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Background: Septic shock occurs when sepsis is related to severe hypotension

and leads to a remarkable high number of deaths. The early diagnosis of septic

shock is essential to reducemortality. High-quality biomarkers can be objectively

measured and evaluated as indicators to accurately predict disease diagnosis.

However, single-gene prediction efficiency is inadequate; therefore, we

identified a risk-score model based on gene signature to elevate predictive

efficiency.

Methods: The gene expression profiles of GSE33118 and GSE26440 were

downloaded from the Gene Expression Omnibus (GEO) database. These two

datasets were merged, and the differentially expressed genes (DEGs) were

identified using the limma package in R software. Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments of

DEGs were performed. Subsequently, Lasso regression and Boruta feature

selection algorithm were combined to identify the hub genes of septic shock.

GSE9692 was then subjected to weighted gene co-expression network analysis

(WGCNA) to identify the septic shock-related gene modules. Subsequently, the

genes within such modules that matched with septic shock-related DEGs were

identified as the hub genes of septic shock. To further understand the function

and signaling pathways of hub genes, we performed gene set variation analysis

(GSVA) and then used the CIBERSORT tool to analyze the immune cell infiltration

pattern of diseases. The diagnostic value of hub genes in septic shock was

determined using receiver operating characteristic (ROC) analysis and verified

using quantitative PCR (qPCR) and Western blotting in our hospital patients with

septic shock.

Results: A total of 975 DEGs in the GSE33118 and GSE26440 databases were

obtained, of which 30 DEGs were remarkably upregulated. With the use of Lasso

regression and Boruta feature selection algorithm, six hub genes (CD177,

CLEC5A, CYSTM1, MCEMP1, MMP8, and RGL4) with expression differences in

septic shock were screened as potential diagnostic markers for septic shock

among the significant DEGs and were further validated in the GSE9692 dataset.

WGCNA was used to identify the co-expression modules and module–trait

correlation. Enrichment analysis showed significant enrichment in the reactive
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oxygen species pathway, hypoxia, phosphatidylinositol 3-kinases (PI3K)/Protein

Kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling, nuclear

factor-kb/tumor necrosis factor alpha (NF-kb/TNF-a), and interleukin-6 (IL-

6)/Janus Kinase (JAK)/Signal Transducers and Activators of Transcription 3

(STAT3) signaling pathways. The receiver operating characteristic curve (ROC)

of these signature genes was 0.938, 0.914, 0.939, 0.956, 0.932, and 0.914,

respectively. In the immune cell infiltration analysis, the infiltration of M0

macrophages, activated mast cells, neutrophils, CD8 T cells, and naive B cells

was more significant in the septic shock group. In addition, higher expression

levels of CD177, CLEC5A, CYSTM1, MCEMP1, MMP8, and RGL4messenger RNA

(mRNA) were observed in peripheral bloodmononuclear cells (PBMCs) isolated

from septic shock patients than from healthy donors. Higher expression levels

of CD177 and MMP8 proteins were also observed in the PBMCs isolated from

septic shock patients than from control participants.

Conclusions: CD177, CLEC5A, CYSTM1, MCEMP1, MMP8, and RGL4 were

identified as hub genes, which were of considerable value in the early

diagnosis of septic shock patients. These preliminary findings are of great

significance for studying immune cell infiltration in the pathogenesis of septic

shock, which should be further validated in clinical studies and basic studies.
KEYWORDS

septic shock, WGCNA, biomarker, bioinformatic analysis, prognosis
1 Introduction

Sepsis is a life-threatening organ dysfunction disease that is

characterized as an unusual systemic reaction to what is sometimes

an otherwise ordinary infection (1). Septic shock is a subtype of sepsis

with circulatory and cellular or metabolic dysfunction (2). Both sepsis

and septic shock lead to high mortality and morbidity rates and

represent a heavy societal burden across the world (3). By identifying

the root causes and relevant diagnostic biomarkers of septic shock, we
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can intervene early and effectively, resulting in a significant reduction

in the mortality rates associated with sepsis. Therefore, it is crucial to

research the biological mechanisms involved in septic shock and

explore the potential indicators for early diagnosis.

It is believed that immune cells and immune-related pathways

significantly contribute to the development of septic shock; this is

based on growing clinical and experimental evidence supporting the

association between the overactivation of innate immune effector

cells and uncontrolled inflammation leading to tissue damage and

organ failure in severe septicemia observed in both human subjects

and animal models (4–6). Judith Hellman et al. proposed that sepsis

disrupts the balance of the redox state toward a pro-oxidative state.

This is characterized by the excessive production of reactive oxygen

and nitrogen species, mitochondrial dysfunction, and damage to the

antioxidant system. It results in microvascular dysfunction and

multiple organ failure (7). Research has shown that activating the

phosphatidylinositol 3-kinases (PI3K)/AKT/mammalian target of

rapamycin (mTOR) pathway and inhibiting the nuclear factor-kb
(NF-kb) signaling pathway can have a protective effect on organs in

the pathological and physiological state of sepsis (8).

To better understand the dysregulated immune responses to

infection that are sepsis and septic shock, biomarkers have been

evaluated for providing information beyond what is available using

other metrics, and could therefore help inform clinical decision-

making and potentially improve patient management (9). It has

been reported that several proposed biomarkers, such as C-reactive

protein (CRP) and procalcitonin (PCT), could complement clinical

evaluation and help physicians to make therapeutic decisions (10);
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however, the role of biomarkers in septic shock diagnosis remains

undefined (11). In addition, there are few prognosis specificity

markers that have performed well in preventing septic

development from reaching a severe phase (12–14). Therefore,

this study aims to explore the value of immune-related genes in

the early diagnosis of septic shock at the genetic level. A better

understanding of the role of immune regulatory genes in promoting

the diagnosis of septic shock is of great significance and can provide

new ideas for the accurate diagnosis and treatment of septic shock.

In this study, we conducted a comprehensive bioinformatics

analysis based on a large sample size to screen for promising gene

markers for septic shock. The microarray datasets for septic shock

were downloaded from the Gene Expression Omnibus (GEO)

database. Subsequently, differentially expressed genes (DEGs)

analyses were performed for both the patients with septic shock and

control participants. In sepsis, genes play their role through networks

of co-expression genes with alike biological roles. The recognition of

co-expressing patterns can offer more inspiration on septic pathways.

Therefore, we also analyzed the relationship between gene expression

and phenotypes via weighted gene co-expression network analysis

(WGCNA) in septic shock (15, 16). Then, hub genes screened from

DEGs for septic shock and those identified using WGCNA were

intersected and analyzed. Functional and pathway analyses were also

performed, and the relationships of proteins were investigated.

The infiltration of inflammatory cells and activation of

immune-related pathways are critical features in sepsis and septic

shock (17, 18). In addition, inflammatory cytokines such as

interleukin-1b (IL-1b), IL-6, IL-18, tumor necrosis factor alpha

(TNF-a), and interferon-gamma (IFN-g) have been reported to

play an essential role in the development of sepsis and septic shock

(19, 20). However, the changes in immune cell types in response to

septic shock are still unclear. The critical role of particular immune

cells and immune-related pathways in septic shock was confirmed

by these molecular and cellular experiments, but few studies have

been conducted that explore the correlation of genes and immune

cells or the overall landscape in big data. Hence, we conducted an

overall description of the immune-related landscape of septic shock

in this study. Finally, the diagnostic values of hub genes were

evaluated by ROC analyses and the measurement of mRNA

concentration and protein expression levels, and we also

conducted a preliminary verification of data credibility.

The results given in the present study could be conducive to

comprehensively understanding septic shock pathogenesis,

identifying the molecular mechanisms that are involved in the

pathological process, and providing insights into novel treatment

and therapeutic targets for drugs.
2 Materials and methods

2.1 Extraction of peripheral blood
mononuclear cells from clinical
blood samples

Our study is a forward-looking, observation-originated

investigation involving septic patients from the intensive care unit
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(ICU) of the First Affiliated Hospital of Wenzhou Medical

University from June 2021 to November 2021. All patients in our

study had reached the consentaneous standards of the Third

International Consensus Definitions for Sepsis and Septic Shock

(Sepsis-3) (11). Septic shock patients exhibited persistently low

blood pressure, which required vasopressors for the maintenance

of MAP ≥ 65 mmHg and sera lactic acid levels > 2 mmol/L (18 mg/

dL) despite sufficient fluid resuscitation. Patients who were < 18

years old or who had potential acute non-infection organic damage

and shock were filtered out.

Blood samples were collected in ethylenediaminetetraacetic acid

(EDTA) tubes immediately upon patient admission, before septic

shock occurred. Blood samples from 30 control participants were

also collected, followed by the immediate extraction of peripheral

blood mononuclear cells (PBMCs). The isolation of PBMCs from

whole blood is based on the density differences between PBMCs and

other components of the peripheral blood. The origins of this

method go back to the 1960s, when Arne Boyum first described

the separation of white blood cells using Ficoll and other density

gradient media. Since then, the technique has been refined, but the

underlying principles have remained the same: by density gradient

centrifugation, separation of blood components according to their

density is possible with the help of a density gradient medium (e.g.,

Lymphoprep or Ficoll) containing sodium diatrizoate,

polysaccharides, and water, reaching a density of 1,077 g/mL. The

density gradient medium facilitates the aggregation of red blood

cells. The medium is denser than lymphocytes, monocytes, and

platelets, but less dense than granulocytes and red blood cells.

Accordingly, erythrocytes and most of the granulocytes will

sediment and pellet at the bottom of the tube after centrifugation;

after this phase, the density gradient medium is found. The top layer

consists of plasma and platelets. Mononuclear cells band at the

interface between the plasma and the density gradient medium.

Subsequently, two washing steps at a lower speed help to remove the

remaining platelets (21). The PBMCs obtained were stored at –80°C

for subsequent experimental research.
2.2 Real-time quantitative PCR

The RNA from cells was extracted using Trizol (Invitrogen) and

reverse transcribed into cDNA through a synthesis kit containing

specific primers and SYBR green reaction mix (Takara Clontech,

Dalian, Japan). Specific primers were customized by Sangon

Biotechnology Co., Ltd. (Shanghai, China), with the presented

sequence shown in Table 1. Real-time qPCR was performed,

followed by the calculation of relative gene expression levels using

the 2–DDCT approach. Each primer sequence is presented in Table 1.
2.3 Western blotting

Proteins were extracted from PBMCs, after which the protein

concentration was measured using a bicinchoninic acid (BCA)

protein assay (Beyotime, P0012, Shanghai, China). An equal

number of proteins (20 mg) per sample was separated by 10%
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sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE), then transferred to a Polyvinylidene difluoride (PVDF)

membrane (Millipore). Subsequently, the membranes were

incubated with anti-CD177 (HUABIO, ER65526, 1:1,000) and

anti-MPP8 (HUABIO, ER63980, 1:1,000) overnight after being

blocked, firstly by 5% skim milk at room temperature for 2 h,

and thereafter by a horseradish peroxidase (HRP)-conjugated

secondary antibody. The images were scanned and quantified

using Image Lab software (Bio-Rad).
2.4 Data collection and ethics statement

Relative clinical information was documented, including patient

demographics and diagnostic results, and also their PCT, lactic acid,

and CRP levels. Acute Physiology and Chronic Health Evaluation

(APACHE) II scores were recorded at the onset of septic shock and

sequential organ failure assessment (SOFA) scores were recorded in

the first 24 hours after the diagnosis of septic shock. Clinical test

results and hospital death rate data were also collected within the

first 24 hours of ICU admission. Our research (clinical trial

registration number: ChiCTR2100053564) was approved by the

ethics committee of the First Affiliated Hospital of Wenzhou

Medical University, Zhejiang, China, and recorded at

ClinicalTrials.gov., in accordance with the protocols in the

Declaration of Helsinki, with informed consent provided by each

participating patient.
2.5 Microarray data

The gene expression profiles of GSE33118, GSE26440 (22), and

GSE9692 (23) were downloaded from the GEO database (http://

www.ncbi.nlm.nih.gov/geo/) (24). The GSE33118 data collection

includes the gene expression profiles of 20 septic shock patients and

42 control participants; blood specimens were obtained within 24 h

of the septic shock diagnosis. The samples in the GSE26440 data

collection were for 98 children with septic shock and 32 control

pediatric patients. Children who were 10 years old in the pediatric

intensive care unit (PICU) and who met the pediatrics-specific

standards for septic shock were enrolled (25). After obtaining

written informed consent, blood specimens were acquired within
Frontiers in Immunology 04
24 h of their initial presentation to the PICU. The specimens in the

GSE9692 data collection were also collected; these were for 42 septic

shock patients who were minors, and 15 healthy donors. The

patients who had one or more serious coexisting diseases or who

were undergoing immunosuppression treatment were filtered out.

The septic shock diagnoses were referred to the American College of

Chest Physicians/Society of Critical Care Medicine (ACCP/

SCCM) standards.
2.6 Identification of DEGs

We downloaded the GSE33118 datasets, which contained the

expression profiles of 150 groups of patients, and GSE26440, which

contained the expression profiles of the normal group (n = 42) and

the disease group (n = 108) that were related to septic shock from

the GEO database. To obtain the critical information from the two

datasets, the merging and pre-processing of raw data were

conducted using the surrogate variable analysis (SVA) package

(26) from R software. Principal component analysis (PCA), a

multivariate regression analysis, was used to distinguish samples

with multiple measurements (27, 28). We used PCA to show the

uniformity of the two datasets after correction. In addition, the

limma package (29) was used to conduct a differential analysis of

the combined database comprising these two databases; gene

screening conditions with p < 0.05 and | Log2FC | > 1 were used

as the selection criteria for filtering septic shock DEGs.
2.7 Functional enrichment analysis of DEGs
and PPI network construction

Gene Ontology (GO), a major bioinformatics tool for

annotating genes and analyzing biological process, and Kyoto

Gene Genome Encyclopedia (KEGG), a database resource for

understanding high-level functions and biological systems from

large-scale molecular datasets generated by high-throughput

experimental technologies, were used to further investigate the

biological functions and signaling pathways involved in the

occurrence and development of septic shock. The protein–protein

interaction (PPI) networks of the septic shock DEGs were predicted

through the retrieval pool Search Tool for the Retrieval of
TABLE 1 Primers used for qPCR of genes from human.

Gene Forward (5′-3′) Reverse (5′-3′)

CYSTM1 CTTATCCACCACAACCAATGGG GGATGGTCCTAGCTCATCTCTT

CLEC5A AGGTGGCGTTGGATCAACAA TTAGGCCAATGGTCGCACAG

CD177 ATGAGCGCGGTATTACTGCTG GGTCGGACACCTTCCACAC

MCEMP1 CCATGCAAAGGGTGGTCATTC GCTTGTACGGAGTTTGAGACATT

MMP8 TGCTCTTACTCCATGTGCAGA TCCAGGTAGTCCTGAACAGTTT

RGL4 CTGGGCAACACGCATTAACAA GTTCTTTACAGACCCACGACAG

GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG
qPCR, quantitative real-time polymerase chain reaction.
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Interacting Genes/Proteins (STRING). The statistical significance

was set at a minimum overlap of ≥3 and p ≤ 0.01. Afterward, the

Cytoscape program was used to establish and realize the

visualization of molecule mutual effect nets (30). In the PPI

network, the target proteins were represented by nodes, whereas

the predicted or validated interactions between proteins were

represented by edges.
2.8 Lasso regression and Boruta feature
selection process

Lasso logistic regression was used for feature selection of the

diagnostic markers of disease. The Lasso algorithm uses the

generalized linear model net (GLMNet) software package (version

4.1–2). In addition, Boruta is a feature selection algorithm that

randomly disrupts each real feature in order, evaluates the

importance of each feature, and iteratively removes features with

low correlation to find the best variable. In this study, the Boruta

package (version 7.0.0) was used for feature selection, and 500 trees

were constructed to further identify the diagnostic value of these

biomarkers for disease.
2.9 WGCNA analysis

Through the establishment of a weight-added genetic co-

expressing net, our team searched for co-expressed genetic

modules and explored the correlation between gene networks and

phenotypes, along with the core genes (15). The WGCNA-R packet

(version 1.70–3) was adopted to establish the co-expression net of

all genes in the dataset, and the genes with the top 5,000 variance

were selected via such arithmetic for further assays, in which the

soft liminal value was 14. The weight-added adjacent matrix was

converted into a topological overlap matrix (TOM) to speculate the

net connection level. The adjacency matrix is a matrix composed of

weighted correlation values between genes, whereas TOM is a new

distance matrix that is transformed by the adjacency matrix to

reduce noise and false correlation. The topological overlap matrix

considers not only the direct relationship between genes, but also

the possible multiple indirect relationships. This information can be

used to construct a network for subsequent analysis.

The hierarchy clustering approach was adopted to establish the

cluster tree framework of TOM matrix. Diverse offshoots of the

cluster tree represent diverse genetic modules, and the diverse

colors denote diverse modules. As per the weight-added

association coefficient of genes, the genes were categorized in

terms of their expressing features. Genes with similar features

were classified into a module, and massive genes were divided

into multi-modules via genetic expressing features. After genes were

clustered, a heatmap was plotted to visualize and calculate the

intermodule correlation. The correlation between modules and

clinical traits was further evaluated to determine the modules

associated with septic shock for analysis.
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2.10 Veen and circos analysis

The Venn diagram, which is a widely used diagram that exhibits

the relationship between multiple sets, is probably the most intuitive

form of data visualization, superior to heat maps and tables when

the number of sets is fewer than five (31). In addition, we used the

Circlize and Corrplot packages to plot the interaction diagram of

core genes expressing positive and negative correlation.
2.11 GeneMANIA analysis

GeneMANIA is an elastic, easy-to-use PPI net construction data

center for the visualization of function networks between genes and

the analysis of gene roles and mutual effects. The database can set up

the data resource of genetic nodal points and has various biological

information assay approaches, such as physical mutual effect, genetic

co-expression, genetic co-location, genetic enriching assay, and

database forecast. In this study, the core gene net was generated

using GeneMANIA to explore its possible mechanism in septic shock.
2.12 Gene set difference analysis

Gene set difference analysis (GSVA) is a non-parameter, non-

supervised approach for assessing the enrichment of transcriptomic

genomes. Through the all-round scoring of the intriguing genetic

sets, GSVA transforms the genetic-level variations into pathway-

level variations and afterwards judges the biology role of the

samples. The genetic sets used in this study were acquired from

Molecular Signatures Data Center 7.0, and the GSVA arithmetic

was adopted for the all-round scoring of every genetic set to assess

the underlying biological function variations of diverse specimens.
2.13 Receiver operating characteristic
curve analysis

MedCalc statistical software (www.medcalc.org) was used to carry

out receiver operating characteristic (ROC) curve assay and to identify

the idiosyncrasy, susceptibility, probability ratio, and favorable and

unfavorable prediction scores for all probable liminal values of the ROC

curve. The genetic scores were forecasted as per the ROC curve assay.
2.14 CIBERSORT analysis of immune
infiltration

CIBERSORT algorithm (32), which is a gene expression-based

arithmetic that represents cell composition based on pre-processed

gene expression profiles, was utilized to evaluate immune cell

infiltration in septic shock. LM22 (22 immune cell types) in

CIBERSORT is a signature gene expression matrix used to estimate

the proportion of leukocytes. Data from control participants and

patients with septic shock were analyzed using the CIBERSORT
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algorithm to infer the relative proportions of 22 immune infiltrating

cells, with the sum of all estimated immune cell type scores in each

sample equal to 1. In this study, the influence of genes on

immune infiltration was evaluated. CIBERSORT (http://

CIBERSORT.stanford.edu/) was used to quantify the level of immune

cell infiltration in each sample, and Spearman’s correlation analysis was

performed on gene expression level and immune cell content.
2.15 Statistical analysis

Our team undertook statistic assays via GraphPad Prism 8,

SPSS 21.0, and R program 4.0. The normal distribution successive

variates were expressed as averages ± SD and were studied via an

independent Student’s t-test or one-way ANOVA. P-values < 0.05

were deemed to be statistically significant.
3 Manuscript formatting

3.1 Identification of DEGs, functional
enrichment analysis, and construction of
PPI networks

Datasets related to septic shock were downloaded from the

GEO database, then the GSE33118 and GSE26440 datasets were

merged. A total of 150 gene expression profiles were included,

containing 108 septic shock patients and 42 controls participants.

The batch effect was eliminated by sva package, which is presented

in a principal component analysis (PCA) diagram (Figures 1A, B).

In total, 975 differentially expressed genes (DEGs) were identified

by screening via the limma package in R software, of which 30 were

upregulated genes (Figure 1C, red dots) (p < 0.05).

Subsequently, GO functional enrichment analysis and KEGG

pathway analysis were conducted, suggesting that neutrophil

degranulation, specific granule lumen, tertiary granule membrane,

tertiary granule lumen, and primary lysosome and other pathways

may play important roles in septic shock (Figure 1D). Using the PPI

network, 30 genetic variations that may be associated with septic

shock were identified. They were CYSTM1, MCEMP1, GYG1,

MMP8, HP,HPR, GPR84, RGL4, CD177, RETN, BMX, CLEC5A,

CA4, IL1R2, S100A12, ARG1, PFKFB3, ANKRD22, ANXA3,

CLEC4D, MMP9, OLFM4, MS4A4A, VNN1, LCN2, TDRD9, LTF,

OLAH, CEACAM8, and CRISP3. These are shown in Figure 1E.
3.2 Identification of hub genes

To further identify the hub genes among the differential genes, we

combined Lasso regression and Boruta feature selection algorithm to

screen out the characteristic genes of septic shock patients. The results

of Lasso regression showed that six differential genes were identified

as hub genes of septic shock (Figure 2A, Supplementary Table 1), 24

differential genes were identified as the hub genes of septic shock by

Boruta algorithm (Figure 2B, Supplementary Table 2), and six hub

genes were screened out after the two were intersected (Table 2): the
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CD177 molecule (CD177), C-type lectin domain containing 5A

(CLEC5A), cysteine rich transmembrane module containing 1

(CYSTM1), mast cell expressed membrane protein 1 (MCEMP1),

matrix metallopeptidase 8 (MMP8), and ral guanine nucleotide

dissociation stimulator like 4 (RGL4).
3.3 Construction of co-expression modules
and module–trait correlation

Raw microarray data from GSE9692 were used to construct the

gene co-expression networks through WGCNA package to prune the

gene modules of co-expression and explore the relationship between

gene network and clinic features in the network. In samples of control

and septic shock groups, there were no outliers detected in the

expression matrix of the top 5,000 genes, whose expression variance

was within the first quartile. To construct the correlation matrix, the

Pearson correlation coefficient was utilized to calculate the correlation

coefficient of expression between genes. An appropriate soft-

thresholding power b = 14 was determined in the WGCNA package;

here, the soft thresholding power is based on two criteria: the lowest

power at which the scale-free topology fit index reached 0.90; and the

connectivity measurements decrease considerably (Figures 3A, B).

The topological overlap matrix (TOM) was constructed from the

adjacency matrix and used to cluster genes with high topological

overlap into modules. The clustering dendrogram was then pruned

using the dynamic tree cut method to further classify the modules

(Figure 3C). However, we considered that some genes with high

similarity were not clustered together, owing to the number of

initially classified modules being relatively large. To avoid excessive

module numbers that would complicate subsequent analysis, the

module eigengenes in each module were clustered using a similarity

threshold of 0.25 to group similar modules together. Finally, gene

modules were detected based on TOMmatrix, and 10 genetic modules

were identified herein. They were the black (1426), brown (348), cyan

(792), dark-turquoise (94), green (317), gray (283), light-yellow (1394),

purple (166), royal-blue (108), and white (72) modules (Figure 3D).

The module–trait relationship heatmap (Figure 3E) was

generated by analyzing the correlation between the constructed

modules and traits and calculating their significance. The BLACK

modules were found to be significantly associated with disease traits,

indicating their role in the pathogenesis and progression of septic

shock. Through further analysis of the association between modules

and features, we discovered that the BLACK module exhibited the

highest correlation with disease phenotype (COR = 0.42, p = 4.9E-62)

(Figure 3F). Therefore, the BLACK module was selected for the

subsequent analysis as septic shock-correlated modules.
3.4 Functional classification and pathway
enrichment of hub genes

We used the six hub genes that were identified as hub genes

(shown in Table 2) to intersect with the BLACK module and found

that all six hub genes intersected with the BLACK module, indicating

that the results were in line with expectations (Figure 4A).
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Subsequently, we used the “circlize” package and the “corrplot”

package to plot the interaction of positive and negative core genes. Green

represents a negative correlation and red represents a positive correlation.

We found that CD177, CLEC5A, CYSTM1, MCEMP1, MMP8, and

RGL4 exhibited significant positive correlation with each other

(Figure 4B). As shown in Figure 4C, the core gene net was generated

through GeneMANIA to explore its possible mechanism in the disease,
Frontiers in Immunology 07
such as the response to fungus, defense response to bacterium,

inflammatory response, and defense response to another organism.

Finally, we explored the specificity signal paths participating in

the six hub genes to unveil the underlying molecule mechanisms

where the hub genes impact the development of septic shock. GSVA

then was used to determine the pathways in the following six genes:

CD177, CLEC5A, CYSTM1, MCEMP1, MMP8, and RGL4. Among
A B

D

E

C

FIGURE 1

(A, B) SVA algorithm was used to correct the chip, and PCA (Principal Component Analysis) diagram was used to show the results after correction. The results
showed that the interchip batch effect was eliminated after SVA algorithm correction. (C) Volcano plot of gene expression profile data between normal group
and septic shock group. Red dots: significantly up-regulated genes; Black dots: nondifferentially expressed genes. P<0.05 and |log2 Foldchange |>1 were
considered as significant. (D) The classification netplot denoted the associations of genes and GO terms as a net to indicate the enriched pathways, including
neutrophil degranulation, SGL, TGL, and primary Lysosome and other pathways. (E) The PPI networks based on DEGs involved 30 key genes.
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the abundant pathways involved in the six genes, we found several

correlation pathways related to reactive oxygen species, namely

hypoxia, PI3K/AKT/mTOR signaling, NFk-b/TNFa, and IL6/JAK/

STAT3, suggesting that the hub genes influence the development of

septic shock by regulating these pathways (Figures 4D–I).
3.5 ROC analyses of biomarker genes

We also explored the predictive ability of hub genes on the

occurrence and development of septic shock through the ROC curve

of diagnostic efficacy verification. The higher the AUC value, the

better the predictive ability. The results showed that the AUC values

of the six core genes were CD177-AUC: 0.938 (0.899–0.978),

CLEC5A-AUC: 0.914 (0.860–0.968), CYSTM1-AUC: 0.939 (0.900–

0.979), MCEMP1-AUC: 0.956 (0.926–0.986), MMP8-AUC: 0.932

(0.890–0.974), and RGL4-AUC: 0.914 (0.863–0.965) (Figures 5A–F).
3.6 Analysis of immune cell infiltration

The CIBERSORT algorithm was used to evaluate the proportion

of different infiltrating immune cell types in the control and septic
Frontiers in Immunology 08
shock groups. The GEO expression array data were used to

investigate the fraction of infiltrated immune cells. From 150

samples, 42 cases from the healthy donors group and 108 cases

from septic shock group were eligible for CIBERSORT (p-

value < 0.05). As shown in Figure 6A, the fraction of immune cells

varied significantly among the samples and groups. The top five

highest-infiltrating fractions in septic shock were M0 macrophages,

activated mast cells, neutrophils, CD8+T cells, and I B cells. Follicular

helper T cells and resting dendritic cells were present in lower

quantities, inversely. Moreover, in general, higher proportions of

M0 macrophages, activated mast cells, and neutrophils (p-value

< 0.001) were found in the tissue of septic shock patients than in

that of the healthy donors. In addition, we found a lower proportion

of CD8+ T ceInaiveIlls, naive CD4+ T cells, gamma delta T cells, and

resting natural killer (NK) cells in the tissue of septic shock patients

than in that of the healthy donors (p-value < 0.05) (Figure 6B).

We conducted a correlation analysis of infiltrated immune cells

in septic shock and found multiple pairs of positively and negatively

related immune cells (Figure 6C). The score represents the degree of

correlation. CD8+ T cells and activated CD4+ memory T cells

showed the most synergistic effIand naive B cells and neutrophils

showed the most competitive effect.
A B

FIGURE 2

The Lasso regression and Boruta feature selection algorithm were used to screen out the characteristic genes in septic shock. (A) 6 differential genes were
identified as key genes of septic shock by Lasso regression. (B) 24 differential genes were identified as key genes of septic shock by Boruta algorithm.
TABLE 2 The six genes screened out by Lasso regression and Boruta selection algorithm in septic shock.

Gene Description Expr Adjusted p-value Protein function

CYSTM1 Cysteine rich transmembrane module containing 1 2.7 2.51E-18 Neutrophil degranulation

CLEC5A C-type lectin domain containing 5A 2.7 4.55E-15 Regulates inflammatory responses

CD177 CD177 molecule 4.1 3.38E-16 Degranulation and superoxide production

MCEMP1 Mast cell expressed membrane protein 1 3.4 2.04E–17 Neutrophil degranulation

MMP8 Matrix metallopeptidase 8 4.5 6.36E-17 Degrade fibrillar type I, II, and III collagens

RGL4 Ral guanine nucleotide dissociation stimulator like 4 2.5 2.24E-16 Small GTPase mediated signal transduction
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3.7 Hub genes and immune infiltration

In this study, we analyzed the association between hub genes and

immunity invasion in the septic shock dataset, so that the underlying

molecular mechanism of hub genes affecting the development of

septic shock was further explored. Correlation analysis with immune

cells showed that all six hub genes were related to immune cells. In

addition, the results in Figures 7A–F show that all six genes were

positively related toM0macrophages and neutrophils (p-value < 0.01)

and negatively related to resting dendritic cells (p-value < 0.01).

The microenvironment primarily comprises immunocytes, the

extracellular matrix (ECM), various growing factors, inflammation

factors, and specific physicochemical properties, all of which

remarkably influence the diagnosis and susceptibility of clinical

treatment of diseases. Therefore, we further supplemented the

correlation analysis to explore the relationship between the six hub

genes and immunomodulatory genes (extended data are in

Supplementary Figures 1A–D). From the an integrated repository

portal for tumor-immune system interactions (TISIDB) database of

immune activation genes, immunosuppression, chemokines, and

chemokine receptors, we extracted four types of immune-regulatory

genes; of these, six hub genes were found by correlation analysis to be
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significantly associated with immune activation (i.e., CD27, CD68,

ENTPD1, ICOS, TMEM173), immunosuppression (i.e., BTLA,

CD244, CD274, HAVCR2, TGFB1), chemokines (i.e., CCL20, CXCL1,

CXCL10, CXCL16.) and chemokine receptors (i.e., CCR1, CCR6,

CXCR1, CXCR3).

According to those comprehensive bioinformatics analyses, the

aforementioned six hub genes may be considered new septic shock

biomarkers, and further research is needed to verify these

preliminary findings.
3.8 Preliminary validation analysis of
biomarker genes

To determine the clinical correlation of the discoveries made in

this study, we undertook an RT-PCR analysis of peripheral blood

mononuclear cells (PBMCs) from 30 septic shock patients and 28

healthy donors. The basic features are presented in Table 3. The age

and sex distributional results had no statistical differences between

these two groups. The most common infectious site was the lung

(46.6%), then the abdomen and other organs (20.0%). Our studies

revealed that the septic shock group displayed a greater total length of
A B

D E F

C

FIGURE 3

(A, B) Scale-free network construction in the co-expression network. Scale independence and mean connectivity analysis (b = 14). (C) Clustering
tree construction. Merging of modules with similar expression profiles. (D) Module identification. Network dendrogram based on differential
measurement and identified module colors, each node represents a gene, and the vertical axis denotes the degree of topological differences
between genes, i.e. a larger distance between vertical coordinates indicates a larger topological difference, meaning a weaker co-expression
correlation; the horizontal axes represent different modules, with each color denoting a module and the width of color bar indicating the gene
number in the module; Dynamic Tree Cut represents modules initially obtained through average-linkage hierarchical clustering. Merged colors
denote the reconstructed modules after merging similar modules. (E) Correlation of module and trait. Heatmap for the correlation between modules
and septic shock traits. The horizontal axes represent different modules. The color of each cell indicates the corresponding module–trait correlation,
a deeper red color suggesting stronger positive correlation and a deeper blue color suggesting stronger negative correlation. The value in each cell
denotes the correlation score, and the value in the bracket below denotes the significance (P-value). (F) The association between modules and
disease phenotype, the scatter plot of module eigengenes in the black module (COR = 0.42, P = 4.9E-62).
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hospital stay and ICU stay in contrast to the healthy donors

(p < 0.005). The APACHE II and SOFA values of the septic shock

group were remarkably elevated in contrast to the healthy donors

(p < 0.0001). The mRNA levels of CD177, CLEC5A, CYSTM1,

MCEMP1, MMP8, and RGL4 were remarkably incremented in the

septic shock group (n = 30) compared with the control group (n = 28)
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(Figures 8A–F). Meanwhile, the expression levels of CD177 and

MMP8, as determined by Western blotting, were found to be

upregulated in the PBMCs from septic shock patients (n = 4)

compared with those from healthy donors (n = 4) (Figure 9). We

found that these data exhibited a consistent trend with the

bioinformatics analysis.
A B

D E F

G IH

C

FIGURE 4

(A) Venn analysis for overlap of BLACK module target genes and six key DEGs (Identified from the intersection of Lasso regression and Boruta feature
selection algorithm). (B) The interaction of positive and negative core genes was identified by circlize package and corrplot package. (C) The core gene
net was generated through GeneMANIA to explore functions, including response to fungus, defense response to bacterium, inflammatory response,
defense response to other organism and response to bacterium. The GSVA arithmetic was adopted for the all-round scoring of every genetic set, (D)
CD177, (E) CLEC5A, (F) CYSTM1, (G) MCEMP1, (H) MMP8 and (I) RGL4 to assess the underlying molecule mechanisms where the key genes affect the
development of septic shock, such as the reactive oxygen species pathway, hypoxia, PI3K/AKT/mTOR signaling, NFK-b/TNFa and IL6/JAK/STAT3.
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4 Discussion

Currently, the mortality caused by sepsis and septic shock is still

remarkably high. Early detection, suitable categorization, and timely

treatment administered during the incipient period of septic shock are

vital for decreasing the death rate. Biological information assays allow us

to reveal the molecule mechanisms of illness onset and progression,

offering a new and valid method to acquire the underlying diagnosis

markers and treatment targets that can prevent and treat septic shock. In

the present study, we first identified 30 genetic variations from the

combined GSE33118 and GSE26440 datasets, and then combined Lasso

regression and Boruta feature selection algorithm to screen out six key

genes that are involved in septic shock. Subsequently, through

intersecting genes between key genes screened from DEGs for septic

shock and those identified using WGCNA, we finally identified six new

biomarkers of septic shock, namely CD177, CLEC5A, CYSTM1,

MCEMP1, MMP8, and RGL4. The PPI networks have proven to be

useful in the analysis of many kinds of disease. The STRING online

database was used to construct PPI networks in which all protein-coding

genes in a genome are grouped and organized. These six biomarkers

were also verified by comprehensive bioinformatics analyses of gene

expression profiles and a preliminary gene expression assay.

MMP8 is a Zn+2-reliant endopeptidase of the MMP family, which

is mainly produced by neutrophilic cells as a proenzyme, and is

stimulated by the ROS generated from the stimulated neutrophilic
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cells; hence, MMP-8 is vital for acute and persistent inflammatory

activities (33, 34). MMP8 is related to the stimulation of

proinflammatory cytokine TNF-a (35, 36), which eventually

activates inflammatory activities throughout the body. MMP8

participates in the homoeostasis of the exocellular area, the

expression of which is mainly realized by monocytes and

macrophages. It also participates in the supportive activities of

inborn immunity (37). The elevated MMP-8 activities facilitate the

etiology of numerous illnesses, such as atherosis, lung fibrosis, and

septic disease (38). Pedro Martıńez-Paz et al. contrasted septic

sufferers separated into septic shock and non-septic shock groups

in postsurgical cases (39), then discovered that the septic shock cases

registered greater sera MMPs expressing in contrast to the non-septic

shock cases and the healthy donors. All discoveries reveal that MMPs

can be underlying diagnosis biomarkers of septic shock.

CD177 serves as a vital neutrophilic cell gene encoding the

glycoprotein of the membrane and the expression of such gene is

increased during bacterial infections, burns, and pregnancy (40, 41).

The identification of CD177 mRNA concentration has also become a

helpful diagnosismethod to differentiate these illnesses (42, 43), whereas

its function in septic progression is still elusive. The CD177 gene might

serve as an assumed marker or medicine target for septic shock.

Artificial intelligence systems have identified that the novel

genetic marker CLEC5A helps to predict sepsis severity or

mortality; CLEC5A had been identified previously and associated
A B

D E F

C

FIGURE 5

(A–F) The predictive ability of hub genes (CD177, CLEC5A, CYSTM1, MCEMP1, MMP8 and RGL4) on the occurrence and development of septic shock
was explored through the ROC curve. The higher the AUC value, the better the predictive ability. The AUC for all six genes was >0.9 for ROC analysis.
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with sepsis mortality (44). Recent findings have suggested that

CLEC5A (45) might be further implicated in NETosis. The

polymorphic nucleus neutrophilic cells, facilitating inflammation

representatively, also play roles in immunoregulation functions. A

recent study found that CLEC5A, related to dengue, a virus-caused,

life-threatening illness (46), is a vital element related to the regulation

of the inborn immunoresponse against microbial infectious diseases

in mice. This study showed that the expression of CLEC5A was

increased in septic shock patients, and that the degree of increase was

related to the degree of organic function disorder.

CYSTM1 is a comparatively elusive gene and the biological

information assay displays an effect in resisting various matters
Frontiers in Immunology 12
involving DNA-injuring agents such as oxidizer, H2O2 mitomycin C,

and the underlying membranous destabilization agent. The variation of

the oxidation-reduction potential (ORP) of the membranous

substances by CYSTM proteins may also impact the absorption of

some substances and enable the quenching of underlying harmful free

radicals (47). Thus, consistently across eukaryotes, CYSTM1 seems to

play an effect in stress reaction or resistance, especially against harmful

matters (48). The discoveries made in this study indicate that the

CYSTM1 gene might serve as a novel marker for septic shock.

MCEMP1 is responsible for the encoding of a single-pass trans-

membranous protein and participates in the modulation of MC

differentiative activities or immunoresponses (49). MCs deteriorate
A

B

C

FIGURE 6

(A) CIBERSORT was used to quantify the fraction of 22 subsets of immune cells in septic shock. X axis: each GEO sample; Y axis: percentage of each
kind of immune cells. (B) The violin graph shows the difference of immune infiltration between normal individuals and septic shock sufferers. The
normal group is shown in blue and septic shock group is shown in red. P-Value < 0.05. (C) The co-expression patterns among fractions of immune
cells. Red: positive correlation; blue: negative correlation.
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FIGURE 7

(A–F) Correlation of immune cells and 6 key genes. The all 6 genes (A) CD177, (B) CLEC5A, (C) CYSTM1, (D) MCEMP1, (E) MMP8 and (F) RGL4 were
potently related to the similar kind of immunocyte content.
TABLE 3 Baseline clinical characteristics of the study subjects.

Characteristics All patients Healthy controls Septic shock P value

Demographics and underlying conditions

Number of patients 58 28 30 —

Males, number (%) 39(67.2%) 16(57.1%) 27(76.6%) —

Age (years) 63.5(49.25-72.75) 70.5(63-80.5) 58.5(44.5-67) 0.0199

Hypertension, number (%) 19(32.7%) 8(28.5%) 11(36.6%) —

Type 2 Diabetes mellitus, number (%) 11(18.9%) 4(6.8%) 7(23.3%) —

Laboratory value, mean ± SEM

PCT (mg/L) — 0.2 ± 0.1 37.6 ± 4.9 <0.0001

CRP (mg/L) — 8.1 ± 3.7 93.5 ± 5.1 <0.0001

Lactate (mmol/L) — 0.6 ± 0.1 5.2 ± 1.2 <0.0001

Site of infection, number (%)

Lung — — 14(46.6%) —

Abdomen — — 6(20.0%) —

Urinary tract — — 4(13.3%) —

Other — — 6(20.0%) —

Origin of the infection, number (%)

Viral originated — — 7(23.3%) —

Bacterial originated — — 18(60.0%) —

Other — — 5(16.7%) —

(Continued)
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septic disease via damaging the phagocyte activity of resident

macrophages, hence enabling the proliferative activities of

regional and systemic microbe agents (50). Jian-Xin Chen et al.

verified that the miR-125-mediation MCEMP1 suppression could

decrease the sera levels of TNF-a, IL-1b, and IL-6, and the

programmed cell death facilitated the T leukomonocyte activity,

hence attenuating the immune activity of sepsis mice (51). These

discoveries reveal that MCEMP1 can be an underlying diagnosis

marker for septic shock.

Yidan Sun et al. evidenced that the reduced expression of RGL4

was remarkably related to unfavorable prognostic results and

immunocyte infiltrative activities in lung adenocarcinoma

(LUAD) cases and highlighted the utilization of RGL4 as a new

prediction marker for the prognostic results of LUAD (52). RGL4

might also be utilized in combination with the immuno-checkpoint

method to reveal the advantages of immunity therapy.
A B
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FIGURE 8

(A–F) The mRNA expression of CD177, CLEC5A, CYSTM1, MCEMP1, MMP8 and RGL4 were identified in PBMCs of sepsis sufferers and normal
individuals via qRT-PCR. **P<0.05 vs relevant normal individuals; ns, no significance.
TABLE 3 Continued

Characteristics All patients Healthy controls Septic shock P value

Length of stay

In the ICU (days) 6(0-6) 0 15.5(4.5-24.25) <0.0001

In the hospital (days) 15(10.75-25.25) 15(10.75-25.25) 26.5(14.5-39.25) 0.0021

APACHE II score 19(13-24) 0 19(15-25) <0.0001

SOFA score 6(4-10) 0 6.5(4-11) <0.0001
fron
APACHE II, acute physiology and chronic health evaluation score; SOFA, sequential organ failure assessment score. Data is presented as median (interquartile range); P-value is analyzed by chi-
square (gender and site of infection), Kruskal-Wallis test (age) or Mann-Whitney U test (APACHE II score, SOFA score).
FIGURE 9

The protein expression of CD177 and MMP8 were identified in
PBMCs of sepsis sufferers and health donors via Western blot.
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In addition, these six potential biomarkers have considerable

prospects in other diseases. Reports have shown thatMMP8, which

has a strong correlation with the development of skin cancers (53),

particularly breast (54), melanoma (55), and tongue (56), could

diminish or accelerate cancer progression via its breaking down of

the ECM and cleavage of cell adhesion proteins (57). CD177

modulates the function and homeostasis of tumor-infiltrating

regulatory T cells, one of the major immunosuppressive cell types

in cancer (58). Tong et al. have reported that CLEC5A correlated

with immunosuppression in glioma patients (59); meanwhile,

CLEC5A was identified as an immune-related prognostic gene of

ovarian cancer based on the immune microenvironment (39). In

addition, bioinformatics analysis demonstrated that CYSTM1, a

relatively unknown gene, plays a role in stress response (48). Gang

Hu et al. were the first to report that the MCEMP1 gene had a

significant association with the prognosis of gastric cancer (60).

Moreover, the expression of RGL4 has been found to be correlated

with a variety of tumor-infiltrating immune cells, such as

neutrophils, CD8+ T cells, and memory B cells (52).

However, the pathways of CD177, CLEC5A, CYSTM1,MCEMP1,

MMP8, and RGL4 in the development of septic shock remain unclear.

Our study suggested that these core genes influenced the progression

of septic shock by regulating these pathways, including the reactive

oxygen species pathway, hypoxia, PI3K/AKT/mTOR signaling, NFk-
b/TNFa, and IL6/JAK/STAT3. Further relevant experimental assays

should be carried out to verify the potential functions of critical genes

and pathways in septic shock.

In this study, the CIBERSORT algorithm was used to quantify

the abundance of each tumor microenvironment (TME) cell

infiltration in the septic shock patient and healthy donors. In

total, 22 subpopulations of immune cells, including B cells,

plasma cells, T cells, NK cells, monocytes, macrophages, dendritic

cells, mast cells, eosinophils, and neutrophils, were evaluated. A

significant difference in immune cell infiltration was found between

septic shock patients and control participants. Meanwhile,

Spearman’s correlation analysis was conducted to evaluate the

correlation between related DEGs and each TME infiltration cell

type content.

The AUROCs of the six genes in the early diagnosis of septic shock

were remarkable, indicating a better predictive efficiency than classical

biomarkers such as CRP and PCT. Moreover, the intervention with the

signal pathways that are related to these six hub genes may help us to

achieve a better treatment response and prognosis for septic shock

patients. Our study had inevitable limitations. First, to guarantee

universalization and reduce selective bias to a minimum, more

verification must be put in place, and larger numbers of septic shock

patients and healthy donors should be involved. Second, in this study,

our team merely highlighted markers that originated from white blood

cells in circulating blood. Circulation markers related to cells from

other organs with function disorders, such as tissue macrophages and

blood vessel cells, may also participate in an intricate clinical process of

septic disease, but these were not investigated in the present study. Last,

as we obtained most of our data from specimens of septic shock who

were minors and healthy donors minors through the biological

information assay, the outcomes cannot be uncritically applied to

adult septic cases. Further experimental analysis is still required to
Frontiers in Immunology 15
validate these findings. In addition, from the vast GEO database, not all

septic shock samples could be included; thus, GSE33118, GSE26440,

and GSE9692 were chosen in this study, owing to their relatively large

sample sizes and representativeness. However, the sample sizes of the

three datasets used in this study were small; thus, from a bioinformatics

perspective, the results should be further verified, and an increased

number of samples should be studied to increase the credibility of

results. Our study has shown that in septic patients the mRNA levels of

the CD177, CLEC5A, CYSTM1, MCEMP1, MMP8, and RGL4 genes

were higher in septic patients than in control participants, suggesting

the reliability of the preliminary clinical specimen. There is a lack of

statistical difference between CLEC51 and CYSTM1 among the six

genes tested in an mRNA expression analysis. In addition, only the

protein levels of CD177 andMMP8 were verified owing to the limited

experimental time. In a nutshell, a sufficient sample size for validating

these hub genes both in terms of their RNA and protein levels is needed

for further exploration.
5 Conclusion

In the present study, six hub genes with expression differences

in septic shock were screened by broadly used biological

information assays and WGCNA by integrating multiple datasets.

The results revealed six helpful genes that can be used to explore the

biomarkers or molecule mechanisms of sepsis shock.
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(A) Correlation analysis of immune activation genes and 6 hub genes. (B)
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