccination (mouse model) (187)

NK cell ADCC Protection (mouse model) (188)

F(ab’)2 fragments ↓ Protection compared to intact IgG (mouse model)
(188)

Zaire ebolavirus (Ebola virus disease) ADCD & moderate ADNKA Survival (mouse model and human patient cohort)
(189)

ADCD, ADNP &ADCP IgG1 Survival (nonhuman primate model) (190)

ADCD & ADCC ↑ Protection (macaque model) (191)

NK cell ADCC ↑ Protection (in vitro & mouse model) (192)

ADCP, ADNP & ↑
polyfunctionality

↑ Protection (in vitro & mouse model) (57)
*Antibody-dependent cell-mediated virus inhibition (ADCVI) is a measure of FcgR-mediated antiviral activity that accounts for antibody polyfunctionality
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Isotypes and subclasses

Upon B cell activation, early IgD+ and IgM+ lymphocytes

undergo affinity maturation and DNA recombination in the form

of class switch recombination (CSR). CSR enables selective usage of

a single immunoglobulin heavy constant (IGH) gene (Cm through

to Ca2) per transcript, with a bias towards downstream genes with

increasing antigen exposure. As such, this process converts

antibody constant regions to more mature isotypes (Figure 3),

generating higher affinity, Fc-functional IgA, IgG, or IgE

antibodies, depending on the antigen encountered. IgA

production is largely driven by mucosal antigen exposure, with

IgA1:IgA2 subclass ratios partially dependent on the anatomical site

of exposure (219) and host age (220). IgG1-4 subclasses may be

selectively induced depending on antigen characteristics, exposure

frequency, or host age (213, 220, 221). CSR is further influenced by

signalling molecules as well as numerous immune cell subsets,

including antigen presenting cells, conventional T cells, and

unconventional T cells, as discussed in detail in the following

reviews (214–218). Importantly, cytokines secreted by CD4+

helper T (Th) cells, including interleukin (IL)-4, IL-10, IL-13, and
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IL-21, have dominant roles in class switching to IgG, with IgG

subclass distributions influenced by Th cell subset ratios and innate

immune cells (222–227).

IgG3, followed by IgG1, has the highest affinity for FcgRs and,
consequently, the greatest Fc-functional capacity, granting this

subclass its so-called ‘cytophilic’ nature (228, 229) (Table 1). As

such, elevated levels of IgG1 and IgG3 are correlated with superior

protection against a range of diseases following infection or

vaccination (229, 230). The robust polyfunctionality of IgG3

can be further complemented by the increased neutralisation

potency observed for certain IgG3 variants (231–233). On the

other hand, IgG2- or IgG4-skewed responses with reduced Fc

functionality have been associated with non-protective HIV-1

trials (34, 82, 234). However, in diseases such dengue fever in

which a hyperinflammatory response can be pathological, increased

induction of IgG4 is more protective (108).

CSR is coordinated by multiple enzymes with dual functionality

in somatic hypermutation (SHM)—the process enabling antibody

Fab region diversification. Most notably, activation-induced

cytidine deaminase (AID) initiates CSR and SHM and is

indispensable for these mechanisms (235). The importance of
FIGURE 3

The immunoglobulin heavy (IGH) locus encodes the constant regions of immunoglobulin (Ig) M, IgD, IgG, IgA, and IgE. The constant heavy genes
are located downstream of the joining region heavy (JH) genes. One pseudogene (yCϵ) is also located within the IGH locus. IgG and IgA comprise
four and two subclasses, respectively. Additional antibody variation is introduced by the single nucleotide polymorphisms which, alone or in
combination, define a range of IgG1, IgG2, IgG3, IgG4, and IgA2 allotypes. Allotypes are listed according to the WHO/IUIS nomenclature in bold,
followed by the previous alphabetical notation italicised in brackets. ‘Gm’ or ‘Am’ designates a marker of IgG1-4 or IgA, respectively, followed by a
number corresponding to the named allele. ^The prefix ‘n’ or suffix '..' indicates the absence of the allotypic marker at the named allele; these are
referred to as isoallotypes and contain an amino acid distinct to the subclass but common across the isotype. (Note that ‘nG1m1’ may be written as
‘G1m-1’ to indicate the absence of the G1m1 allotype). Each named allele is located at a distinct amino position except G1m17 and G1m3 which
represent allotypes at the same position.
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AID to polyfunctional antibody responses is demonstrated by the

positive association of AID expression with increased neutralisation

breadth, IgG subclass diversity, and Fc responses following HIV-1

infection (236), as well as the diminished production of mature

isotypes and reduced affinity maturation in individuals with

impaired AID expression, such as the elderly or those with

chronic inflammatory conditions (237–239).
Allotypes

Evolutionary pressures imposed by pathogens, particularly

malaria, upon human populations for millennia have made

immunoglobulin genes are a key target for genetic diversification

mechanisms (240–242). As such, single nucleotide polymorphisms

(SNPs), and combinations thereof, within the antibody constant

region introduce a further layer of variability to the variable Fc-

functional capacity of IgG subclasses. Initially defined via serological

detection methods and termed ‘allotypes’, these antibody variants

now form part of a continuously growing collection of IGH gamma

(IGHG) chain alleles (243–245). IgG1 possess four classical allotypic

markers present only in the IgG1 subclass, as well as two

supernumerary markers occurring in IgG3 in some populations;

one allotype is present in IgG2, and 13 IgG3 allotypes exist,

including the two IgG1 supernumerary markers. In addition, two

IgG4 isoallotypes which possess amino acids unique within the

subclass but occurring in other antibodies across the isotype have

been identified (245, 246) (Figure 3). Notably, IGHG genes are

inherited in a Mendelian fashion and are in linkage disequilibrium

such that specific allotypes are typically inherited within haplotype

blocks (247–249). This is particularly evident in IgG3 which exhibits

exceptional allelic diversity, and as such, IgG3 nomenclature is

simplified to indicate commonly inherited combinations of alleles,

annotated as G3m5* or G3m21*, for example (229). Notably, the

G1m1 allotype is commonly inherited with G1m17 and, to a slightly

lesser extent, G3m21* (250). As such the antithetical high prevalence

allotype is Gm-1,3,5*.

Notably, advances in molecular biology and inclusion of

Indigenous populations in biomedical research has enabled recent
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identification of additional polymorphisms (209, 243, 251). This

extensive antibody diversity likely reflects the variable evolutionary

selective pressures of different disease burdens imposed upon

distinct populations, resulting in the selection of numerous low

frequency polymorphisms in genetically isolated populations (252).

However, a subset of dominant allotypes underpin variable

responses to infection and vaccination. Across a diverse array of

viral, bacterial, and protozoan infections, these IgG variants are

associated with altered disease susceptibility possibly driven by IgG

subclass distribution and titres of antigen-specific antibodies

(Supplementary Table). In addition, IgG allotypes are reported to

influence subclass titres and distribution of total IgG (253, 254).

These variations to subclass distribution are suggested to impact Fc

effector functions if antibody subclasses with reduced Fc functional

capacity, such as IgG2 and IgG4, are expressed at the expense of

more functional subclasses such as IgG3.

Allotype-associated regulation of Fc-functional capacity remains

under-studied (244). However, recent monoclonal antibody studies

revealed that IgG3 allotypes bind FcgRIIIa with different affinities

and, therefore, have varied capacity to trigger ADCC, ADCP, and

antibody-dependent cellular trogocytosis (ADCT) (233, 255). In

addition, substitution of arginine to histidine at position 435 in

some IgG3 allotypes can triple the half-life of this typically short-

lived subclass via enhanced binding to FcRn (256–258). This

polymorphism has been associated with increased transplacental

transfer of malaria-specific IgG and improved protection against

malaria during infancy (257). However, the mechanisms by which

other IgG polymorphisms confer altered protection against infectious

diseases or why allotypes are associated with drastic changes in IgG

subclass expression remains poorly understood and warrants

further investigation.
N-linked glycosylation

Beyond genetic polymorphisms and gene rearrangements

which impact protein sequence and structure, post-translational

glycosylation of IgG is an additional key regulator of Fc functions.

Enzymatic addition of polysaccharide chains to the antibody Fab,
FIGURE 4

IgG is post-translationally glycosylated. Biantennary N-linked glycan chains are added at asparagine 297 within the Fc portion of the constant heavy (CH)
regions of IgG. Two N-acetylglucosamine (GlcNAc) subunits and three mannose subunits form two branching structures upon which additional GlcNAc,
followed by galactose and then sialic acid are added. Fucose can be linked to the N297 proximal GlcNAc and is present on the majority of human IgG.
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hinge, and Fc regions can modify both antigen specificity and Fc

receptor engagement, with Fc glycosylation at asparagine 297 (N297)

within the constant heavy chain two (CH2) region influencing

antibody polyfunctionality most substantially via modulation of

Fc effector functions (259–263). Typical IgG Fc glycan chains are

biantennary in nature, consisting of N-acetylglucosamine (GlcNAc)

subunits from which mannose subunits form two branching

structures allowing for the orderly addition of further GlcNAc,

followed by galactose and then sialic acid. In addition, monomeric

fucose can be linked to the N297 proximal GlcNAc (Figure 4).

Variations to this N-linked glycosylation are associated with

modulation of the inflammatory capacity of IgG, given the

associated changes in affinity during IgG-FcgR interactions (264).

It follows, therefore, that Fc glycosylation patterns predict antibody

effector functions (265).

Fucose has the best characterised role in modulating IgG-FcgR
interactions and downstream Fc effector functions. A unique

carbohydrate-carbohydrate interface exists between the glycans of

afuscosylated IgG and FcgRIIIa that greatly enhances affinity

compared to when core fucose is present and consequently

interferes with formation of this interface (266). As such,

afuscosylation is associated with upregulated FcgRIIIa signalling

and enhanced ADCC and possibly ADCP (266–271).

Galactose is reported to modulate Fc effector functions, with

increased galactosylation associated with increased IgG1 and IgG3

binding to complement component 1q (C1q) and, therefore,

enhanced antibody-dependent complement deposition (ADCD)

(271, 272). Increased galactosylation is also correlated with

enhanced FcgRIIIa engagement and ADCC (271, 273, 274).

However, galactose only subtly improves affinity for FcgRIIIa and

does not further promote ADCC in an environment of highly

afucosylated IgG (273, 275). Most critically, as galactose is the

building block required for addition of sialic acid, it is essential for

the anti-inflammatory properties associated with sialyation (276).

Sialic acid may inhibit FcgRIIIa binding and activation by IgG,

thereby downregulating ADCC (263). However, the mechanism by

which this occurs remains disputed owing to conflicting structural data

(277–279). Alternatively, sialic acid may dampen inflammation by

upregulating expression of inhibitory FcgRIIb (280, 281) or shifting IgG
Fc receptor specificity towards C-type lectins that mediate anti-

inflammatory functions (277, 282, 283). Nevertheless, these

explanations which purportedly underpin the anti-inflammatory

properties of intravenous immunoglobulin (280–283), are also

contested (284, 285). Importantly, given the dominant role of

afucosylation in modulating ADCC via enhanced FcgRIIIa binding,

Fc sialyation has been suggested to only adversely impact the ADCC

capacity of fucosylated, but not afucosylated IgG (286).

Critically, Fc glycosylation is under the control of a combination

of genetic, hormonal, and cytokine regulatory mechanisms (287)

which remain to be fully elucidated. However, IL-6 and IL-23 play

relatively well-described roles in modulating Fc sialyation in mice

(288, 289). IL-6 and IL-23 promote IL-17 secretion by T follicular

helper 17 (Tfh17) cells which downregulates b-galactoside a-2,6-
sialyltransferase I (St6gal1) expression in germinal center B cells

and consequently inhibits IgG Fc sialyation (288). Furthermore, IL-

23-activation of Th17 cells drives decreased Fc sialyation via IL-21
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and IL-22-dependent downregulation of St6gal1 expression in

plasmablasts and plasma cells (289).

Given the direct role of IgG Fc glycosylation in Fc effector

functions which are both influenced and regulated by inflammation

(264), glycosylation has been identified as a useful biomarker of

chronic and acute inflammation as well as disease progression and

severity in the context of both infectious and noncommunicable

diseases (110, 111, 290–297). IgG afucosylation is a pro-

inflammatory hallmark, owing largely to ADCC upregulation

(296). Afucosylation is associated with heightened COVID-19 and

dengue fever severity owing to the excessive inflammation to which

afucosylated IgG contributes (110, 111, 290, 292, 296). However, in

the setting of chronic infection, upregulated effector functions may

be a protective adaptation enabling relatively slower disease

progression. As such, reduced fucose abundance is associated

with favourable disease outcomes, contributing to HIV-1 control

and tuberculosis (TB) latency (53, 79). Whether increased

abundance of fucosylated IgG is ultimately pathogenic or

protective is highly disease specific and is underpinned by

whether enhanced ADCC can promote pathogen clearance

without inducing detrimental hyperinflammatory responses.

Reduced IgG galactosylation during chronic infection may be

beneficial or detrimental to disease control depending upon the

protective capacity of the upregulated Fc effector functions in the

specific disease context (271–274). Indeed, agalactosylation of both

bulk and antigen-specific IgG is associated with spontaneous HIV-1

control (79) as well as longer time to viral rebound following

cessation of antiretroviral therapy (298), while increased IgG

galactosylation is associated with tuberculosis latency (53). On the

other hand, galactose is a key biomarker for the progression of non-

communicable inflammatory diseases (297). Increased

galactosylation of total IgG is generally associated with improved

metabolic health (299, 300), while increased total IgG

agalactosylation is associated with progression of inflammatory

and autoimmune diseases such as rheumatoid arthritis (297, 301)

and systemic lupus erythematous (302). Although this observation

appears somewhat counterintuitive given the role of galactose in

enhancing inflammatory processes such as ADCD and ADCC, it

has been hypothesised that discrepancies in total compared to

antigen-specific glycosylation may mediate this effect (303). When

global IgG agalactosylation is high, thereby impairing general FcgR
engagement, this environment would favour enhanced C1q

engagement and FcgR activation by more highly galactosylated

antigen-specific autoimmune antibodies with a consequently

increased affinity for FcgRs. When global IgG agalactosylation is

low, total IgG outcompetes autoantigen-specific autoimmune

antibodies for FcgR binding, thereby increasing the threshold

required for immune activation by pathologic antibodies (303). In

addition, via a separate FcgR-mediated mechanism, terminal

galactosylation of IgG1 immune complexes mediates anti-

inflammatory activity by promoting FcgRIIb driven inhibition of

complement-dependent inflammatory pathways (304).

IgG glycosylation is central to maintaining the fine balance

between induction of protective and pathogenic Fc functions,

highlighting a critical immunomodulatory role for Fc

glycosylation in control of infectious disease, but also the
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1183727
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Purcell et al. 10.3389/fimmu.2023.1183727
regulatory influence of inflammation upon Fc glycosylation. Indeed,

post-translational glycosylation is dynamic and highly sensitive to

changes within the B cell microenvironment (288, 305, 306), and as

such, may undergo relatively rapid modification dependent upon

hormonal (307), vaccine or pathogen-derived stimuli (287, 308), as

well as more gradual changes associated with ageing and disease

(299, 309).
Dysregulated Fc effector functions
characterise vulnerable populations

Priority populations can be defined by key host factors that

influence the vaccine response, including age, sex, immunogenetics,

pregnancy, chronic comorbidities, and malignancies (1, 4, 310–

313). These clinical and demographic features are further associated

with changes to well-characterised and emerging molecular

predictors of vaccine-induced protection (22, 314). Some of these

predictive biomarkers are highly linked to lifestyle and health status,

such as baseline host inflammation and the gut microbiota (315,

316). Other features are more closely tied to age and genetics, such
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as pre-existing immunity as a result of prior antigen exposure,

immune cell frequencies and activation, antibody titre and function,

and capacity for antigen processing (37, 317–326). Notably,

characteristic modulation of these host variables results in distinct

vaccine responses within specific populations (22). Consequently,

tailoring vaccine design to elicit the precise immune features lacking

in target populations may prove essential for enhancing

vaccine effectiveness.

The underlying mechanisms of immune dysregulation observed

in immunocompromised populations is an active area of

investigation. However, a perturbed cytokine milieu appears to be

central to impaired vaccine responses (327, 328). Notably, many of

these immunologically vulnerable groups, including the elderly,

individuals with chronic inflammatory conditions and

autoimmune disorders, as well as cancer patients, share

characteristic patterns of cytokine dysregulation related to

imbalances in CD4+ T cell subsets (329–334), immunoglobulin

class switching (323), and IgG glycosylation (299, 309, 335), both

between and within groups (Figure 5 illustrates IgG glycosylation-

specific population trends). As cytokines secreted by CD4+ T cells

are important B cell stimuli for the regulation of both class
FIGURE 5

IgG Fc glycan structures have variable inflammatory properties. IgG Fc glycans differentially modulate Fc effector functions and, therefore,
inflammation, depending on the interactions of the sugars with various Fc receptors and complement proteins. In general, lack of fucose is highly
inflammatory while the presence of galactose and sialic acid is anti-inflammatory. Total IgG Fc glycosylation varies considerably with age, sex, and
health status. In general, there is a greater abundance of pro-inflammatory Fc glycans in elderly individuals with chronic comorbidities, such as
obesity, and this is particularly elevated in post-menopausal women. On the other end of the spectrum, pregnancy is associated with increased
abundance of anti-inflammatory Fc glycans. Among healthy young adults, women typically have a slightly more anti-inflammatory Fc glycan profile.
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switching (336–338) and IgG glycosylation (305)—features which

heavily influence Fc functions—a perturbed baseline cytokine

milieu may drive Fc effector function dysregulation.

Although poor vaccine immunogenicity in vulnerable

populations may, in some instances, be restored by additional

vaccine doses (15), boosting is not a universally effective strategy

for all vaccines and across all immunocompromised groups (339).

Furthermore, modelling suggests that the benefits of boosting may

be transient for some immunosuppressed individuals (340).

Therefore, in order to design more effective vaccines for

immunocompromised groups, a deep understanding of the

dysregulated immune networks characteristic of these

populations, as well as how these altered immune responses are

influenced by different vaccination strategies, is required. Recent

systems serology studies have highlighted differences in Fc

functions between young, healthy, non-pregnant adults and

various vulnerable populations including, children, pregnant

women, elderly individuals and patients with various co-

morbidities (37, 310, 324, 341–343). Importantly, identification of

shared characteristic immunomodulatory mechanisms underlying

impaired protection across multiple immunocompromised groups

(328, 330, 341) may enable design of more broadly generalised first-

generation population-specific vaccine modifications.
Pregnant women

During pregnancy, to ensure the developing foetus is not

re jec ted , the body mainta ins a prec ise ly modulated

immunosuppressive, anti-inflammatory state that is reflected in

generally diminished Fc functions (310, 344) underpinned by a

global decrease in inflammatory glycan structures (344, 345).

Distinct Fc effector functions have been observed in pregnant and

lactating women compared to healthy controls following prime-

boost SARS-CoV-2 vaccination, despite equivalent vaccine-specific

antibody titres post-boost (310). Pregnant and lactating women

displayed delayed Fc kinetics, requiring two doses to generate

responses that were comparable, though still reduced, to

nonpregnant controls (310). In contrast, post-boost, ADNKA and

ADNP trended higher in lactating women than in both pregnant

and nonpregnant women (310). Varied functional antibody

responses have also been described during pregnancy following

influenza vaccination. Compared to their non-pregnant

counterparts, pregnant women demonstrated impaired overall Fc

function driven by reduced capacity for ADCP and ADCD, which

was linked to an increase in anti-inflammatory Fc fucosylation and

sialyation (344). Nevertheless, increased galactosylation of both

bulk and vaccine-specific Fc antibodies was correlated with

improved ADNKA in pregnant compared to non-pregnant

influenza vaccinated women (344). Finally, the timing of maternal

vaccination may impact Fc-mediated protection, with trends of

higher functional antibody responses induced by third trimester

SARS-CoV-2 vaccination, followed by first then second trimester

vaccination (346).

Chronic infection may further influence pregnancy-induced

differences in Fc capacity. For example, pregnancy during HIV-1
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infection creates a complex environment of opposing

immunomodulatory mechanisms (347). Pregnancy-driven

immunosuppression competes with HIV-1 associated chronic

inflammation thereby driving a unique IgG Fc glycan profile of

decreased galactosylation in pregnant women living with HIV-1

(WLWH) (348). Influenza vaccine-induced Fc effector functions are

variably regulated in pregnant WLWH compared to HIV-1-

uninfected women (349). Following vaccination, ADCP boosting

was evident in otherwise healthy pregnant women but not in

pregnant WLWH; ADCD was boosted in both groups but was

significantly higher in uninfected women (349). Altogether, these

differences in Fc effector capacities may point to baseline IgG

glycosylation impacting post-vaccination antigen-specific Fc

glycoforms, and therefore, effector functions. These studies

suggest there may be value in further tailoring vaccination

strategies for vulnerable populations who fall into more than one

risk group given the marked effect of highly nuanced baseline

inflammation on Fc effector functions.
Neonates and infants

The health of neonates and infants is inextricably linked to that

of the mother (350–353). As such, pregnancy is a unique window

during which maternal and infant health can simultaneously be

benefitted by a single course of vaccination (354–357). Placental

transfer of maternal antibodies is a key mechanism of neonate

protection against numerous infectious diseases, including RSV,

influenza, pertussis, measles, and tetanus (358, 359). However,

studies of HIV-1, malaria, and SARS-CoV-2 infected pregnant

women have revealed that placental transfer of related and

unrelated antibodies can be compromised by maternal infection

(360–364). This outcome may partially explain the increased

childhood disease susceptibility of HIV-1 exposed but uninfected

infants as well as infants affected by placental malaria (365, 366).

Critically, altered IgG subclass distribution and Fc glycosylation has

been implicated in the mechanism of impaired placental transfer of

antibodies generated both during and prior to infection (361, 367).

In healthy pregnant women, digalactosylated Fc functional

antibodies are preferentially transferred during the gestational

period in contrast to antibodies lacking the capacity to bind

FcRn, FcgRIIa, and FcgRIIIa (358, 359). Most notably, there is

preferential transfer of ADNKA capacity to neonates correlating

with enhanced binding of digalactosylated IgG1 to FcRn and

FcgRIIIa (358). In contrast, ADCP functionality is retained by the

mother (358). Furthermore, equivalent antibody Fc functional

capacity has been demonstrated in preterm and full term

neonates with robust early transfer of ADNKA capacity (359).

This early selective sieving of Fc functional capacity, ADNKA,

likely points to an evolutionary advantage of increased Fc

capacity in early life (358, 359). Indeed, placentally transferred

NK cell activating antibodies drive elevated cytokine release by

umbilical cord NK cells compared to adult NK cells (358).

The nature of this placental sieve has implications for the

rational design and timing of vaccines administered to pregnant

women. For example, vaccine regimens that elicit highly
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galactosylated antibodies with enhanced affinity for FcRn may be

more efficiently transferred and, therefore, afford elevated neonate

protection. Indeed, increased placental transfer efficacy of Fc

functional SARS-CoV-2 specific antibodies has been observed

following mRNA-1273 or BN162b2 lipid nanoparticle mRNA

vaccination compared to Ad26.COV2.S adenoviral vector

vaccination, with further subtle increases elicited by mRNA-1273

compared to BN162b2 vaccination (346). This suggests that vaccine

formulation may substantially alter the functional capacity of

antibodies transferred to neonates. On the other hand, maternal

antibodies may limit humoral responses in infants following

vaccination (368). Although the mechanism remains contested,

epitope masking and inhibitory FcgRIIb engagement by maternal

antibodies may contribute to this outcome (369, 370). Given that

different epitopes drive differential Fc functions (371), immunogen

selection for maternal vaccines should also consider the possible

impacts on early childhood vaccine responses.
Children

Children under five are highly susceptible to infectious diseases.

Numerous cellular and humoral deficiencies define the immature

immune system, however, altered antibody class switching (220,

221) and IgG glycosylation (372, 373) confer young children unique

Fc effector profiles. Rational vaccine design which exploits the

elevated Fc capacity (37, 324, 374, 375) of childhood humoral

immunity may promote optimised protection.

While age-related variation in IgG glycosylation is well-

recognised (309, 335, 376), detailed data from paediatric cohorts

is limited. Nevertheless, evidence exists for variation across

childhood and adolescence, with an overall trend of decreased

inflammatory agalactosylation with increasing age (372, 373, 376–

378). However, further dissection of IgG glycosylation patterns in

the first two years of life has revealed increased anti-inflammatory

IgG glycoforms with increased digalactosylation, sialyation, and

core fucosylation in children aged 9 months to 2 years compared to

older children up to 5 years. Between ages 2 to 5 years, IgG

glycosylation shifts to a more pro-inflammatory profile of

increased agalactosylation and reduced sialyation, before the

production of increasingly galactosylated IgG commences (372,

373). Notably, IgG glycosylation patterns have been identified as a

potential biomarker of recurrent respiratory infections (RRI) in

childhood (372). Interestingly, increased anti-inflammatory

digalactosylated and sialyated IgG were enriched in the RRI

group—suggesting that decreased effector potency of these

ant ibodies could leave chi ldren more vulnerable to

repeated infections.

Increased class switching to more mature IgG2 and IgG4

isotypes gradually occurs from infancy to adolescence (220). As

such, the baseline production of increased levels of IgG1 and IgG3

in young children under 3 years may be advantageous for the

generation of highly Fc functional antibodies by early childhood

vaccines. Indeed, children develop elevated IgG1 titres and

enhanced Fc functional responses, including ADNP and ADCD,

as well as FcgRIIIa binding upon SARS-CoV-2 vaccination in
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comparison to adults (324). This increase in Fc functional

capacity was especially evident when children were administered

the full adult dose of Moderna mRNA-1273 vaccine, rather than the

reduced paediatric dose (324), underscoring the impact of vaccine

dosage on Fc functions.

Robust Fc effector functions in antiretroviral therapy-naïve

HIV-1 infected children have also been observed (379, 380), and

are especially elevated in paediatric HIV-1 non-progressors (PNP;

i.e., children who maintain normal CD4+ T cell counts despite

ongoing high viral replication in the absence of antiretroviral

therapy) compared to in progressors (380). ADNKA, likely driven

by robust IgG1 responses, is consistently observed across cohorts

(379, 380), and, along with decreased Fc fucosylation, may

contribute to disease control in PNP (380). Notably, coordination

of Fc effector responses (379) and increased antigen-specific IgG Fc

sialylation (380) were positively associated with neutralisation

breadth, suggesting dual benefit to vaccines targeting the

generation of Fc functional antibodies.
Elderly individuals

The ageing humoral immune system is characterised by

immunosenescence induced by both chronic low-grade

inflammation and prior antigen exposure leading to reduced

antibody titres and largely diminished vaccine responses (327,

334, 381). The resultant upregulation of inflammatory cytokines

such as IL-6, IL-1b, tumour necrosis factor a, as well as decreased
anti-inflammatory cytokines such as IL-10, may contribute to

impairments across a broad range of humoral immune system

features, including B cell activation, antibody class switching,

affinity maturation, and Fc glycosylation (300, 382–384). Reduced

expression of AID, associated with transcription factor E47

downregulation, is suggested to dampen capacity for CSR, as

reflected by the diminished pool of switched memory B cells in

elderly individuals (385). Consequently, class switching to

cytophilic IgG1 and IgG3, may be diminished in elderly

individuals (237, 238, 386, 387). Increased age is also associated

with increased baseline abundance of pro-inflammatory

agalactosylated and asialylated IgG (300, 309, 335, 376) which

may contribute to generation of dampened or uncoordinated Fc

effector functions upon vaccination. Overall, these antibody

impairments likely underpin the decreased FcgR binding and Fc

effector functions observed in elderly individuals (37, 388).

Beyond the current approach of early and additional vaccine

doses for elderly individuals, a combination of more targeted

strategies may benefit this population (13, 15, 389). In the case of

influenza, poor vaccine immunogenicity in the elderly may be

partially overcome by high-dose vaccination (390, 391) and

inclusion of adjuvants such as MF59 (391, 392) and AS03 (393).

However, this population may further benefit from vaccines

specifically formulated to elicit potent Fc effector functions upon

a background of dysregulated IgG class switching and Fc

glycosylation. Although MF59 selectively boosts IgG3 titres and

may bolster generation of Fc functional antibodies (394) when class
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switching is impaired, eliciting Fc glycosylation patterns that

support enhanced FcgR engagement may further improve vaccine

effectiveness. Notably, the influence of age upon FcgR engagement

and effector functions following SARS-CoV-2 vaccination is

conflicting, with studies reporting positive (395), negative (396),

and no association (50). However, these trends were determined via

small to moderately sized patient cohorts, underscoring the need for

larger clinical trials to adequately address this critical question.
Patients with chronic comorbidities

Many non-communicable diseases associated with chronic low-

grade inflammation have increased in prevalence in recent decades,

particularly in high- and middle-income countries (397–399). This

phenomenon may reduce effectiveness of vaccines which are

typically less immunogenic in patients experiencing chronic

inflammation as a result of malignancies, autoimmune diseases,

and obesity. Furthermore, both immunosuppressant drugs—used

to mitigate symptoms of inflammatory autoimmune diseases and

manage solid organ transplants (400)—as well as the chemotherapy

and radiation regimens—used to treat malignancies—may render

vaccines less immunogenic.

Rheumatoid arthritis, systemic lupus erythematous, renal

disease, and inflammatory bowel disease as well as other chronic

conditions associated with dysregulated inflammation, such as

obesity and type 2 diabetes, contribute substantially to the global

burden of comorbidities that reduce vaccine effectiveness (401).

Most notably, research investigating vaccine responses in obese

patients has revealed a proinflammatory cytokine milieu associated

with a dysregulated humoral response, similar to that observed in

elderly individuals (330, 332, 402, 403). Impaired humoral

immunity upon vaccination is most readily evidenced by reduced

antibody titres and neutralisation capacity (311, 404, 405).

However, Fc effector capacity in these populations may also be

highly dysregulated, largely driven by aberrant IgG Fc glycosylation

underpinned by increased IgG Fc agalactosylation, asialyation, and

afucosylation (299, 302).

Large networks of genes which regulate Fc glycosylation are

pleiotropic with inflammatory diseases such as rheumatoid arthritis

and inflammatory bowel disease (406). However, it has long been

appreciated that increased pro-inflammatory agalactosylation is a

biomarker of disease onset and severity for many of these conditions

(301, 302, 377). Increased proinflammatory IgG glycosylation has

also been defined for a variety of malignancies, including multiple

myeloma (407), colorectal cancer (CRC) (408, 409), thyroid cancer

(335), and ovarian cancer (410). Notably, in a study of patients

receiving allogeneic hematopoietic stem cell transplantation, post-

procedural recipient IgG glycosylation more closely resembled their

pre-transplantation profiles than that of donor IgG glycosylation

(411). This reinforces the predominant role for the B cell

microenvironment in driving IgG glycosylation patterns and

suggests that the persistence of patient-specific immunomodulation

such as hormone dysregulation, CD4+ T cell perturbances, and

inflammatory cytokines may have long-term consequences for the

vaccination of patients with haematological malignancies.
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Although likely dysregulated, Fc functions appear to be better

preserved than neutralisation capacity in immunosuppressed

populations. In a study of SARS-CoV-2 vaccination of cancer

patients, anti-spike antibody titres were generally concordant with

neutralising titres against the wild-type virus (405). However, this

trend was not observed against variants of concern where over half

of individuals generating anti-spike antibody responses were unable

to neutralise SARS-CoV-2 variants (405). Although alterations to

IgG Fc glycosylation and effector functions are heavily studied in

the context of tumour clearance and cancer progression and

survival (269, 412, 413), the effect of these malignancy-induced

modifications upon immune responses to vaccination and infection

remains understudied.

As IgG Fc glycosylation contributes substantially to Fc effector

function potency, designing vaccines that counter perturbed IgG Fc

glycosylation patterns and elicit coordinated Fc functions may

enhance protective responses in populations experiencing

dysregulated inflammation. Indeed, pro-inflammatory IgG glycan

abundance has been associated with impaired influenza (414) and

SARS-CoV-2 (395) vaccination. Increased baseline level of

agalactosylated total IgG was a signature of influenza vaccine

non-responders, while elevated IgG galactose abundance

predicted robust vaccine response (414). Similarly, elevated

baseline abundance of anti-inflammatory galactosylated,

sialylated, and fucosylated IgG1 correlated with higher anti-

SARS-CoV-2 IgG titres following vaccination (395).

Finally, dysbiosis of the gut microbiome is frequent in obese

individuals, as well as patients with malignancies and chronic

inflammatory conditions (401, 415–421). There is an established

role for the gut microbiome in regulating antibody titres following

vaccination (315, 316, 422). Hence, it is plausible that gut dysbiosis

may also impair Fc effector functions by modulating inflammatory

cytokine levels and subsequently influencing IgG Fc glycosylation

and downstream effector functions.
Modulation of Fc effector functions in
healthy adult populations

Distinct groups of healthy individuals may also benefit from

population-based vaccination strategies. Biological sex-specific

differences can impact both antibody quantity and quality, with

age-dependent variation in glycosylation patterns (423) likely

influencing Fc functional responses (37). Immunogenetics further

impact functional antibody responses via allotype associated

variations in IgG subclass distribution and FcgR polymorphisms

that alter affinity for IgG. Finally, the gut microbiome within

healthy individuals may also influence Fc functions by promoting

inflammatory processes that modulate IgG glycosylation.
Sex-based differences in vaccine responses

Across age groups, females typically generate more robust

humoral responses to many vaccines than do males, with higher

antibody titres observed following vaccination against influenza,
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HBV, yellow fever virus, dengue virus, and measles, mumps and

rubella (424–426). However, females may generate a more

functional antibody response with increased class switching to

IgG3 directing more robust Fc effector functions against some

pathogens (427) while males may generate increased titres of

poorly functional IgG4 (428). Furthermore, young to middle-aged

women typically have increased abundance of anti-inflammatory

galactosylated IgG than their male counterparts. However, elderly

women have increased abundance of agalactosylated IgG—a

phenomenon associated with onset of menopause, likely owing to

reduced estrogen levels (307, 309, 429). In addition, females

typically have increased phagocytic effector cell frequencies while

males have higher NK cell counts but with decreased effector

capacity compared to females (430, 431). Differences in IgG Fc

glycosylation and innate cell frequencies result in nuanced

differences in effector functions between the sexes. For example,

males typically generate more robust ADCC in the context of

measles (432) or HIV-1 infection (433). As such, men and

women may benefit differently from vaccination regimens that

aim to either elevate antibody titre or enhance FcgR engagement.

Males may benefit from inclusion of adjuvants that enhance class

switching to IgG3 (e.g. MF59). On the other hand, given heightened

vaccine immunogenicity and reactogenicity, females may benefit

from reduced dose regimens that elicit more coordinated Fc

functions and fewer adverse effects.
Immunogenetics

Polymorphisms within IGHG and FCGR genes, as well as FCGR

copy number variations, are associated with differential responses to

infection and vaccination for a range of pathogens (Supplementary

Table). The potential for IgG allotypes to modulate Fc functions is

largely driven by the altered subclass distributions associated with

different haplotypes, and to a much lesser extent, the altered

FcgRIIIa affinity of specific allotypes, as previously discussed

(255). On the other hand, FcgR polymorphisms influence Fc

functions via the increased affinity of FcgRIIa-131H and FcgRIIIa-
158V for IgG subclasses (60).

Epistatic interaction of FcgRIIIa polymorphisms and IgG1

allotypes has been observed in HSV-1 infection such that, as a

result of enhanced ADCC, the high affinity FcgRIIIa-158V/V
genotype was only associated with asymptomatic infection in

individuals homozygous for the G1m3 IgG1 allotype (434),

typically linked to reduced IgG1 responses against viral infections.

This protective effect may not have been observed in G1m17

homozygotes given the increased affinity of G1m17 IgG1 for the

HSV-1 decoy FcgR compared to the antithetical G1m3 allotype

(435), possibly resulting in increased clearance of G1m17 IgG1.

Notably, whether high or low affinity FcgR alleles confer a protective

or deleterious effect is likely a disease specific phenomenon, which is

presented in detail within the Supplementary Table.

In addition, the influence of human leukocyte antigen (HLA)

alleles has long been understood to impact vaccine outcomes. Given

the ethnic clustering of HLA allomorphs, different populations

demonstrate varying levels of vaccine-induced protection and
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disease susceptibility (312, 436–440). Although not directly

responsible for shaping the functional antibody response, certain

HLA allomorphs have been associated with increased antibody

titres against SARS-CoV-2 (438), and the potential interaction of

HLA, immunoglobulin kappa chain, IgG constant region and FcgR
polymorphisms cannot be ignored in the design of population-

based vaccines informed by immunogenetic features (434, 441–

443). The interplay of these genetic polymorphisms is of particular

importance in Indigenous populations who are frequently

underrepresented in vaccine studies (8, 9) and whose unique

immunogenetic backgrounds may underlie differential vaccine

responses and infection susceptibility (250, 437, 439).

The potential value of considering immunogenetic influences

upon vaccine responses has recently emerged through comparisons

of analogous HIV-1 vaccine trial efficacies derived from different

study populations. The RV144 trial, conducted in Thailand with

participants of predominantly South-East Asian ethnicity,

demonstrated 31.2% efficacy (81). When the RV144-inspired

HVTN702 follow up trial was conducted in South Africa,

modified to reflect the dominant circulating HIV-1 subtype, the

vaccine showed no efficacy (444). Subsequent computational

analyses indicated immunogenetics may have contributed to

variable protective outcomes between the trials (445, 446). Host

immunogenetic diversity, particularly within the IGHG locus varies

substantially between the Thai and South African populations

(447). Importantly, given IGHG, FCGR, and HLA genotypes show

distinct geographic clustering (248, 447, 448), the possibility exists

for their influence to be modelled into future population-based

vaccines. Figure 6 illustrates the geographic clustering of dominant

IgG haplotypes.
Vaccination strategies modulate Fc
effector functions

There is growing consensus that precise modulation of Fc

effector functions is a valuable goal of future vaccines and may be

key to optimising vaccine responses in certain populations (445,

450). Dysregulated total IgG subclass ratios and global IgG

glycosylation are not altered following vaccination (210, 308,

414). However, antigen-specific IgG subclass distribution and

antigen-specific IgG glycosylation—key modulators of Fc effector

functions—are tuneable via vaccination (210, 211). Furthermore,

vaccination can override differences in baseline IgG glycosylation

observed between healthy populations from distinct geographic

locations (210, 308). As such, these antibody features are rational

targets of vaccines designed to boost Fc effector functions in

vulnerable populations.

However, given the challenge of eliciting precisely selected Fc

functions, most data indicating vaccination-induced differences in

functional antibody responses are derived from serendipitous

observations following variations to immunogen, vaccine

platform, adjuvant, dosage, and administration route. As such,

defining the mechanisms of modulation along with strategies that

enable fine-tuning of Fc effector functions via vaccination is of high

priority for the precision vaccination field.
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Immunogen selection

Although Fc effector functions can theoretically be initiated upon

binding to any epitope, certain epitopes can drive more potent effector

functions than others. The influence of Fab specificity upon Fc-FcR

interactions and effector functions has recently been demonstrated in

studies of influenza, HIV-1, and Ebola (49, 54, 55, 371). Emerging data

has also implicated Fab-FcgR interactions in ADCC potency (451). In

addition, antigen valency may impact Fc functions in a Fab-specific

manner given that FcgR activation requires dimerisation facilitated by

cooperation between at least two antibodies. Furthermore, IgG is

glycosylated in an antigen-specific manner (70, 213). Different

antigens from the same pathogen (210) or even the same protein

(452), may induce differential IgG glycosylation which may impact Fc

effector functions. As such, carefully informed choice of immunogen is

critical to rational vaccine design.

However, immunogen-specific modulation of Fc functions is

largely underpinned by the conformational accessibility of different

epitopes as both Fab-antigen and Fc-FcR interactions must be

simultaneously accommodated. Indeed, angle of approach of

certain Fab-antigen interactions may result in steric hinderance of

Fc-FcR engagement (56) or allosteric changes to antibody

conformation upon binding which promote or impair FcR

interactions (453, 454). Epitope proximity to the viral envelope or

target cell membrane has been suggested to influence Fc functions

(57, 455, 456). However, studies of ADCP in this context are

conflicting, with reports of both enhanced (455) and impaired

(456) potency with increasing distance from target cells.

Nevertheless, studies of mAbs against the Ebola virus surface

glycoprotein indicated that antibodies against epitopes farthest

from viral envelope were the most polyfunctional (57, 457). These

findings resonate with observations across of a variety of antigens

that IgG1 and IgG3 hinge length polymorphisms contribute to

ADCC and ADCP potency, with increasing hinge length promoting

enhanced ADCP (228, 232, 233, 458) but decreased ADCC (255).
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In a study of influenza A mAbs, anti-HA stalk-specific

antibodies induced ADCC while those targeting the head region

antibodies did not (49). However, the authors later demonstrated

that this observation was not a broadly generalisable rule and that

other anti-HA head antibodies mediate protective Fc functions

(154). This suggests that the precise antibody footprint may have

a greater influence over ADCC induction than the general epitope

location. Nevertheless, a separate study found that across mouse

and human mAbs, as well as polyclonal human IgG, anti-HA head

antibodies did not induce ADCC and further inhibited anti-stalk

mAb directed ADCC (54). Consequently, suggestions have been

posited to increase Fc effector function via immunogen design. For

example, shielding the immunodominant HA head via

glycosylation may bias responses towards the stalk and enhance

Fc functional responses (459).
Vaccine platform

Recent innovations in materials science have expanded licenced

vaccine platform options beyond traditional live attenuated,

inactivated, recombinant, and viral vector vaccines to include a

range of nanoparticle vaccines (28). Of note, the value of lipid

nanoparticle mRNA vaccines was demonstrated by their increased

effectiveness in comparison to traditional platforms during the

COVID-19 pandemic (39, 460). Unique features of each vaccine

platform enable varied interactions with the immune system. As

such, delivery of the same antigen via different modalities can elicit

markedly different responses, including distinct changes to IgG

glycosylation and downstream antibody effector functions, which

impact vaccine efficacy.

Previous studies have identified an increased abundance of

vaccine-specific galactosylated and sialylated IgG following

tetanus toxoid and inactivated influenza and vaccination (308,

452). However, comparison of different SARS-CoV-2 vaccines
FIGURE 6

Geographic distribution of dominant IgG haplotypes. IgG allotypes are inherited as haplotype blocks and thus show geographic clustering within
ethnicities. Data compiled from (449).
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regimens has allowed for more granular dissection of the impacts of

vaccine formulation upon IgG glycosylation (212). Pfizer BioNTech

BNT162b2 SARS-CoV-2 mRNA vaccination induces an initial

transient pattern of increased spike-specific IgG1 Fc

galactosylation and sialylation but decreased fucosylation (212,

461). Over time, antigen-specific IgG1 fucosylation levels

gradually increased to above that of total IgG1, while

galactosylation and sialylation levels gradually decreased, with

levels of galactosylated vaccine-specific IgG1 falling below that of

total IgG1 by day 190 post-vaccination (212). On the other hand,

vaccination with AstraZeneca SARS-CoV-2 AZD1222 adenoviral

vector produced a less pronounced decrease in fucosylation

immediately post-vaccination, falling to only 95% as compared to

the 80% fucosylation induced by BNT162b2 vaccination (212).

Similarly, the increase in IgG1 Fc galactosylation was less

pronounced after one dose of AZD1222 than BNT162b2

vaccination (212). These kinetics of IgG glycosylation following

SARS-CoV-2 mRNA vaccination are in line with previous studies

reporting increased antigen-specific IgG fuscoylation in the weeks

following vaccination (395, 462), which may promote coordinated

Fc effector functions by limiting inflammation (462).

The mechanisms by which varied vaccination platforms induce

distinct Fc functions is poorly understood. However, nanomaterial

vaccine platforms appear to offer a more defined strategy for

enhancing antibody polyfunctionality. Nanomaterials facilitate

highly ordered, repetitive antigen array that mimics the

immunogenicity of many live pathogens (28). Compared to

soluble antigen, the multivalent antigen presentation afforded by

nanomaterials drives swift trafficking and concentration within

germinal centres (463) as well as rapid B cell activation and

differentiation (464). This increased antigen deposition and

lymph node expansion facilitating improved B cell and Tfh cell

responses is associated with generation of higher antibody titres and

improved protection against influenza challenge (465, 466).

Nevertheless, although B cell stimuli are known to impact IgG

glycosylation (305), knowledge gaps remain in our understanding

of the mechanism by which nanomaterials alter IgG Fc

glycosylation and effector functions.

Recently, a nanomaterial-based HIV-1 vaccine was

demonstrated to induce potent Fc effector functions correlating

with unique antigen-specific antibody glycosylation (467). Q11—a

frequently utilised vaccine nanomaterial—was conjugated to gp120,

and co-administered with the Fc effector function enhancing

adjuvant STR8S-C. This combination stimulated increased

neutralisation and antibody breadth, as well as enhanced ADCC

and, to a lesser degree, ADCP in rabbits (467). These enhancements

to ADCC were correlated with changes in IgG Fc glycosylation

patterns, including increased fucosylation and monogalactosylation

of gp120-specific antibodies. Furthermore, similar glycan profiles

were observed for both mice and rabbits vaccinated with or without

the STR8S-C adjuvant. Altogether, these findings suggest that while

the impact of STR8S-C adjuvant on glycosylation could not be

excluded, the Q11 nanofiber itself was responsible for Fc

glycosylation modifications. Afucsoyation of IgG Fc glycans is one

of the best-defined divers of increased engagement with ADCC-

mediating FcgRIIIa (266–268). That the Q11-gp120 vaccine elicited
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robust ADCC regardless of overall fucose abundance (467) raises

important questions regarding the effects of specific combinations

of Fc glycans upon antibody-dependent effector functions and

warrants further investigation.

There is emerging appreciation of the role of Fc glycosylation in

enhancing neutralisation breadth and affinity maturation (380,

468). The Q11-gp120 vaccine induced both increased IgG Fc

sialyation and increased Fab binding breadth (467). Increased

sialyation has previously been shown to enhance HIV-1 antigen-

antibody complex deposition which in turn was associated with

increased neutralising antibody breadth, suggesting that specific Fc

glycosylation patterns may impact affinity maturation (380, 468). Fc

sialylated immune complexes have similarly been shown to enhance

affinity maturation and breadth of anti-influenza antibodies (452,

469). Mechanistically, this is explained by increased binding of

sialylated immune complexes to inhibitory FcgRIIb, thereby

elevating the B cell receptor threshold of activation (452, 469). As

such, it is possible that the improved binding breadth generated by

Q11-gp120 vaccination was a consequence of increased sialylation.

This would suggest dual benefit to precise modulation of IgG

glycosylation for the generation of robust polyfunctional antibody

responses: enhanced Fc effector functions and increased Fab

binding breadth.

The HIV-1 vaccine trials VAX003 and B003/IPCAVD-004/

HVTN 091 comprising vaccines based upon recombinant protein

subunit and adenoviral vector systems, respectively, induced

differently glycosylated IgG against gp120—a key HIV-1 viral

entry envelope glycoprotein (210). The VAX003 regimen induced

a more inflammatory response of decreased IgG sialylation and

galactosylation compared to that raised by B003/IPCAVD-004/

HVTN 091 participants (210). VAX003 consisted of 7 doses of

recombinant gp120 protein which resulted in reduced IgG3 titres

but enhanced IgG4 titres that inhibited both ADCC and ADCP,

potentially contributing to the inefficacy of VAX003 (82, 83). In

comparison, the moderately protective RV144 vaccine regimen

consisted of a canarypox vector prime followed by only two doses

of the same gp120 recombinant protein boost used in VAX003 and

was associated with increased antigen-specific IgG3, which was

identified as a correlated of protection (82, 83). Intriguingly, low

IgG4 levels, similar to that observed in RV144 vaccinees, were

observed after only two doses of VAX003, suggesting that repeated

protein boosting may have contributed to skewed IgG4 subclass

profile (82). On the other hand, the zoster vaccine, consisting of two

doses of adjuvanted recombinant glycoprotein E elicited improved

ADCC against herpes zoster compared to the live virus vaccine

(388). This suggests that muted functional responses are not

necessarily inherent to recombinant protein vaccine platforms

and are likely also influenced by number of doses.

Interestingly, repeated mRNA SARS-CoV-2 vaccination with

either Pfizer BioNTech BNT162b2 or Moderna mRNA-1273 has

been shown to induce elevated titres of noninflammatory IgG2 and

IgG4 against the viral spike protein (211, 212). Six months following

second dose vaccination, in a cohort of 29 individuals, IgG4

increased from 0.04% to 4.82%, which further increased to

19.27% six months following third dose vaccination. Increased

IgG4 correlated with increased avidity. However, in line with the
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non-inflammatory properties of IgG4, this shift in subclass

distribution hindered Fc effector functions, with significantly

decreased ADCP and ADCD observed following the third

compared to the second mRNA vaccine dose (211). In contrast,

this phenomenon of elevated IgG4 induction was not observed for

adenoviral based SARS-CoV-2 vaccines (212). However, primary

two-dose mRNA-1273 vaccination followed by Novavax NVX-

CoV2373 recombinant protein nanoparticle booster also

promoted elevated IgG4 titres in rhesus macaques (470). Whether

the increase in IgG4 and associated decrease in Fc effector functions

reduces protection or is beneficial to mitigating potential ADCC-

driven immunopathology following SARS-CoV-2 infection remains

to be determined (211).
Dosing quantity and schedule

The magnitude and timing of vaccine doses can also vastly

impact the quality and quantity of antibody responses. For example,

two highly similar vaccination platforms delivered in an altered

format and dose (Moderna mRNA-1273 and Pfizer BioNTech

BNT162b2 SARS-CoV-2 mRNA lipid nanoparticle vaccines) have

recently been shown to yield differential functional responses (471).

Compared to BNT162b2, mRNA-1273 vaccination induced higher

levels of ADNP and ADNKA (471). It has been suggested that the

increased dosing interval of the mRNA-1273 vaccine regimen

allowed for a more coordinated functional response to develop

(471). Likewise, a subsequent study observed that an increased

BNT162b2 dosing interval was also associated with enhanced

vaccine immunogenicity (340). However, it is possible that the

greater mRNA-1273 antigen dose or lipid nanoparticle formulation

and mRNA modifications specific to each vaccine may additionally

contribute to generation of superior Fc effector capacities via

mRNA-1273 vaccination. Nevertheless, this study highlights the

potential for fine-tuning Fc effector functions via precision

vaccination strategies.

Characterisation of the impact of SARS-CoV-2 adenoviral and

protein subunit vaccine dosage has provided more detailed evidence

that the quality and durability of antibody Fc effector functions is

regulated by antigen quantity per exposure. However, these trends

do not appear consistent across different vaccine platforms (78,

204). A nonhuman primate study of the dose-dependent effects of

Johnson & Johnson Ad26.CoV2.S adenoviral vector vaccination

observed that increased FcgR receptor binding and Fc functional

antibody levels, trended strongly with increased dosage, whereas

neutralising antibody titres and T cell responses were minimally

affected (204). In contrast, a second nonhuman primate study using

the Novavax NVX-CoV2373 recombinant SARS-CoV-2 spike

protein nanoparticle vaccine with Matrix M adjuvant

demonstrated that increased ADNP and ADNKA were associated

with the administration of a lower antigen dose (78). Importantly,

lower ADCP, ADNP, and ADNKA were observed within single

dose groups as compared to their two dose counterparts (78). As

such, a single NVX-CoV2373 dose provided only partial protection,

in contrast to the near-complete protection of two doses associated

with marked maturation of Fc effector functions. In addition,
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although long priming of germinal centres with sustained antigen

delivery in escalating dose vaccination strategies has been shown to

improve antibody titres and affinity (472, 473), investigation into

the impact of escalating dosage upon Fc effector functions

is warranted.

A systems serology analysis identified that delayed fractional

dosing of the RTS,S/AS01 vaccine in controlled human malaria

infection models increased Fc polyfunctionality (69). Qualitative

enhancement of both the Fab and Fc in vaccinees was underpinned

by increased ADCP, ADNP, and antibody-dependent dendritic cell

phagocytosis (ADDCP), particularly against subdominant epitopes,

and correlated with increased Fab region avidity (69). Importantly,

this malaria vaccine regimen maintained the immunodominant

NANP6 region-specific ADCP and ADNKA (69) which were

previously defined as correlates of protection for the standard

vaccination schedule (92). However, a separate study associated

delayed fractional dosing of the RTS,S/AS01 regimen with increased

IgG4 titres that inhibited phagocytosis (474). Although delayed

fractional dosing increased vaccine efficacy in malaria naïve adults

(475), the efficacy of this regimen in malaria exposed populations

for whom the vaccine is most relevant remains controversial (476).

Nevertheless, the substantially different Fc functions induced by

different dosage and timing of the RTS,S/AS01 vaccine (69) reiterate

the importance of both antigen quantity and dosing interval in

driving an optimised Fc response.

In addition to the effects of antigen dosage within a single

vaccine regimen, prior antigen exposure as a result of infection or

vaccination may further influence the magnitude, breadth, and

function of post-vaccination antibody responses via several

mechanisms (477). Prior antigen exposure can induce immune

imprinting which can restrict de novo immune responses to

antigens related to those previously encountered (478).

Furthermore, increased pre-vaccination antibody titres may drive

accelerated clearance of immune complexes and a decreased

window of vaccine antigen presentation (478). However, the

presence of pre-existing antibodies can also be beneficial.

Influenza vaccination studies have observed that elevated baseline

FcgRIIb binding, along with elevated pre-existing IgG2 and

decreased pre-existing IgM levels, are associated with increased

neutralisation breadth (479). It has been suggested that this may

result from decreased immune complex clearance owing to poor

FcgR engagement by IgG2, as well as enhanced antigen presentation

on follicular dendritic cells via FcgRIIb-binding antibodies. In

addition, engagement with inhibitory FcgRIIb on B cells may

increase the threshold of activation, thereby driving selection of

higher affinity antibodies (480).

Finally, in early childhood vaccines, the timing of initial

vaccination may play a role in functional antibody durability. The

long-term functional capacity of measles-specific antibodies

appeared to be more durable if children were vaccinated at 14

months compared to those vaccination between 6-8 months (160).

Despite similar functional antibody responses in both groups one-

year post-vaccination, children vaccinated later in life had more

robust anti-measles functional responses at three years post-

vaccination (160). No variation in isotypes or IgG subclasses were

observed between age groups, suggesting that other mechanisms of
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Fc modulation may have contributed to functional differences. For

example, variable B cell programming during different stages of

early childhood may have led to enduring differences in IgG

glycosylation patterns (160), and should be considered when

designing childhood immunisation schedules. Alternatively,

variable epitope selection driven by waning interference from

maternal antibodies with increasing age (369, 370) may have

contributed to differential Fc functional responses.
Adjuvants

A wide range of adjuvants that enhance vaccine

immunogenicity—via diverse mechanisms leading to distinct

immunological profiles—are approved for human use or in trial

(481). This may be highly advantageous for the design of precision

vaccines tailored to the unique requirements of distinct

immunologically vulnerable populations. Most notably, emulsion

adjuvants, such as MF59 and AS03, as well as toll-like receptor

(TLR) agonist adjuvants, particularly when used in combination,

have been advantageous for generating polyfunctional antibodies

and further boosting Fc functional capacity of nanoparticle-based

vaccines (467, 482, 483). Nevertheless, comprehensive studies that

systematically compare the impact of a spectrum of adjuvants upon

Fc functions are lacking. However, systems serology has reiterated

the value of TLR agonist-based and emulsion adjuvants for

enhancing Fc effector functions (484, 485).

Various TLR agonists that drive differential IgG glycosylation

are employed as adjuvants. Macaque studies of simian

immunodeficiency virus (SIV) vaccination have shown that

distinct TLR agonist adjuvant combinations induce unique

antibody Fc functions (486). Further studies have defined a role

for differential Fc glycosylation in the modulation of Fc functions by

TLR agonists (487). Although different adjuvants induced

equivalent protective antibody responses of similar magnitudes,

quantitative antibody differences were evident between the groups.

A TLR4 plus TLR7 agonist (glucopyranosyl lipid plus imiquimod)

adjuvant system stimulated increased ADNP and ADCC, while the

TLR4 agonist plus the saponin-derivative adjuvant QS21 was

associated with ADCD and anti-inflammatory digalactosylated

monosialylated IgG. Although the healthy macaques were

equivalently protected, differentially induced Fc effector functions

may be of value to vulnerable human vaccinees experiencing

dysregulated baseline inflammation. Dissecting which qualitative

antibody features may have the greatest protective capacity in this

context remains to be determined.

MF59—a squalene oil and surfactant adjuvant—boosts CD4+ T

cell and Tfh cell activity to induce robust germinal centre responses

(488). This leads to long-lived plasma and memory B cells, as well B

cell repertoire expansion, resulting in elevated antibody titres.

Importantly, however, MF59 may also support class switching to

IgG in a CD4+ T cell-independent manner (489). Consequently,

MF59 is a useful adjuvant for boosting responses in individuals

experiencing reduced vaccine immunogenicity and has been

successfully trialled in influenza vaccines for the elderly (490,

491), with especially pronounced benefits for elderly individuals
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with chronic comorbidities (492). Importantly, MF59 also induces a

highly functional antibody response with selective induction of

IgG3, resulting in pronounced boosting of Fc effector functions

(394). An H5N1 avian influenza human vaccine immunogenicity

trial revealed that participants adjuvanted with MF59 had elevated

IgG1 and IgG3 titres, as well as ADNP and ADCD, in comparison

to those boosted with alum (394). As such, MF59 may override the

unfavourable subclass biases or impaired class switching

experienced by certain vulnerable populations.

Non-human primate studies of MF59 compared to alum

adjuvanted HIV-1 vaccines further point to the ability of adjuvant

selection to regulate IgG glycosylation and Fc effector functions

(493). A comparison of SIV vaccination with gp120, adjuvanted

with either MF59 or alum indicated that although MF59 induced

the expected higher titre antibody responses, the alum adjuvanted

vaccine was associated with increased protection (493). The alum

adjuvant induced decreased galactosylated IgG which was suggested

to drive a more coordinated polyfunctional antibody response

compared to MF59. On the other hand, MF59 induced elevated

titres of anti-inflammatory sialylated gp120 antibodies. Indeed,

observations in human trials of H5N1 vaccines suggested MF59

associated improvements to ADCP were driven by titre rather than

Fc glycosylation modulation (394). In addition, the lack of

enhanced FcgRIIIa engagement and ADCC despite increased

IgG1 and IgG3, suggest an inability of MF59 to induce

coordinated Fc functional responses, possibly associated with

inhibitory Fc glycosylation (394).

In a second rhesus macaque study of a HIV-1 poxvirus vector

vaccine administered with either alum alone or a liposomal

monophosphoryl lipid A formulation plus alum (Army Liposome

Formulation (ALFA)), the ALFA adjuvanted regimen was

associated with enhanced ADNP and ADCP and 90% protection

against mucosal challenge compared to the 100% infection risk

observed for the alum adjuvanted regimen (494). The discrepancy

between these studies regarding the effects of alum upon Fc

functions may be related to use of different combinations of

antigen choice, vaccine platform, or dosage. As such, these

data underscore the need for detailed understanding of the

interactions between various vaccine modifications upon

polyfunctional antibodies.

Fortunately, a more detailed mechanistic understanding

regarding how adjuvants alter IgG subclass ratios and IgG

glycosylation is beginning to develop (288). Experimental water-

in-oil emulsion and Mycobacterium tuberculosis-derived adjuvants

appear to selectively program germinal centres to produce

differentially Fc-glycosylated antibodies. Mouse model studies of

the mechanism by which these adjuvants influence Fc functional

antibodies identified unique transcriptome alterations distinguished

by St6gal1 mRNA levels which control sialyltransferase expression

and, therefore, IgG Fc sialylation (288). The use of water-in-oil

emulsion adjuvants and mycobacterium cord factor created

germinal centre environments enriched in IL-6 which

programmed Tfh cells to stimulate germinal centre B cells into

producing IgG with reduced IgG Fc sialylation (288). Given the

inflammatory properties of reduced Fc sialylation, inclusion of these

adjuvants may support rational vaccine design targeting antibodies
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with enhanced effector functions. In addition, priming viral

immunisation schedules with the unrelated TB Bacillus Calmette–

Guérin (BCG) vaccine modulates production of IL-6, as well as

other pro-inflammatory cytokines, upon target antigen stimulation

(495–498). This suggests a possible role for BCG vaccination in the

modulation of IgG Fc glycosylation, and consequently, regulation of

Fc effector functions.
Route of administration

Comparison of systemic versus mucosal vaccination is

important for the many pathogens entering via the mucosa, such

as HIV-1 and respiratory viruses. For example, for respiratory

viruses, vaccines administered at the anatomical site of entry (i.e.,

intranasally) may elicit more biologically relevant, and therefore,

protective, responses. However, traditionally, most vaccines are

delivered intramuscularly, and historically have not facilitated

optimal humoral immune responses at mucosal surfaces for

influenza, SARS-CoV-2, and HIV-1 vaccination (499). Insights

into the regulation of Fc effector functions can be gleaned from

the comparison of intramuscular and aerosol delivery of a SIV

vaccine in nonhuman primates (500). These two delivery modes of

an otherwise identical vaccine mediated equivalent protection, but

distinct effector functions. Intramuscular delivery facilitated

enhanced IgG-driven ADCP, while aerosol delivery facilitated

enhanced ADNP bolstered by IgA activity. Although a

mechanism for this observation was not fully explored, shared

patterns of IgG galactosylation were associated with the different

modes of phagocytosis induced by each immunisation route,

highlighting key glycoforms of potential clinical relevance (500).

In addition, combining different routes of administration within

prime-boost vaccination regimens against infections where both

mucosal and systemic protection is required may prove beneficial.

Systems serology studies have shown COVID-19 convalescent

vaccinated individuals induce markedly altered Fc functions

compared to those exposed only to vaccination (501). Individuals

with hybrid immunity (SARS-CoV-2 infected individuals who then

received a single SARS-CoV-2 intramuscular vaccination) had

increased Fc functional capacity in comparison to otherwise

healthy individuals given two doses of intramuscular vaccination

despite antibody titres being comparable between the two groups

(501). This suggests combined aerosol and intramuscular vaccine

delivery may be beneficial for the generation of enhanced functional

antibody responses, potentially leading to improved protection.

Alternatively, FcRn-targeting vaccines with the capacity to

generate antibodies that are selectively transferred from systemic

circulation to mucosal sites may overcome the issues associated

with conflicting anatomical sites of vaccination and infection.
Computational strategies to inform
population-based vaccine design

Computational approaches can serve as safe, rapid, and cost-

effective hypothesis testing tools to screen through multiple
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complex antibody scenarios, integrating and assessing for the

influence of different geographic, genetic and clinical parameters

that are rarely accounted for in traditional vaccine efficacy trials.

The primary strength of these approaches is that they are able to

integrate large amounts of complex data to gain insight into

mechanisms that underpin variability in vaccine-induced

protection (34, 502). Computational methods in systems serology

can be divided into two groups, depending on the questions being

asked and the data that is available.

Data-driven modelling involves the application of statistical and

machine learning methods to high-throughput serology data to

uncover ‘signatures’ of antibody features associated with a vaccine

outcome (21). These methods can also be used to classify

subpopulations of vaccinees based on responses within a given

cohort (21). The advantage of data-driven approaches is that they

require little prior knowledge of mechanism, making them broadly

applicable to any data set of interest (21, 503). Data-driven

approaches applied to plasma samples from the RV144, VAX003,

HVTN204, and IPCAVD001 HIV vaccine trials identified antibody

signatures that defined each vaccine response uniquely (34). Further,

these approaches could also select for the humoral features (i.e., IgG

titres, IgG-FcgR engagement) and functional responses (i.e., ADCP)

most closely associated with protection against HIV infection (34).

Results highlighted the key antibody features and functions that may

be unique to each vaccine platform that was evaluated. Similarly,

computational approaches applied to convalescent plasma data from

COVID-19 patients revealed a signature of antibody features,

primarily driven by SARS-CoV-2 Spike-specific IgG3 titres, that

was associated with disease severity (504). Separate analysis of

SARS-CoV-2 convalescent plasma samples has noted key

differences in humoral profiles between children and elderly

patients, with mature IgG and IgA responses to SARS-CoV-2 Spike

2 and Nuclear Protein antigens being associated more with elderly

patients (37). These analysis reveals both the differences in immune

signatures between populations and a possible reason for the vastly

different clinical outcomes between them. In all, these findings

illustrate how data-driven computational approaches can classify

responses and identify subpopulations based on a distinct humoral

signature rather than any single antibody feature.

In contrast, mechanistic (“theory-driven”) modelling requires

knowledge of the underlying system and uses mathematical

relationships to link system components. This trade-off sacrifices

broad applicability for added depth of analysis. As these models

describe the underlying system in detail, they allow for the

investigation of the relationships between the components (e.g.,

antibodies and FcgR engagement) even at the individual level, thus

allowing for the incorporation of personalised parameters (e.g.,

clinical history or immunogenetics) to evaluate how one individual

may respond to a vaccine differently from another individual with

different personalised parameters (446). Further, it can be used to

evaluate not just how individual changes affect the system output

(e.g., vaccine-induced antibody responses), but how combinations

of changes to multiple system parameters (e.g., combinations of

different immunogenetics and/or clinical history) can result in

synergistic changes that are greater than the sum of

individual perturbations.
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Understanding these mechanistic details will be of high value for

future efforts to optimise precision vaccines. For example, IgG1

allotypes and FcgR polymorphisms have the potential to influence

protective responses via associated changes in antibody concentration

and binding to Fc receptors as previously discussed in the sections

above (60, 254). Mechanistic-modelling approaches have been applied

to unravel mechanisms by which IgG1 allotypes and Fc receptor

polymorphisms influence protective Fc effector functions following

HIV-1 vaccination (445). An ordinary differential equation model

illustrated how individuals with the G1m-1,3 IgG1 allotype would be

predicted to be more responsive to changes in IgG1 concentration

(titres) that arise from traditional boosting regimens, whereas G1m1

and G1m1,3 individuals may require a modification to IgG1-FcgR
affinity (via glycosylation) to improve Fc effector functions.

Furthermore, results suggested that Fc receptor engagement may be

unaffected by FcgR polymorphisms until IgG titres reached a very high

level, such as those that would be acquired with vaccine boosting. The

model was also able to test vaccine design hypotheses in simulated

populations of individuals with heterogeneous genetic compositions

and suggest specific interventions that would be most effective.

Combined, these insights provide specific target design criteria for

vaccines tailored to different populations.

Improvements to these computational methods combined with

broader application of the techniques will continue to increase the

utility of computational approaches for population-based vaccine

design. These approaches may directly inform current strategies,

such as vaccine boosting, by identifying which populations may

benefit most from a given intervention based on infection history,

host genetics, or other clinical parameters that influence antibody

levels. For vaccine parameters that are not yet modifiable,

computational approaches will help prioritize targets for future

modifications, overcoming challenges related to time and cost.

Potential pitfalls of Fc functional
antibody targeting vaccines

Eliciting potent Fc-functional responses via vaccination in

immunologically vulnerable populations has clear benefits for the

generation of durable, cross-reactive humoral protection. However,

the potential to induce adverse antibody responses should also be

acknowledged. Antibody-dependent enhancement (ADE) of

disease has been observed following administration of the

formalin inactivated RSV (505) and measles vaccines (506) as

well as tetravalent dengue vaccine (507, 508). Although these

vaccines did not specifically aim to elicit Fc functions, aberrant

FcgR engagement appears to have facilitated viral replication within

FcgR-expressing cells, and consequently, more severe disease

outcomes when vaccinees encountered the virus (61). In the case

of vaccines specifically designed to elicit potent Fc functions, careful

delineation of protective versus pathogenic Fc responses is required

to ensure vaccine safety (509).

Induction of beneficial Fc functional responses is a careful

balancing act between protective and pathogenic inflammation.

Downstream, Fc functions may trigger inflammatory cytokine

release which in turn regulates further recruitment and
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programming of innate and adaptive immune cells (510).

Notably, ADCC must balance viral clearance with immune

activation and, therefore, if poorly regulated, can lead to increased

morbidity and mortality during some diseases such as dengue fever

(507, 508). Although ADCC may contribute to SARS-CoV-2

control (511, 512), uncoordinated Fc functions are a feature of

COVID-19, contributing to excess FcgR mediated activation of the

innate immune system and consequent induction of cytokine

storms (513, 514). The requirement of precise induction of select

Fc effector functions has also been demonstrated in protection

against Salmonella Typhi (174). Following vaccination, ADNP and

antibody-dependent neutrophil oxidative burst (ADNOB) were

associated with vaccine-induced protection, whereas breakthrough

infection was associated with elevated ADCD, ADCP, and

ADNKA (174).

In addition, given the importance of Fc functions in protection

against infectious diseases, several pathogens have evolved Fc

evasion mechanisms (515–517). Notably, the decoy Fc receptors

expressed by members of the herpes virus family, such as

glycoproteins gp34 and gp68 in human cytomegalovirus (HCMV)

and gE and gI in HSV (518–520), may present unique challenges for

the development of vaccines aimed at eliciting protective Fc

functional antibodies. Strategies to promote preferential

engagement with host FcgRs rather than viral decoy receptors will

need to be devised. Several HSV-1 and HSV-2 vaccine candidates

have been trialled, but without sufficient efficacy for licensure (125,

521). Interestingly, individuals bearing different IgG1 allotypes have

been shown to differently engage HSV decoy Fc receptors (435),

suggesting possible differences in susceptibility to HSV infection.

Efficacy of HCMV candidate vaccines has similarly been low,

particularly in vulnerable target populations such as pregnant

women and transplant recipients (522). However, it is suggested

that generation of robust Fc effector functions may provide

protective responses against infection. As such, it is important to

consider that HCMV expresses similar decoy Fc receptors with

preferential binding by some human IgG1 allotypes (523, 524)

which may add further complexity to the design of vaccines

targeting robust FcgR engagement.
Conclusion and future perspectives

The success of current population-based vaccination strategies

which prioritise immunocompromised and vulnerable individuals

for early, additional, and/or high-dose vaccines has demonstrated

the value of selectively tailoring immunisation programmes (15,

390, 391). Furthermore, this precedent lays the groundwork for

what can be achieved, if more subtle immunological differences

between distinct populations are considered in vaccine

implementation and design.

Immunogenetic regulation, age- and disease-induced

differences in host inflammatory status have emerged as potent

modulators of vaccine-induced antibody responses (1)

(Figure 7). Importantly, given that antibody features are

similarly dysregulated across multiple vulnerable groups, there
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may be potential for broad implementation of population-based

vaccination strategies aimed at bolstering protective Fc

functions. For example, the elderly and individuals with

chronic inflammatory comorbidities share similar dysregulated

inflammatory Fc glycosylation states and impaired Fab affinity

maturation (328, 330, 341). Therefore, future studies should

consider focusing on the identification of appropriate

adjuvants or vaccine platforms that modulate antibody

glycosylation (288). In addition, strategies that increase

antigen-specific antibody binding to FcgRIIb may be beneficial,

given that FcgRIIb binding has been associated with enhanced

neutralisation breadth as a result of increased affinity maturation

(479). However, eliciting an optimally functional antibody

response will require systematic assessment of the ideal

combination of vaccine platform, adjuvant, dosage, and

administrative route (Figure 7). Unfortunately, few clinical
Frontiers in Immunology 23
trials, or even licenced vaccine platforms, have assessed

vulnerable groups for such nuanced variation. This highlights

the need for more extensive population-based vaccine

immunogenicity studies as well as standardisation of assays to

assess functional antibody responses.

It is also important to note that the precise antibody features

and effector functions constituting a coordinated Fc response are

highly pathogen-specific. For example, while afucosylated IgG and

excessive ADCC are detrimental for dengue fever (110, 111, 290,

292, 296), they are beneficial for HIV-1 and Tuberculosis (53, 79).

Therefore, elucidation of the antibody features that should be

targeted via vaccination will require detailed characterisation of

the protective mechanisms employed against each disease, before

being tailored to specific vulnerable populations. Despite the

undeniable complexity of eliciting protective, polyfunctional

antibodies, advances in vaccine formulation and administration
FIGURE 7

Considerations for the design of precision vaccines for vulnerable populations. Age, sex, immunogenetic, and baseline health variations within a
vaccinated population can impact vaccine effectiveness. This population variation influences immune features known to modulate vaccine
immunogenicity. However, precision vaccines designed to selectively boost the immune features that are impaired or dysregulated in vulnerable
populations may enhance vaccine-induced protection. Design of such population-based precision vaccine strategies will require elucidation of the
best combinations of antigen and adjuvant, vaccine formulation, and delivery mode in order to elicit an optimised polyfunctional antibody response
and promote increased protection response.
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may enable more precise modulation of IgG subclass ratios and Fc

glycosylation which mitigate dysregulated Fc functions in

vulnerable populations. However other target strategies should

not be overlooked, such as the optimisation of FcRn engagement

for vaccines which can be administered during pregnancy to

simultaneously protect mother and infant, as well as systemic

vaccines against mucosal pathogens.

Although personalised vaccination against infectious disease is

likely not imminently practical at the individual level, population-

based precision vaccination approaches appear feasible within the

current global health infrastructure (5, 22, 525). Ideally, next-

generation vaccination strategies will promote maximal responses

not only in at-risk populations, but also in healthy individuals

bearing genetic variations that necessitate differential boosting of

specific immune features. Such population-based vaccination

accounting for immunogenetic variation may be enabled by the

ethnic and, therefore, geographic clustering of key heritable genetic

features (313, 445, 446).

Finally, translating the observed differences between vaccine

regimens into actionable vaccine design improvements for

vulnerable populations remains a key public health priority. Indeed,

a generation of population-based vaccination strategies informed by

molecular mechanisms may enhance vaccine effectiveness against a

broad range of diseases. Critically, such strategies may enable not only

maximised protection of diverse, healthy individuals, but also

markedly improved protection of the globally increasing population

of immunologically vulnerable individuals.
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Reduced placental transfer of antibodies against a wide range of microbial and vaccine
antigens in HIV-infected women in Mozambique. Front Immunol (2021) 12:614246.
doi: 10.3389/fimmu.2021.614246

361. Martinez DR, Fong Y, Li SH, Yang F, Jennewein MF, Weiner JA, et al. Fc
characteristics mediate selective placental transfer of IgG in HIV-infected women. Cell
(2019) 178(1):190–201.e11. doi: 10.1016/j.cell.2019.05.046

362. Cumberland P, Shulman CE, Maple PA, Bulmer JN, Dorman EK, Kawuondo
K, et al. Maternal HIV infection and placental malaria reduce transplacental antibody
transfer and tetanus antibody levels in newborns in Kenya. J Infect Dis (2007) 196
(4):550–7. doi: 10.1086/519845

363. Brair ME, Brabin BJ, Milligan P, Maxwell S, Hart CA. Reduced transfer of
tetanus antibodies with placental malaria. Lancet (1994) 343(8891):208–9. doi: 10.1016/
S0140-6736(94)90991-1

364. Dolatshahi S, Butler AL, Siedner MJ, Ngonzi J, Edlow AG, Adong J, et al.
Altered maternal antibody profiles in women with human immunodeficiency virus
drive changes in transplacental antibody transfer. Clin Infect Dis (2022) 75(8):1359–69.
doi: 10.1093/cid/ciac156

365. Dauby N, Goetghebuer T, Kollmann TR, Levy J, Marchant A. Uninfected but
not unaffected: chronic maternal infections during pregnancy, fetal immunity, and
susceptibility to postnatal infections. Lancet Infect Dis (2012) 12(4):330–40. doi:
10.1016/S1473-3099(11)70341-3

366. Afran L, Garcia Knight M, Nduati E, Urban BC, Heyderman RS, Rowland-
Jones SL. HIV-Exposed uninfected children: a growing population with a vulnerable
immune system? Clin Exp Immunol (2014) 176(1):11–22. doi: 10.1111/cei.12251

367. Atyeo C, Pullen KM, Bordt EA, Fischinger S, Burke J, Michell A, et al.
Compromised SARS-CoV-2-specific placental antibody transfer. Cell (2021) 184
(3):628–42.e10. doi: 10.1016/j.cell.2020.12.027

368. Vono M, Eberhardt CS, Auderset F, Mastelic-Gavillet B, Lemeille S,
Christensen D, et al. Maternal antibodies inhibit neonatal and infant responses to
vaccination by shaping the early-life b cell repertoire within germinal centers. Cell Rep
(2019) 28(7):1773–84.e5. doi: 10.1016/j.celrep.2019.07.047

369. Semmes EC, Chen JL, Goswami R, Burt TD, Permar SR, Fouda GG.
Understanding early-life adaptive immunity to guide interventions for pediatric
health. Front Immunol (2020) 11:595297. doi: 10.3389/fimmu.2020.595297

370. Niewiesk S. Maternal antibodies: clinical significance, mechanism of
interference with immune responses, and possible vaccination strategies. Front
Immunol (2014) 5:446. doi: 10.3389/fimmu.2014.00446

371. Gohain N, Tolbert WD, Acharya P, Yu L, Liu T, Zhao P, et al. Cocrystal
structures of antibody N60-i3 and antibody JR4 in complex with gp120 define more
cluster a epitopes involved in effective antibody-dependent effector function against
HIV-1. J Virol (2015) 89(17):8840–54. doi: 10.1128/JVI.01232-15

372. Cheng HD, Tirosh I, de Haan N, Stöckmann H, Adamczyk B, McManus CA,
et al. IgG fc glycosylation as an axis of humoral immunity in childhood. J Allergy Clin
Immunol (2020) 145(2):710–3.e9. doi: 10.1016/j.jaci.2019.10.012

373. de Haan N, Reiding KR, Driessen G, van der Burg M, Wuhrer M. Changes in
healthy human IgG fc-glycosylation after birth and during early childhood. J Proteome
Res (2016) 15(6):1853–61. doi: 10.1021/acs.jproteome.6b00038

374. Bartsch YC, Chen JW, Kang J, Burns MD, St Denis KJ, Sheehan ML, et al.
BNT162b2 induces robust cross-variant SARS-CoV-2 immunity in children. NPJ
Vaccines (2022) 7(1):158. doi: 10.1038/s41541-022-00575-w

375. Tomasi L, Thiriard A, Heyndrickx L, Georges D, Van denWijngaert S, Olislagers V,
et al. Younger children develop higher effector antibody responses to SARS-CoV-2 infection.
Open Forum Infect Dis (2022) 9(11):ofac554. doi: 10.1093/ofid/ofac554

376. Parekh R, Roitt I, Isenberg D, Dwek R, Rademacher T. Age-related
galactosylation of the n-linked oligosaccharides of human serum IgG. J Exp Med
(1988) 167(5):1731–6. doi: 10.1084/jem.167.5.1731

377. Ercan A, Barnes MG, Hazen M, Tory H, Henderson L, Dedeoglu F, et al.
Multiple juvenile idiopathic arthritis subtypes demonstrate proinflammatory IgG
glycosylation. Arthritis Rheumatol (2012) 64(9):3025–33. doi: 10.1002/art.34507

378. Pucic M, Muzinic A, Novokmet M, Skledar M, Pivac N, Lauc G, et al. Changes
in plasma and IgG n-glycome during childhood and adolescence. Glycobiology (2012)
22(7):975–82. doi: 10.1093/glycob/cws062

379. Nduati EW, Gorman MJ, Sein Y, Hermanus T, Yuan D, Oyaro I, et al.
Coordinated fc-effector and neutralization functions in HIV-infected children define
a window of opportunity for HIV vaccination. Aids (2021) 35(12):1895–905. doi:
10.1097/QAD.0000000000002976

380. Muenchhoff M, Chung AW, Roider J, Dugast AS, Richardson S, Kløverpris H,
et al. Distinct immunoglobulin fc glycosylation patterns are associated with disease
nonprogression and broadly neutralizing antibody responses in children with HIV
infection. mSphere (2020) 5(6):e00880–20. doi: 10.1128/mSphere.00880-20

381. Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, et al.
Immunosenescence and inflamm-aging as two sides of the same coin: friends or
foes? Front Immunol (2017) 8:1960. doi: 10.3389/fimmu.2017.01960

382. Santoro A, Bientinesi E, Monti D. Immunosenescence and inflammaging in the
aging process: age-related diseases or longevity? Ageing Res Rev (2021) 71:101422. doi:
10.1016/j.arr.2021.101422
frontiersin.org

https://doi.org/10.1038/nri3216
https://doi.org/10.1084/jem.183.3.937
https://doi.org/10.1084/jem.183.3.937
https://doi.org/10.1183/23120541.00641-2021
https://doi.org/10.1073/pnas.2211132120
https://doi.org/10.1172/jci.insight.146242
https://doi.org/10.1002/cti2.1355
https://doi.org/10.1038/s41467-020-19545-8
https://doi.org/10.1016/j.isci.2022.104088
https://doi.org/10.1038/s41598-021-83093-4
https://doi.org/10.1038/s41467-022-31169-8
https://doi.org/10.1093/ofid/ofab245
https://doi.org/10.1093/ofid/ofab245
https://doi.org/10.1093/infdis/jiac222
https://doi.org/10.3389/fimmu.2022.873191
https://doi.org/10.3109/14767058.2013.784737
https://doi.org/10.1016/j.chom.2022.02.005
https://doi.org/10.3389/fped.2017.00069
https://doi.org/10.3389/fped.2017.00069
https://doi.org/10.1002/JLB.3MR1219-338R
https://doi.org/10.1002/JLB.3MR1219-338R
https://doi.org/10.1080/21645515.2015.1127485
https://doi.org/10.1016/j.vaccine.2019.12.056
https://doi.org/10.1080/21645515.2016.1215392
https://doi.org/10.1172/JCI150319
https://doi.org/10.1016/j.cell.2019.05.044
https://doi.org/10.1038/s41598-022-18973-4
https://doi.org/10.3389/fimmu.2021.614246
https://doi.org/10.1016/j.cell.2019.05.046
https://doi.org/10.1086/519845
https://doi.org/10.1016/S0140-6736(94)90991-1
https://doi.org/10.1016/S0140-6736(94)90991-1
https://doi.org/10.1093/cid/ciac156
https://doi.org/10.1016/S1473-3099(11)70341-3
https://doi.org/10.1111/cei.12251
https://doi.org/10.1016/j.cell.2020.12.027
https://doi.org/10.1016/j.celrep.2019.07.047
https://doi.org/10.3389/fimmu.2020.595297
https://doi.org/10.3389/fimmu.2014.00446
https://doi.org/10.1128/JVI.01232-15
https://doi.org/10.1016/j.jaci.2019.10.012
https://doi.org/10.1021/acs.jproteome.6b00038
https://doi.org/10.1038/s41541-022-00575-w
https://doi.org/10.1093/ofid/ofac554
https://doi.org/10.1084/jem.167.5.1731
https://doi.org/10.1002/art.34507
https://doi.org/10.1093/glycob/cws062
https://doi.org/10.1097/QAD.0000000000002976
https://doi.org/10.1128/mSphere.00880-20
https://doi.org/10.3389/fimmu.2017.01960
https://doi.org/10.1016/j.arr.2021.101422
https://doi.org/10.3389/fimmu.2023.1183727
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Purcell et al. 10.3389/fimmu.2023.1183727
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