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Diabetic nephropathy (DN) often leads to end-stage renal disease. Oxidative

stress demonstrates a crucial act in the onset and progression of DN, which

triggers various pathological processes while promoting the activation of

inflammation and forming a vicious oxidative stress-inflammation cycle that

induces podocyte injury, extracellular matrix accumulation, glomerulosclerosis,

epithelial-mesenchymal transition, renal tubular atrophy, and proteinuria.

Conventional treatments for DN have limited efficacy. Polyphenols, as

antioxidants, are widely used in DN with multiple targets and fewer adverse

effects. This review reveals the oxidative stress and oxidative stress-associated

inflammation in DN that led to pathological damage to renal cells, including

podocytes, endothelial cells, mesangial cells, and renal tubular epithelial cells. It

demonstrates the potent antioxidant and anti-inflammatory properties by

targeting Nrf2, SIRT1, HMGB1, NF-kB, and NLRP3 of polyphenols, including

quercetin, resveratrol, curcumin, and phenolic acid. However, there remains a

long way to a comprehensive understanding of molecular mechanisms and

applications for the clinical therapy of polyphenols.

KEYWORDS
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1 Introduction

Diabetes mellitus (DM) is a complicated chronic disease described by glucose

dysregulation that is caused by absolute or relative defects, including type 1 diabetes

(T1D) and type 2 diabetes (T2D). The global prevalence indicates that the number of DM is

below half a billion individuals and is projected to increase by 25% and 51% in 2030 and

2045, respectively, putting enormous pressure on healthcare systems worldwide (1). As a

complication of DM, diabetic nephropathy (DN), also called diabetic kidney disease
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(DKD), is the primary reason for chronic kidney disease (CKD) and

even end-stage renal disease (ESRD), which is related to increased

morbidity and mortality in patients with diabetes. Moreover,

approximately 30%-40% of diabetic patients with DN (2). Patients

with DN require maintenance dialysis or a kidney transplant.

However, these therapy approaches bring a considerable

economic and psychological burden and consume substantial

medical resources. Therefore, promoting the amelioration of DN

is of vital clinical significance (3).

The pathogenesis of DN is complicated and still needs to be

determined. It has been proven that rigorous management of blood

pressure and blood glucose cannot prevent the progression of DN to

ESRD, nor can it prevent DN-related deaths. Developing the

understanding and research of DN’s pathogenesis is crucial for

expanding new methods for DN (4). Multiple pathways and

mediators, including oxidative stress, inflammation, and angiotensin

II (Ang-II), are involved in the incidence and progression of DN, of

which oxidative stress is the most prominent (5, 6). Chronic

hyperglycemia induces oxidative stress, promotes excess reactive

oxygen species (ROS) production, reduces antioxidant capacity,

induces the damage of oxidative stress in DNA and proteins, and

stimulates the immune system to release inflammatory mediators and

cytokines that affect glomerular capillaries and changes in renal tubular

structure and function, thereby exacerbating renal and systemic

damage. High glucose (HG)-induced overproduction of ROS is the

primary initiator of cell damage in diabetes and its complications. For

DN, although several therapies have been developed (7), such as

Sodium-glucose cotransporter 2 (SGLT2), which effectively reduces

inflammation and oxidative stress and has been shown to reduce the

risk of major adverse events and progression of renal disease in patients

with T2D, the ultimate treatment effect is not satisfactory (8).

Natural products, primarily from herbal sources, have long been

explored as sources of drugs to treat a variety of major diseases. To date,

significant efforts have been made to support and validate the potential

effectiveness of natural and synthetic products in experimental studies

and clinical applications, and indicating the antioxidant effects for

kidney (9, 10). In preclinical studies, many natural products have

recently been reported to alleviate kidney disease by modulating

oxidative stress and inflammation (11). As a natural product,

polyphenols are widely distributed in most plants and classified as

phenolic acids, flavonoids, stilbenes, and lignans according to their

structural properties (12).Nuclear factor E2-related factor 2 (Nrf2) is a

significant regulator of antioxidant enzymes that protect the body from

oxidative stress and inflammation, and Nrf2/antioxidant response

element (ARE) signaling has been suggested as a promising target

against oxidative stress-mediated diseases, such as diabetes and fibrosis.

Dietary polyphenols, such as resveratrol, curcumin, and quercetin, can

modulate Nrf2 signaling by mediating various kinases upstream of

Nrf2 and also directly activate the expression of Nrf2 as well as

downstream targets, such as heme oxygenase 1(HO-1) superoxide

dismutase(SOD), and catalase (CAT), to inhibit oxidative stress and

regulate inflammatory mediators (13–15).

Polyphenols exhibit anti-diabetic potential by reducing

intestinal glucose absorption, increasing insulin secretion from

pancreatic cells, and modulating gut microbiota and its

metabolites (16–19). Natural polyphenols have wide-ranging
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pharmacological activities, particularly antioxidant activity and

free radical-scavenging ability; moreover, they have been

gradually used in the research of DN in recent years (20). This

review provides a comprehensive summary of oxidative stress and

oxidative stress-induced inflammation in DN and polyphenols

targeting oxidative stress and inflammation to delay the

progression of DN, which provides new insights into polyphenols

as promising drug candidates for DN.
2 Oxidative stress and inflammation
in DN

2.1 Role of oxidative stress

Oxidative stress is defined as an excessive accumulation of ROS

caused by an imbalance between oxidants and antioxidants, resulting in

oxidative damage to the body. Moderate ROS-mediated damage can

usually be reversed, but excessive ROS production beyond the self-

regulatory process often leads to irreversible damage to cellular

function or death (21).ROS includes superoxide anion, hydrogen

peroxide (H2O2), nitric oxide (NO), hydroxyl radical, and

peroxynitrite (22). Mitochondria induce the production of ROS

through the mitochondrial respiratory chain, which is the primary

source of ROS. Other sources include nicotinamide adenine

dinucleotide phosphate (NADPH) oxidase (NOX), changes in

glucose metabolism, including polyol pathway flux, and changes in

hemodynamics, advanced glycation end products (AGEs), and protein

kinase C (PKC) (23, 24). Basal ROS levels are critical for maintaining

various cellular tissue functions, such as gene expression, molecular

transcription, and signaling transduction (25). However, excessive ROS

accelerates pathological states, including the progression of DN,

whereas the antioxidant defense system is activated to eliminate ROS

generated from varied sources. Antioxidant enzymes include SOD,

glutathione peroxidase (GSH-Px), CAT, glutathione reductase (GR),

and paraoxonase (26). As markers of oxidative damage,

malondialdehyde (MDA) and protein carbonyl can exacerbate

oxidative damage in the body. Oxidative stress significantly affects

the cause, onset, and process of DN, and hyperglycemia triggers the

activation of the polyol pathway, AGEs, the receptor for advanced

glycation end products (RAGE), and PKC. AGEs-RAGE signaling

pathway activation potentiates the action of NOX and stimulates the

production of ROS (27). Subsequently, ROS further interacted with

NOX, aggravating the production of ROS (28). DN is associated with

hypoxia, the generation of Ang II, and the production of ROS, leading

to actin cytoskeleton reorganization of the podocyte, which induces

podocyte injury, disrupts the glomerular filtration barrier and triggers

proteinuria (29). Moreover, Ang II interferes with the formulation of

ROS via the PKC/NADPH oxidase pathway, and ROS production is

inhibited following the knockdown of PKC (30).
2.2 Oxidative stress and inflammation

Factors such as hyperglycemia and hypoxia induce oxidative

stress and inflammatory responses. Additionally, along with
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inducing tissue oxidative stress damage, the release of ROS triggers

the aggregation of inflammatory cells and the formulation of

inflammatory cytokines, growth factors, and transcription factors

related to the pathological process of DN (31). The infiltration of

inflammatory cells, such as lymphocytes, neutrophils, and

macrophages, contributes to kidney injury in DN (32). The

recruitment and differentiation of immune-inflammatory cells are

regulated by numerous inflammatory cytokines, such as nuclear

factor-kappaB (NF-kB), NOD-like receptor family pyrin domain

containing 3 (NLRP3), interleukin-1b (IL-1b), IL-6, tumor necrosis

factor-a (TNF-a), monocyte chemoattractant protein-1 (MCP-1),

intercellular adhesion molecule-1 (ICAM-1) and transforming

growth factor-b (TGF-b). These factors are expressed in renal

vascular endothelial cells (ECs), podocytes, mesangial cells (MCs),

fibroblasts, monocytes, macrophages, and renal tubular epithelial

cells (RTECs) (33). NF-kB, a key class of nuclear transcription

factors, is involved in immune-inflammatory responses, oxidative

stress, and apoptosis (34). NF-kB typically exists in the cytoplasm in

an inactive form, such as a heterodimer. It is transported to the

nucleus when stimulated by various factors, such as ROS. It binds to

the NF-kB binding site to activate the transcription of NF-kB and

promote the release of adhesion molecules and pro-inflammatory

factors, including MCP-1, ICAM-1, TGF-b1, IL-1b, IL-6, and TNF-
a, which can also regulate ROS level (35). HG induces the

expression of receptor activator of NF-kB in podocytes, which

increases the expression of NOX4 and P22phox and mediates the

progression of DN (36).

NLRP3 inflammasome is a multimeric protein complex that

induces physiological and pathological inflammatory responses by

sensing pathogens, mediates cell pyroptosis, and is a critical

downstream factor of NF-kB. Moreover, NLRP3 inflammasome

can be triggered by ROS, aggravating the inflammatory cascade and

cell damage. Additionally, it mediates the release of inflammatory

factors, triggers mitochondrial dysfunction, and promotes ROS

formation (37). The inhibition of NLRP3 inflammasome

improves renal function by markedly inhibiting HG-induced

activation of NF-kB p65, the production of mitochondrial ROS

(38). In in vivo and in vitro studies, HG induces infiltration of

inflammatory cells, including macrophages; stimulates the

formulation of inflammatory factors, including IL-1b, IL-6, MCP-

1, and TNF-a; triggers oxidative stress; induces MDA expression;

inhibits Nrf2 pathway activation; and diminishes the production of

downstream enzymes, such as HO-1, NADPH quinone

oxidoreductase-1 (NQO-1), GSH-Px, SOD and CAT (39, 40).

High mobility group box 1(HMGB1), a typical intranuclear

non-histone protein, reaches the nucleus by both active secretion

and passive release. Once transported to the cytoplasm, it is

involved in the immune response. In contrast, when released

outside the cell, it can act as a potent inflammatory mediator,

either alone or as part of a pro-inflammatory cascade response to

stimulate the immune system (41). Interestingly, HMGB1 is

regulated by ROS and NLRP3, translocates from the nucleus to

the cytoplasm, binds toll-like receptor (TLR)4, activates NF-kB, and
ultimately induces an inflammatory response (42).Relatively,

HMGB1 induces mitochondrial dysfunction, such as increased

ROS production and mitochondrial fission (43, 44).Conversely,
Frontiers in Immunology 03
H2O2 in the mitochondria and nucleus induces the formation

and secretion of HMGB1, which promotes inflammatory

responses (45).

Oxidative stress and inflammation interact in the pathological

mechanism of DN, disrupting the structure and function of the

kidney. The foot processes (FP) of podocytes are lost or fused,

which leads to podocyte hypertrophy and reduced levels of

podocyte-related proteins, such as nephrin and podocin (46)

adhesion and platelet thrombosis on ECs, which triggers

endothelial dysfunction (47) production of fibronectin (FN), and

collagen IV; and accumulation of extracellular matrix (ECM) in

MCs, which leads to glomerulosclerosis (48). The inhibition of NF-

kB translocation improves mesangial cell fibrosis and subsequently

improves ECM accumulation (49). Moreover, Epithelial-

mesenchymal transition (EMT) is induced by TGF-b, which is

closely related to tubulointerstitial fibrosis (50, 51). Many studies

support that oxidative stress and inflammation are interdependent

and interconnected processes that coexist in an inflammatory

environment. Inflammatory cells release large amounts of ROS at

the site of inflammation, leading to increased oxidative damage. In

addition, many ROS and oxidative stress products enhance the pro-

inflammatory response. Inhibition of inflammatory response and

oxidative stress, reduction in the number of renal collagen fibers

and glomerulosclerosis, restoration of glomerular barrier function,

persistent reduction in proteinuria (52), and reduction in the

generation of serum creatinine (Scr) and blood urea nitrogen

(BUN), recover renal function and ameliorate the process of DN

to ESRD (53, 54).
2.3 Renal impairment

Oxidative stress-induced kidney damage includes direct and

indirect mechanisms. ROS may damage the DNA, proteins, and

lipids of tissue cells, directly leading to pathological changes in the

glomeruli, renal tubules, and renal interstitium, including cellular

components, such as decreased levels of nephrin, podocin, and

podocyte-related proteins (55), fusion, and disappearance of FP,

hypertrophy, and apoptosis of podocyte (56). Oxidative

stress exacerbates the release of oxidative stress markers and

inflammatory mediators of vascular ECs, such as MDA, TNF-a,
and IL-6 (57). These factors reduce NO and endothelial NO

synthase expression levels, activating the endothelin-1 signaling

pathway (58) and exacerbating vascular smooth muscle cell aging

while inducing vascular calcification (59). ROS promotes the

expression of collagen IV, FN, and laminin and the accumulation

of ECM in HG-induced MCs (60, 61). Oxidative stress affects

autophagy (62) and promotes lipid accumulation (63), EMT, and

apoptosis in RTECs (64). Ultimately, oxidative stress exacerbates

progressive glomerular damage, tubular atrophy, and interstitial

fibrosis, leading to decreased renal function and renal failure (65).

As the primary source of ROS, the mitochondria are also the

organelles that supply energy to the body. The accumulation of

ROS can damage the mitochondria, including an imbalance of

mitochondrial fission and mitochondrial fusion, mitochondrial

mitophagy, downregulation of respiratory chain complexes,
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1185317
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jin et al. 10.3389/fimmu.2023.1185317
insufficient ATP synthesis, interruption of mitochondrial

membrane potential, the discharge of cytochrome-c and the

generation of caspase-3, leading to mitochondrial damage (66),

which are considered a significant factor in glomerular and tubular

necrosis and apoptosis (67, 68).

Indirectly, diversified signalling pathways, such as AGE-RAGE

(69), Kelch-like ECH-associated protein(Keap1)-Nrf2 (70), AMP-

activated protein kinase (AMPK)/Sirtuin-1 (Sirt1) (71), SIRT1-

forkhead transcription factor O (FOXO) (72), Sirt1 (73), NF-kB
(74) and HMGB1 could be induced by oxidative stress. These

pathways not only lead to oxidative stress injury but also

stimulate the release of inflammatory and apoptotic factors,

which induce inflammation and apoptosis. Primarily, oxidative

stress is linked with variations in renal hemodynamics and

metabolism, and chronic hyperglycemia-induced oxidative stress

can induce elevated levels of Ang-II and activation of PKC (75),

glycolipid disorders (76) and insulin resistance (77), which are

important stimulants that promote oxidative stress. Ang-II activates

NOX, which produces superoxide, thereby promoting renal

vascular remodeling and increasing preglomerular resistance

(78).PKC promotes significant upregulation of NOX4 and

enhances the generation of ROS (79). Additionally, PKC can lead

to insulin resistance and exacerbate insulin dysfunction (80).

Podocytes contain insulin receptors, maintain insulin signal

transduction and podocyte function, specifically knock out insulin

receptors on podocytes, decrease autophagy-related proteins, such

as Beclin1 and light chain 3 (LC3), cause autophagy disorders and

podocyte injury (81). HG can upregulate the expression of AGEs

and RAGE; induce the activities of PKCa, PKCb, and NOX4;

promote the production of ROS; destroy the mitochondrial

function of human renal MCs, and affect the renal function of

db/db mice (79). ROS induces the accumulation of excess lipids and
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the formulation of growth factors, including TGF-b, vascular
endothelial growth factor (VEGF), and inflammatory factors,

which are essential factors that lead to renal dysfunction and

subsequent nephropathy.ROS mediates HMGB1/mitochondrial

DNA signaling, promotes TLRs activation and inflammatory

responses, and exacerbates EMT in proximal renal tubular

epithelial cells (82) (Figure 1).
3 Overview of polyphenols

3.1 Chemistry of polyphenols

Polyphenols are secondary metabolites from various plants and

are widely found in foods and beverages of plant origin, and more

than 8000 polyphenols have been identified. Due to their

antioxidant, anti-inflammatory and immunomodulatory activities,

they play an essential role in the management of human health. In

recent years, they have attracted much attention from nutritionists

and food scientists due to their nutritional and therapeutic value

(83). According to chemical structure, polyphenols can be divided

into four major groups: Flavonoids, Stilbenes, Phenolic acids, and

Lignans. Flavonoids comprise 15 carbon atoms, including two

benzene rings (A Ring and B Ring) and a heterocycle (C Ring),

abbreviated as C6-C3-C6, with the presence of flavan nucleus.

Depending on the oxidation level of the C ring and hydroxylation

patterns, flavonoids can be classified as flavonols, flavones,

flavanones, anthocyanin, flavan-3-ols, and isoflavones (84). Non-

flavonoids, including Stilbenes, Phenolic acids, and Lignans.

Phenolic acids are the simplest compounds in the family of

polyphenols because they have only one phenolic ring, such as

ferulic acid, caffeic acid, and gallic acid (85). Stilbenes is a plant
FIGURE 1

Kidney damage is caused by oxidative stress and inflammation. Damaged cells including podocytes, ECs, MCs, and RTECs, causing podocyte injury,
the accumulation of extracellular matrix,epithelial-mesenchymal transition, cell apoptosis, etc., which eventually lead to irreversible glomerular
fibrosis and tubular damage, exacerbate the progression of DN.Ang II, Angiotensin II; FP, Foot processes; ECs, endothelial cells; MCs, mesangial cells;
RTECs, renal tubular epithelial cells; NO, nitric oxide; eNOS, endothelial nitric oxide synthase; TGF-b, transforming growth factor-b; ECM,
extracellular matrix;IL-1, interleukin-1; TNF-a, tumor necrosis factor-a; MCP-1, monocyte chemoattractant protein-1; ICAM-1, intercellular adhesion
molecule-1; VEGF,vascular endothelial growth factor; AGEs, advanced glycation end products; RAGE, receptor for advanced glycation end products;
NOX, nicotinamide adenine dinucleotide phosphate oxidase; PKC, protein kinase C; Nrf2, nuclear factor E2-related factor 2;AMPK, AMP-activated
protein kinase; SIRT1, Sirtuin-1; FOXO, forkhead transcription factor O; PGC-1a, peroxisome proliferator-activated receptor-g coactivator-1a;NF-kB,
nuclear factor-kappaB; DN, diabetic nephropathy;HMGB1,high mobility group box 1.
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polyphenol with a diphenylethylene backbone. Resveratrol is the

most representative compound among the stilbenes (86). Lignans

are compounds produced by the oxidative dimerization of two

phenyl propane units. Differences in the number of phenol units

and how they are combined lead to different physical, chemical, and

biological properties (87–89). In particular, the stability of

polyphenols is also affected by many structural features, such as

The hydrogenation of the C2=C3, hydroxylation, and

methoxylation (90) (Figure 2).
3.2 The action of polyphenols with
oxidative stress induced inflammation

Oxidative stress induced by ROS accumulation plays a pro-

inflammatory role in various diseases, and NOX is considered a

significant source of ROS. Inflammation inducers activate

membrane recognition receptors of the innate immune system,

such as TLR, which activate NOX and produce superoxide anion,

which is rapidly converted to H2O2 by SOD, and H2O2 activates the

Nrf2 signaling pathway to promote the release of antioxidant

enzymes such as HO-1. More importantly, H2O2 activates

inflammatory signaling pathways such as NF-kB, intensifying the

release of pro-inflammatory mediators and stimulating

inflammatory responses (91) (Figure 3).

Polyphenols have long been known for their antioxidant power

to scavenge ROS. However, the impact of polyphenols goes far

beyond this. Polyphenols can be indirectly anti-inflammatory

through antioxidant effects or directly alleviate inflammation by

modulating signaling pathways. The antioxidant capacity of

polyphenols is mainly attributed to the direct scavenging of

reactive oxygen species and the inhibition of reactive oxygen

species production. Polyphenols inhibit the activity of NOX and
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significantly inhibit the production of superoxide anion (92). The

phenolic ring structure of polyphenols can directly neutralize the

free radicals generated by lipid peroxidation (93). Polyphenols can

chelate metal ions, such as Fe3+, and prevent the conversion of

H2O2 to highly toxic HO• (94). More importantly, polyphenols can

promote the expression of antioxidant enzymes by enhancing

endogenous antioxidant capacity induced by the Nrf2 pathway

(95). Pomegranate polyphenols activate Nrf2 synapse, inhibit NF-

kB suppression, reduce cell ROS production, and protect against

drug-induced apoptosis (96). Resveratrol may activate the SIRT1/

Nrf2 pathway to reduce inflammation and endoplasmic reticulum

stress, effectively delaying the structural and functional decline of

various tissues and organs due to aging (97). Polyphenols also

enhance cellular antioxidant activity, inhibit pyroptosis and

alleviate metabolic disorders and inflammatory responses through

the Nrf2-NLRP3 axis (98).

While most studies suggest that polyphenols alleviate

inflammation thanks to their antioxidant and free radical

scavenging abilities, polyphenols can also directly modulate

inflammatory signaling pathways. Many polyphenols, such as

curcumin and resveratrol, have been reported to be potent

inhibitors of NF-kB, inhibiting NF-kB translocation to the

nucleus, inhibiting its binding from targeting DNA and

subsequent transcription of pro-inflammatory cytokines,

inhibiting phosphorylation or ubiquitination of signaling

molecules, and inhibiting degradation of IkB (99). Polyphenols

also target TLR4, the upstream of NF-kB, mitigating the

inflammatory response through the TLR4/NF-kB signaling

pathway (100). Resveratrol can suppress excessive inflammatory

responses by interfering with HMGB1-mediated activation of the

TLR4/NF-kB signaling pathway (101). Resveratrol suppresses

HMGB1 expression through upregulation of miR-149, inhibits

the ferroptosis formation pathway, and ameliorates injury (102).
FIGURE 2

Classification and chemical structure of polyphenols. The structures of common polyphenol representatives (Created with BioRender.com.).
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Also, resveratrol can mitigate downstream inflammatory responses

by activating sirt1 and inhibiting the nucleoplasmic translocation

and extracellular release of HMGB1 (103). Interestingly, a

metabolomic study demonstrated the different roles of

polyphenols in lipopolysaccharide-induced mouse embryonic

fibroblast cells, with Theobroma cacao exerting mainly

antioxidant properties and Lippia citriodora exerting anti-

inflammatory effects mainly based on the reduction of pro-

inflammatory cytokine and MCP-1 production, it was confirmed

that the anti-inflammatory function of polyphenols could not be

attributed to one mechanism of action but rather the coordination

between different pathways and mechanisms (104) (Figure 4).
3.3 Polyphenols in DN

Some polyphenols have been widely used to repair molecules

after free radical damage and modulate various dysregulated

mediators and pathways, such as directly or indirectly blocking

the production of ROS and alleviating the process of oxidative stress

and inflammatory response, suggesting that polyphenols are an

alternative approach to mitigate DN progression. In this review,

“polyphenols”, “flavonoids”, “stilbenes”, “phenolic acids”, “lignans”,
Frontiers in Immunology 06
“flavonols”, “flavones”, “flavanones”, “anthocyanin”, “flavan-3-ols”,

“isoflavones”, “diabetic nephropathy”, “diabetic kidney disease” as

search topic words in Web of Science, and combining, de-

duplicating to screen polyphenols as the primary intervention

preclinical studies. (Table 1) (Figure 5).

3.3.1 Flavonoids
3.3.1.1 Quercetin

Quercetin, a polyphenol flavonoid, is ubiquitous in plants.

Studies have shown that quercetin has a variety of biological

activities, including scavenging free radicals and preventing lipid

peroxidation in the body. Furthermore, it has anti-inflammatory

properties and prevents diabetes complications (151, 152).

Quercetin in streptozotocin (STZ)-induced DN rats can effectively

reduce BUN and Scr levels, increase the formulation of nephrin and

podocin while decreasing desmin in DN rats, relieve podocyte

effacement (125) and improve renal pathological changes,

including glomerular volume atrophy, high ECM and glycogen

deposition, basement membrane thickening and tubulointerstitial

fibrosis (123, 126). Further research illustrated that quercetin

upregulated the formulation of SIRT1, activated the Nrf2/HO-1

pathway (128), inhibited the AGE-RAGE pathway (153), enhanced

the expression of SOD, GSH-Px, and CAT (127), decreased the
FIGURE 3

Interaction between oxidative stress and inflammation. Oxidative stress and inflammation interact with each other, and both of which constitute a
vicious oxidative stress-inflammation cycle.TLR, toll-like receptor; IKK, IkB kinase; NF-kB, nuclear factor-kappaB; HMGB1, high mobility group box 1;
Sirt1, sirtuin 1; Nrf2, nuclear factor E2-related factor 2; Keap, Kelch-like ECH-associated protein; NOX, NADPH oxidase; RAGE, receptor for advanced
glycation end products; ER, endoplasmic reticulum; ROS, reactive oxygen species; NLRP3, NOD-like receptor family pyrin domain containing 3
(Created with BioRender.com.).
frontiersin.org

http://www.biorender.com
https://doi.org/10.3389/fimmu.2023.1185317
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jin et al. 10.3389/fimmu.2023.1185317
MDA, elevated the HDL (high density lipoprotein) content,

decreased the expression of triglyceride (TG) and low-density

lipoprotein (LDL), and regulated renal lipid accumulation.

Additionally, quercetin decreased the expression of NF-kB, TNF-
a, IL-1b, ICAM, and ICAM-1 (124). Vitro studies indicated that

quercetin promoted the expression of SOD, GSH-Px, CAT, and

SIRT1, and reduced the formulation of MDA, TNF-a, IL-1b, IL-6,
TGF-b1, Smad 2/3, type IV collagen and laminin (154–156). There

is consistent with a recent systematic study that reported that

quercetin significantly decreased renal index, Scr, BUN, urine

albumin, MDA, TNF-a, and IL-1b and increased the activities of

SOD. Furthermore, CAT alleviated the degree of oxidative stress in

animal models of DN (157). It is also proposed that the optimal

dose for preclinical experiments is 90-150 mg/kg/day, and the

administration time is 2-4 months (158).

3.3.1.2 Puerarin

Puerarin is a natural isoflavone of Pueraria lobata (gegen),

extensively found in food and Chinese herb medicine in East

Asian countries. Puerarin has cardioprotective, antioxidant, and

anti-inflammatory properties. Moreover, it exerts anti-diabetic

activity by insulin secretion and maintaining metabolic

homeostasis in STZ-induced diabetic mice (159). Furthermore, it

can improve diabetes and other complications, including DN, by

reducing the formation of AGEs and delaying oxidative stress (160).

The SIRT1/FOXO1 signaling pathway is firmly related to the
Frontiers in Immunology 07
progression of DN. Studies have noted that activating the SIRT1/

FOXO1 signaling pathway can increase SOD, CAT, and GSH-Px

concentration and ameliorate renal injury in DN (161).

Additionally, the SIRT1/FOXO1 signaling pathway can induce the

expression of mitochondrial PGC-1a and improve mitochondrial

function and ROS production (133). SIRT1 inhibited the NF-kB
activity through deacetylation, and the expression of IL-6, TNF-a,
and NOX4 was decreased, blood glucose, BUN, Scr, albuminuria,

and urinary albumin to creatinine ratio (UACR) was ameliorated

(134). Moreover, Puerarin directly diminished the formulation of

ROS and FP effacement, restored the regular expression of nephrin

and podocin of podocytes, decreased the formulation of matrix

metalloproteinase-9 (MMP-9) and type IV collagen, and restored

podocyte injury (135).

3.3.1.3 Other flavonoids

In DN models, baicalin (162), apigenin, and silybin have been

found to promote Nrf2 translocation into the nucleus. Genes

induced by ARE are activated, such as HO-1 and NQO-1,

accompanied by various antioxidant enzymes, such as GSH-Px,

SOD, and CAT. However, the activity of MDA has been inhibited

(39). Moreover, the concentration of IL-1b, IL-6, MCP-1, and TNF-

a has been decreased, and the levels of FN and TGF-b1 that induced
renal fibrosis have been reduced (129). Luteolin (163) promotes the

expression of HO-1; reduces the expression of MDA, FN, a-SMA,

collagen I, and collagen IV; and decreases the proliferation of MCs
FIGURE 4

Polyphenols regulate oxidative stress and inflammation. The location of the polyphenol structure diagram in the figure is the critical node of
polyphenol regulation. TLR, toll-like receptor; NF-kB, nuclear factor-kappaB; HMGB1, high mobility group box 1; Sirt1, sirtuin 1; Nrf2, nuclear factor
E2-related factor 2; NOX, NADPH oxidase; ROS, reactive oxygen species; NLRP3, NOD-like receptor family pyrin domain containing 3 (Created with
BioRender.com.).
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TABLE 1 Effects of polyphenols on DN.

Name Model Dosage Effect↓ Effect↑ Ref

Resveratrol

db/db 10mg/kg/d,12 w FBG,SCr,BUN,TC,TG,MDA,desmin, SOD,podocin,nephrin (105)

STZ 5mg/kg/d,8 w FBG,SCr,TGF-b1,MDA,FN,NF-kB,
CAT,SOD, GPx,GSH,Nrf2,Sirt1,

FoxO1
(106)

db/db 20mg/kg/d,12w TGF-b1, ECM, Bax
AMPK,PPARa,FoxO1,FoxO3a,

PGC-1a,eNOS,Bcl-2
(107)

STZ 5 mg/kg/d,30d
FBG,TNF-a, IL-1b, IL-6,NF-kB,superoxide anion,hydroxyl radical,

NO,Keap1
CCR, SOD, CAT, GPx, Nrf2, GR,

HO-1
(108)

STZ 0.1,1mg/kg/d,7d FBG,BUN,SCr,TG,the superoxide anion, carbonyl, IL-1b, AMPK (109)

STZ 30mg/kg/d,16 w FBG, MDA,UP-24H CCR,SIRT1,SOD,CAT,FOXO3 (110)

STZ 30mg/kg/day,12w FBG,BUN,TC,proteinuria,MDA, Mn-SOD,SIRT1,PGC-1a (111)

STZ 5,10 mg/kg/d,2w FBG, SCr, BUN,
MDA,

CCR, GSH, SOD, CAT,
(112)

STZ 20 mg/kg/d,8w FBG, urea,SCr, MDA, SOD, GPX (113)

db/db 20 mg/kg/d,12w FBG, SCr, albuminuria, type IV collagen, TGF-b1, Bax,caspase-3
CCR,AMPK, SIRT1,PGC-1a,

FOXO3a,Bcl-2,SOD
(114)

db/db 40 mg/kg/d,12w FBG,SCr,BUN,MDA,NOX4,EMT,a-SMA,E-cadherin,TGF-b,IGF-1R SOD, HRD1 (115)

Curcumin

STZ
80,130 mg/kg/

d,60 d
FBG, SCr, urea, TC, TG, LDL-C, MDA, ROS, HDL-C, TAC, NO (116)

OLETF 100 mg/kg/d,20w FBG, UACR, MDA, SOD,Nrf2/Keap1,HO-1,AMPK (117)

STZ 100 mg/kg/d,8w
FBG,Cr,BUN,UACR,PKC,NOX4,MDA,TGF-b1,CTGF, type IV

collagen,FN,VEGF,p300
CCr, GPx (118)

STZ 15,30 mg/kg/d,2w FBG,SCr,BUN,proteinuria,BUN,MDA CCR, GSH, SOD, CAT (119)

STZ 10mg/kg/d,56d 24hUP,FN,TGF-b1,8-hydroxy-2’-deoxyguanosine (120)

STZ
50,100,200mg/kg/

d, 8w
24hUP,UACR,MDA,ROS,caspase-3,Bax CCR, SOD, Bcl-2 (121)

STZ 100mg/kg/d,12w
FBG,urea,BUN,SCr,collagen II/III,TGF-b1,cytochrome-c,caspase-3,

NF-kB,PKC,.NADPH oxidase
CCR, MnSOD, GSH, Bcl-2, Nrf2,

FOXO-3a
(122)

Quercetin

STZ 50 mg/kg/d,8w FBG,24hUP,BUN,Scr,TNF-a,IL-1b,AGEs,MDA SOD, GSH-Px (123)

STZ 10mg/kg/d,8w FBG,BUN,Scr,MDA,TG,LDL,ACR,ICAM-1 SOD, HDL (124)

STZ
50,100mg/kg/

d,12w
BUN,TG,MDA,desmin,TGF-b1,Smad2, Smad3 Ccr, SOD, GSH, nephrin, podocin (125)

STZ 10 mg/kg/d,4w FBG, TC, TG, proteinuria, urea,Cr, superoxide anions (126)

STZ 50mg/kg/d,5w FBG,urea,BUN,SCr,TGF-b,TNF-a, IL-6 TAC, GSH and CAT (127)

STZ 100mg/kg/d,15d FBG,urea,BUN,MDA,NF-kB, SOD,CAT,SIRT1 (128)

Baicalin STZ 40mg/kg/d,7d TNF-a,NLRP3,MDA,P65,a-SMA,FN,TGF-b1 SOD,CAT,GPX (129)

db/db 400mg/kg/d,8w ACR,AER,MDA, IL-1b, IL-6, MCP-1,TNFa GSH-PX,SOD,CAT,Nrf2,HO-1,
NQO-1

(39)

Naringenin
STZ 25,50mg/kg/d,4w MDA GSH,CAT,SOD (130)

STZ 5,10mg/kg/d,10w TC,TG,LDL, VLDL, SCr,UA,TGF-b1,IL-1b HDL,SOD,CAT,GSH (131)

Silibinin
db/db 15,30 mg/kg/

d,10w
BUN, SCr,UA, MDA SOD, GSH-Px (132)

Puerarin

STZ 20,40,80mg/kg/
d,8w

FBG,BUN, Scr,24hUP,IL-6,TNF-a, ROS,NF-kB MnSOD,CAT,SIRT1,FOXO1,
PGC-1a

(133)

STZ 20 mg/kg/d,8w UACR,NOX4,NF-kB SIRT1 (134)

(Continued)
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and excessive accumulation of ECM (140). The expression of

STAT3 is highly correlated with oxidative stress and

inflammatory response. Luteolin effectively inhibits the activation

of STAT3 (139). Mangiferin inhibits the activation of the AGEs/

RAGE axis, and PKCs reduce the phosphorylation of PI3K/Akt and

improve the inflammation and oxidative stress in DN (141).

Furthermore, similar to naringenin (131), the levels of TC, TG,

LDL, and VLDL(very-low-density lipoprotein) were decreased, and

the HDL level is raised, which improves lipid peroxidation by

targeting oxidative stress and inflammation, cyanidin-3-O-

glucoside (C3G) decreases the formulation of Smad2 and Smad3

while enhancing Smad7. It also improves renal pathological and

functional changes, including the degree of renal fibrosis, SCr, BUN,

urinary albumin, and ACR (137, 164). Eriodictyol can obstruct the

production of NOX2, NOX4, directly shorten the production of
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ROS andMDA and protect MCs from HG stimulation by inhibiting

the production of FN, collagen IV, and ECM (165). Notably,

phloretin can directly restore nephrin and podocin levels and

improve the disappearance of FP of podocytes (166).

Furthermore, the inhibition of oxidative stress by apigenin in

vitro has demonstrated the activation of Nrf2, HO-1, SOD, and

CAT activities; downregulated the generation of TNF-a, IL-1b, and
IL-6; inhibited the Nrf2, leading to the disruption of apigenin

contrary to HG-induced oxidative damage was disrupted (167).

3.3.2 Stilbenes
3.3.2.1 Resveratrol

Resveratrol is a natural polyphenolic antioxidant. It has various

biochemical and physiological properties, including antioxidant,

anti-inflammatory, anti-diabetic, anti-obesity, cardiovascular
TABLE 1 Continued

Name Model Dosage Effect↓ Effect↑ Ref

STZ 100mg/kg/d,7d FP effacement,ROS,MMP-9,collagen IV nephrin,podocin (135)

Cyanidin-3-O-
glucoside

STZ 10,20mg kg/d,8w Scr,BUN,UA,ROS,MDA,TNF-a, MCP-1, IL-1b,IL-6,NF-kB, TGF-b1,
Smad2,Smad3

SOD,GPX,CAT,Smad7 (136)

db/db 10,20mg kg/d,12w BUN,SCr,UA,ACR,collagen IV, FN,TGF-b1, MMP9,TG,TC,TNF-a,
IL-1a, MCP-1

GCLC,GCLM,GSH (137)

Apigenin STZ 25,50mg/kg/d,30d MDA,IL-1b,IL-6,TNF-a Nrf2, HO-1,SOD,CAT (138)

Luteolin

db/db 10mg/kg/d,12w Fn, a-SMA, collagenI,collagen IV,IL-1b,IL-6,TNF-a,IL-17A,MDA,
STAT3

SOD (139)

STZ 200 mg/kg/d,8w BUN, SCr,24h UP,TC,TG,LDL,MDA HDL,SOD,HO-1 (140)

Mangiferin

STZ 40mg/kg/d,30d BUN,SCr,UA,ROS,Collagen,PKCs,MAPKs, NF-kB,TGF-b1,TNF-a,
caspase 8,MMP

GSH,CAT, SOD, GPX,GR,Bcl-2,
Bcl-xl

(141)

STZ 15,30,60mg/kg/
d,4w

FBG,TG,TC,BUN,SCr,UA,FN,collagen I,a-SMA,TNF-a,IL-6,IL-1b,
MDA,ROS,TGF-b1,PI3K, Akt

SOD,CAT,GSH-Px (142)

STZ 15,30,60mg/kg,9w AER,BUN,AGEs,RAGE,MDA GSH (143)

Ferulic Acid

STZ 50mg kg/d,8w BUN,SCr,UACR,AGEs,ROS,NO,MDA,MAPK,TNF-a, IL-1b, and IL-
6, MCP-1,ICAM-1,VCAM-1,NF-kB,

SOD2,CAT,beclin-1,LC3-II (144)

STZ 100mg kg/d,8w BUN,Cr,FBG,TC,TG,MDA,NF-kB p65,TNF-a,TGF-b1,collagen IV SOD, CAT, GPx, nephrin,
podocin

(145)

OLETF 10mg/kg/d,20w 24h UP, ACR, MDA, MCP-1, TGF-b1, collagen IV, ROS (146)

Caffeic Acid alloxan 50mg kg/d,7d TC, TG, LDL,VLDL, MDA HDL (147)

Ellagic acid
STZ 50,100,150 mg/

kg/d,4w
MDA,TNF-a,TLR4,IRAK4,TRAF6,IKKb,NF- Kb T-SOD (148)

Chlorogenic
acid

STZ 10, 20 mg/kg/d
for 6 weeks

FBG, BUN, Cr, MDA SOD, GSH-Px, CAT, Bcl-2 (149)

STZ 10 mg/kg daily
for 8 weeks,

BUN,proteinuria,MDA,IL-6,TNF-a,IL-1b,NF-ĸB CCR, SOD, GSH-Px, Nrf2, HO-1 (150)
frontier
STZ, streptozotocin; FBG, fasting blood glucose; Scr, serum creatinine; BUN, blood urea nitrogen; TG, triglyceride; TC, total cholesterol; SOD, superoxide dismutase; MDA, malondialdehyde;
TGF-b, transforming growth factor-b; GSH-Px, glutathione peroxidase; CAT, catalase; FN, fibronectin; NF-kB, nuclear factor-kappaB; Nrf2, nuclear factor E2-related factor 2; HO-1,
hemoxygenase 1; Keap1, Kelch-like ECH-associated protein; SIRT1, Sirtuin-1; FOXO, forkhead transcription factor O; PPARa, peroxisome proliferator-activated receptor a; ECM, extracellular
matrix; PGC-1a, peroxisome proliferator-activated receptor-g coactivator-1a; NO, nitric oxide; eNOS, endothelial NO synthase; Bcl-2, B-cell lymphoma-2; Bax, BCL-2 associated X; CCr,
creatinine clearance; IL-1b, interleukin-1b; TNF-a, tumor necrosis factor-a; GR, glutathione reductase; UP24H, 24h urine protein; EMT, epithelial-mesenchymal transition; a-SMA, a-smooth
muscle actin; IGF-1R, IGF-1 receptor; HRD1, 3-hydroxy-3-methylglutaryl reductase degradation; HDL, high density lipoprotein; LDL, low density lipoprotein; TC, total cholesterol; VLDL, very-
low-density lipoprotein; CCr, creatinine clearance; TOS, total oxidant status; TAC, total antioxidant capacity; UACR, urinary albumin to creatinine ratio; GGT, g-glutamyltranspeptidase; CTGF,
connective growth factor; ROS, eactive oxygen species; H2O2, hydrogen perxide; NADPH, nicotinamide adenine dinucleotide phosphate; NOX, NADPH oxidase; AGEs, advanced glycation end
products; PKC, protein kinase C; AMPK, AMP-activated protein kinase; VEGF, vascular endothelial growth factor; 24hUP, 24-hour urinary protein; MnSOD, manganese superoxide dismutase;
ACR, albumin/creatinine ratio; ICAM-1, intercellular adhesion molecule 1; OLETF, Otsuka-Long-Evans-Tokushima Fatty; AER, albumin excretion rate; NQO-1, quinone oxidoreductase-1;
MCP-1, monocyte chemotactic protein-1; GCLC, glutamate-cysteine ligase catalytic subunit; GCLM,glutamate-cysteine ligase modifier subunit; MMP, mitochondrial membrane potential; TLR4,
Toll-like receptor 4. Effect↓: decrease; Effect↑: increase.
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protection, and anti-tumor features (168). Resveratrol exerts its

renoprotective effects through multiple mechanisms, including

reducing oxidative stress and AGE production, inhibiting

endoplasmic reticulum stress and inflammation; improving

lipotoxicity; stimulating autophagy (169); and activating a variety

of pathways, including Nrf2, AMPK, SIRT1and FOXO3a. A

systematic review showed that resveratrol could apply its

antioxidant activity by reducing the production of MDA and

restoring the action of SOD, CAT, and GSH-Px (170); decreasing

4-hydroxynonenal, an indicator of lipid peroxidation (171); and

inhibiting the formation of ROS and lip peroxidation (172).

Resveratrol activates antioxidant enzymes and decreases the

secretion of superoxide anion, hydroxyl radical, TNF-a, IL-1b,
IL-6, and NF-kBp65 by targeting the Nrf2-Keap1 signaling

pathway; moreover, it improves the thickened basement

membrane, leading to loss of FP (108). AMPK activation also has

ameliorating effects on oxidative stress (169).AMPK inhibits HG-

induced expression of NOX; decreases the content of FN and the

proliferation of MCs; prevents EMT of RTECs (173, 174); restores

podocyte-related proteins to normal, including nephrin, podocin,

and desmin; and ameliorates mesangial matrix expansion, tubular

basement membrane thickening, and glomerular hypertrophy in

db/db mice of DN (105). Additionally, AMPK mediates the

upregulation of SIRT1; activates the SIRT1/peroxisome

proliferator-activated receptor a(PPARa)/FoxO pathway;

heightens the generation of CAT, SOD, and GSH-Px; and
Frontiers in Immunology 10
decreases the expression of MDA, TGF-b1, FN, NF-kBp65, SCr,
and urinary protein. In Silencing SIRT1, the protective effects are

suppressed (106, 107, 110). Resveratrol elevates the concentration of

Mn-SOD. Furthermore, it repairs the expression of SIRT1 and

peroxisome proliferator-activated receptor-g coactivator-1a(PGC-
1a) and reestablishes the activity of respiratory chain complexes I

and III and mitochondrial membrane potential. Furthermore, it

inhibits the transport of Cyto C from the mitochondria to the

cytoplasm and delays the progression of apoptosis in glomerular

podocyte and tubular epithelial cells (111).

3.3.2.2 Curcumin

Curcumin is an acidic polyphenol with unsaturated aliphatic

and aromatic groups as the main chain, which is more common in

turmeric (Curcuma longa L.) and Curcumae Rhizoma. The

Pharmacological activities of Curcumin include antioxidant, anti-

inflammatory, immunomodulatory, and anti-renal fibrosis. A

previous study reported that Curcumin mediates the upregulation

of GSH-Px, SOD, and other antioxidant factors by activating the

antioxidant Nrf2/HO-1 pathway. Furthermore, it downregulates

the expression of MDA and ROS effectively promotes improvement

of the urinary protein excretion rate (175), elevates the expression of

nephrin, and repairs podocyte injury (176). Additionally, Curcumin

protects RTECs from HG-induced EMT via Nrf2-mediated

upregulation of HO-1, which consequently knocks down Nrf2

and inhibits the upregulation of HO-1 (177). Curcumin activates
FIGURE 5

The polyphenols improve DN by regulating the Ang II signaling pathway. Hyperglycemia induces the formation of large amounts of Ang II, which
binds to the AT(1)R) in the kidney, activating NOX, contributing to superoxide formation, triggering oxidative stress and inflammation, and resulting in
renal vascular remodeling. Ang II, Angiotensin II; AT(1)R, Ang II type 1 receptor; NOX, NADPH oxidase; NF-kB, nuclear factor-kappaB; Nrf2, nuclear
factor E2-related factor 2; NLRP3, NOD-like receptor family pyrin domain containing 3; IKK, IkB kinase; Keap, Kelch-like ECH-associated protein;
SOD, superoxide dismutase; NO, nitric oxide;eNOS, endothelial nitric oxide synthase. (Created with BioRender.com.).
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the phosphorylation of AMPK, significantly increases the protein

rate of Nrf2/Keap1, increases the activity of the antioxidant enzyme,

and attenuates the expression of MDA, kidney injury molecule-1,

and neutrophil gelatinase-associated lipocalin (116, 117).

furthermore, it reduces the incidence of lipid accumulation,

tubular dilatation, and glomerular sclerosis (178). Curcumin

prohibited the activity of PKC and the expression of NF-kB,
NADPH oxidase, collagen I/III, and TGF-b1. Also, it increases

the protein levels of FOXO-3a, Nrf2, manganese SOD, GSH-Px, and

B-cell lymphoma-2(Bcl-2); inhibits the generation of cytochrome-c

and the production of caspase-3; and prevents damage to the

mitochondria, renal tubules and mesangial cell (179). A

systematic review of randomized displayed that Curcumin had

some beneficial effects on various parameters, including

inflammation or oxidative stress, in patients with renal disease

(180). A randomized, double-anonymized trial assessing the redox

status of dietary Curcumin supplementation (320 mg/d) in patients

with non-diabetic or diabetic proteinuria confirmed that Curcumin

enhanced the antioxidant capacity of diabetic proteinuric

patients while attenuating lipid peroxidation in non-diabetic

patients, suggesting a therapeutic effect of dietary Curcumin

supplementation (181). In vitro studies have also found that

Curcumin effectively reduces oxidized LDL isolated from human

plasma-related markers such as conjugated diene, lipid peroxides,

and lysolecithin, preventing oxidation and lipid modification of

LDL (182).

3.3.3 Phenolic acid

Multiple phenolic acids have been used, including ferulic,

chlorogenic, caffeic, ellagic, etc. Phenolic acids have various

functions, such as regulating blood sugar and lipids, anti-

oxidation, anti-inflammatory, and anti-fibrosis. Hyperglycemia

triggers oxidative stress, leading to the formulation of mitogen-

activated protein kinases (MAPK). Ferulic acid inhibits the

activation of MAPKs and decreases the expression of ROS, NO,

carbonyl, MDA, and inflammatory factors and adhesion molecules,

including NF-kB, TNF-a, IL-1b, and IL-6, MCP-1, ICAM-1 and

vascular cell adhesion molecule-1. Moreover, it increases the levels

of Beclin-1 and LC3-II (144). Long-term treatment with ferulic acid

significantly downregulated the expression of p-NF-kB p65, TNF-

a, TGF-b1 and type IV collagen protein, and MDA in renal tissue;

increased the activity of SOD, CAT, GPx; and upregulated the levels

of nephrin and podocin, which improved podocyte injury and

reduced the serum levels of BUN, Cr, fasting blood glucose

(FBG), TC (total cholesterol), TG by alleviating oxidative stress,

inflammation and fibrosis in STZ-induced DN rats (145).

Chlorogenic acid and caffeic acid increased renal formulation of

Nrf2 and HO-1 and increased the activity of SOD and GSH-Px.

Furthermore, they decreased the formulation of NF-ĸB, IL-6, TNF-

a, and IL-1b (150, 183). Chlorogenic acid can also alleviate

endoplasmic reticulum stress, promote the formulation of anti-

apoptosis factors, such as Bcl-2, attenuate the proliferation of MCs

and mesangial expansion, and reduce the levels of FBG, BUN, and

Cr (149). Caffeic acid reduces the activation of NOX; decreases the

generation of ROS; and heightens the action of antioxidant
Frontiers in Immunology 11
enzymes, including T-SOD, GPx, and GSH (184), thereby

reducing the levels of MDA (148). Mainly, ellagic acid

significantly inhibits the activation of renal NF-kB, IL-1b, IL-6,
and TNF-a. Additionally, it decreases the generation of TGF-b and

fibronectin in renal tissue (185).
4 Conclusion and prospect

This review summarizes oxidative stress and oxidative stress-

associated inflammation that lead to changes in renal cell structure

and function in DN. Oxidative stress is recognized as a powerful

mechanism for the occurrence and progression of DN.DN, a

common complication of DM, has become a significant cause of

end-stage renal disease. Even though the pathogenesis of DKD is

complex, oxidative stress has been proposed to be central to the

pathogenesis of DKD. Hyperglycemia activates signaling pathways

such as AGE/RAGE and Ang II, which induce large production of

ROS. Large amounts of ROS activate NF-kB, TGF-b1, AMPK, and

other pathways, which induce renal inflammation, autophagy, and

fibrosis, triggering abnormal kidney structure and function. In

addition, oxidative stress also interacts with other factors in disease

progression. ROS are not only messengers of various signaling

pathways but also regulators of various cellular metabolism,

proliferation, differentiation, and apoptosis. Oxidative stress is

accompanied by tissue inflammation, apoptosis, and tissue fibrosis,

and in particular, oxidative stress and inflammation are considered to

be in a causal relationship, with many factors exacerbating the

progression of DKD (186). Oxidative stress induces excessive

production of ROS, activates signaling pathways and transcription

factors, mediates the infiltration and recruitment of inflammatory

cells, such as macrophages and monocytes, and promotes the

production of inflammatory factors. Conversely, the formulation of

inflammatory mediators can further produce ROS, which aggravates

oxidative stress, and oxidative stress and inflammation collaborate to

affect the progression of DN. As a natural compound with

antioxidant and anti-inflammatory properties, polyphenols can

ameliorate or reverse cell damage and pathological changes of DN

and are considered to be attractive drugs against DN by targeting

signaling pathways, including Nrf2, NF-kB, AMPK, and SIRT1.

However, the complex regulatory mechanism of polyphenols in

DN has not been thoroughly demonstrated, and inhibition of renal

damage and restoration of structure and function should be the core

of alternative polyphenol therapy. Therefore, more studies are needed

to elucidate polyphenols and how to repair kidney injury and

improve kidney function.

Polyphenols exhibit various biological activities, such as

antioxidant and anti-inflammatory. Multiple clear experimental

evidence suggests that long-term intake of polyphenols can

effectively improve the progression of chronic diseases, including

DN. However, there are still some limitations, polyphenols are

famous for their potent antioxidant properties, but in some cases,

such as in reaction systems rich in redox-active metals (e.g., iron,

copper), flavonoids have a pro-oxidant effect, reducing the clearance

of ROS and inducing mitochondrial toxicity (187). In addition, the

lack of pharmacokinetic measurements of ingested polyphenols and
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the correct dose remains a challenge, so the application should be

tailored to the purpose and the selection of the appropriate dose and

mode of action. Moreover, the evaluation of the efficacy of

polyphenols in combination with other conventional treatments for

DN and the specific mechanism of action remains to be investigated.

Many natural products did not enter clinical trials or were terminated

due to reduced oral utilization or activity, which may limit their

widespread clinical application, and further studies are needed to

overcome these limitations and to bridge the gap between preclinical

and clinical studies of natural products. It is worth noting that the

clinical translation of DN therapies from natural products is still a

long process.
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Glossary

DM Diabetes mellitus

T1D type 1 diabetes

T2D type 2 diabetes

DN Diabetic nephropathy

DKD diabetic kidney disease

CKD chronic kidney disease

ESRD end-stage renal disease

Ang II Angiotensin II

ROS reactive oxygen species

HG high glucose

SGLT2 sodium-glucose cotransporter 2

Nrf2 nuclear factor E2-related factor 2

ARE antioxidant response element

HO-1 heme oxygenase 1

SOD superoxide dismutase

CAT catalase

H2O2 hydrogen perxide

NO nitric oxide

NADPH nicotinamide adenine dinucleotide phosphate

NOX NADPH oxidase

AGEs advanced glycation end products

PKC protein kinase C

GSH-Px glutathione peroxidase

GR glutathione reductase

MDA malondialdehyde

RAGE receptor for advanced glycation end products

NF-kB nuclear factor-kappaB

NLRP3 NOD-like receptor family pyrin domain containing
3

IL-1b interleukin-1b

TNF-a tumor necrosis factor-a

MCP-1 monocyte chemoattractant protein-1

ICAM-1 intercellular adhesion molecule-1

TGF-b transforming growth factor-b

ECs endothelial cells

MCs mesangial cells

RTECs renal tubular epithelial cells

NQO-1 NADPH quinone oxidoreductase-1

HMGB1 high mobility group box 1

(Continued)
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TLR4, Toll-like receptor 4

FP foot processes

FN fibronectin

ECM extracellular matrix

EMT epithelial-mesenchymal transition

BUN blood urea nitrogen

Keap1 Kelch-like ECH-associated protein

AMPK AMP-activated protein kinase

Sirt1 Sirtuin-1

FOXO forkhead transcription factor O

STZ streptozotocin

HDL high density lipoprotein

TG triglyceride

LDL low density lipoprotein

UACR urinary albumin to creatinine ratio

TC total cholesterol

VLDL very-low-density lipoprotein

UACR urinary albumin to creatinine ratio

MMP-9 matrix metalloproteinase-9

C3G Cyanidin-3-O-glucoside

ACR albumin/creatinine ratio

PPARa peroxisome proliferator-activated receptor a

PGC-1a peroxisome proliferator-activated receptor-g

Bcl-2 B-cell lymphoma-2

MAPKs mitogen-activated protein kinases

FBG fasting blood glucose.
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