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Recent advances have uncovered the non-random distribution of 7, 8-dihydro-

8-oxoguanine (8-oxoGua) induced by reactive oxygen species, which is believed

to have epigenetic effects. Its cognate repair protein, 8-oxoguanine DNA

glycosylase 1 (OGG1), reads oxidative substrates and participates in

transcriptional initiation. When redox signaling is activated in small airway

epithelial cells, the DNA repair function of OGG1 is repurposed to transmit

acute inflammatory signals accompanied by cell state transitions and

modification of the extracellular matrix. Epithelial-mesenchymal and epithelial-

immune interactions act cooperatively to establish a local niche that instructs the

mucosal immune landscape. If the transitional cell state governed by OGG1

remains responsive to inflammatory mediators instead of differentiation, the

collateral damage provides positive feedback to inflammation, ascribing

inflammatory remodeling to one of the drivers in chronic pathologies. In this

review, we discuss the substrate-specific read through OGG1 has evolved in

regulating the innate immune response, controlling adaptations of the airway to

environmental and inflammatory injury, with a focus on the reader function of

OGG1 in initiation and progression of epithelial to mesenchymal transitions in

chronic pulmonary disease.
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1 Introduction

Airway remodeling may develop during recurrent lung damage,

arising due to chronic inflammatory processes and aberrant tissue

restoration. The reoccurring injury and repair produce structural

changes in tissue leading to non-physiological airway configuration,

airway narrowing and ultimately permanent airflow impediment.

Loss of airway function has been characterized by an excessive

deposition of extracellular matrix (ECM) and tissue scar formation.

Cell types primarily responsible for ECM accumulation are the

myofibroblasts (1). After injury-induced wound healing,

myofibroblasts are usually eliminated by apoptosis as

epithelialization is completed. However, in the pathological setting

of repeated injury, myofibroblasts persist and continue to produce

collagen, which exacerbates fibrosis. In addition, due to oxidative

stress evoked during the generation of growth factors and cytokines,

epithelial cells may transition or differentiate into myofibroblasts

through multiple biochemical changes, a process known as type II

epithelial to mesenchymal transition (EMT) (2). During the EMT

process, epithelial cells undergo transcriptional reprogramming,

changes in polarity and loss of cell-to-cell contacts. These cells

show altered responsiveness and expression of myofibroblast

markers, such as alpha smooth muscle actin (aSMA) and

fibroblast-specific protein 1, instead of epithelial-specific markers

that affect innate immune signaling (1, 3). This review explores how

airway epithelial cells dynamically respond to immune signaling

through the DNA repair protein 8-oxoguanine DNA glycosylase 1

(OGG1), which recognizes oxidatively modified guanine bases, and

OGG1’s involvement in changes to the transcriptional profiles of

epithelium to reprogram tissue homeostasis.

2 An overview of the repair attributes
of OGG1

Each of the nucleobases reacts differently with electrophiles, with

guanines (Gua) considered the most easily oxidized nucleobase.

Oxidation of Gua in DNA at C8 produces 7,8-dihydro-8-

oxoguanine (hereafter called 8-oxoGua), whereas both 5’ Gua and

3’Gua are more reactive (4, 5). 8-oxoGua is one of the most abundant

purine-derived DNA lesions and has received appreciable attention

due to its potential role in mutagenicity. Because the syn

conformation is thermodynamically preferred for 8-oxoGua, it is

able to form a stable Hoogsteen base-pair with adenine rather than

cytosine, leading to transversion mutations after replication (6).

OGG1 displays a marked preference for the 8-oxoGua:cytosine

base pair as a substrate, albeit tolerating substitutions opposite the

damaged base (7). OGG1 also recognizes 8-oxoadenine paired with

cytosine or 5-methylcytosine, yet this recognition depends on the

opposite base (8).

Although 8-oxoGua differs from normal guanine by only two

atoms, OGG1 can recognize and remove it very efficiently. The

specificity of OGG1 not only depends on recognizing 8-oxoGua

itself, but also complementary bases, which are checked before the

catalytic reaction. A major question for base excision repair (BER)

glycosylases is how they locate damaged bases in nucleosomes. It is
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presently believed that OGG1 does not require cofactors or energy

for such activity, because it scans DNA by thermal diffusion (9).

Moreover, oxidative stress re-locates OGG1 and other BER proteins

to open chromatin within regions rich in transcription factors (10).

This raises the possibility that OGG1 may act in concert with

chromatin remodelers for preferential recognition of its substrate in

transcriptionally active DNA (11). Several cofactors can promote

efficient recruitment of OGG1 to chromatin (12), including histone

marks, protein cofactors or even 8-oxoGua itself. Many aspects of

repair processes are covered by comprehensive reviews published

by Dr. Dizdaroglu (13), Dr. Mitra (14), Dr. Radak (15) and Dr.

Lloyd (16).
3 OGG1 as an epigenetic reader
and eraser

Unlike enzymatic DNA methylation, it is challenging to

envision selective Gua oxidation by reactive oxygen species

(ROS). Lysine-specific demethylase 1 (LSD1) is a nuclear

flavoenzyme that generates ROS during demethylation of H3

lysine (17). The studies from LSD1provide an integrated

mechanism whereby 8-oxoGua is generated at both enhancer and

promoter sites which, in turn, recruit OGG1 and DNA repair

components, thereby activating estrogen-induced gene expression

(18, 19). This is notable, as histone H3 Lys4 trimethylation sites are

proposed to be oxidant-sensitive epigenetic marks, with their global

reduction upon cell stress augmenting gene expression (20).

Therefore, the genomic response to oxidation is spatially and

temporally governed, with OGG1 locating chromatinized

substrates involved in the histone code. In this regard, LSD1 can

be deemed an epigenetic “writer” that writes 8-oxoGua locally at

active transcription sites (21) (Figure 1).

Pioneering observations of oxidative base modifications

functionally generated in gene promoters have been investigated

by the Gillespie Laboratory (22). They corroborated that targeted

oxidative lesion formation within hypoxia-inducible factor-1 (HIF-

1) response elements of the vascular endothelial cell growth factor

(VEGF) gene promoter could contribute to hypoxic signaling.

These data were followed by numerous studies, including studies

from the Burrows Laboratory (23) that defined 8-oxoGua as an

epigenetic mark. Our views of 8-oxoGua as an epigenetic mark and

of OGG1 processing trans-regulatory function were catalyzed by

the advancement in technologies that mapped 8-oxoGua in the

genome. A series of studies associated 8-oxoGua with regulation of

transcription, especially from enhancers and promoters (24–27).

Pezone et al., also highlight oxidative modification to 8-oxoGua in

DNA as an active response to initiate the EMT transcriptional

program (28), further supporting the epigenetic role of 8-oxoGua in

gene expression processes. OGG1 reading 8-oxoGua locally can

function as a rheostat for functional output from that restricted

locus. Given that response to oxidative DNA damage is

pleiomorphic and probably extends to other transcription factors,

these events link the histone code to a broadly used redox strategy

that circumvents 8-oxoGua acting epigenetically through controlled

OGG1 function. To this end, OGG1 can be considered an epigenetic
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“reader” and an “eraser”. Recent studies demonstrate that OGG1 is

important in oxidative stress-generated DNA demethylation (29).

OGG1 stimulates DNA demethylation by cooperating and engaging

with ten-eleven translocation 1 protein (TET1) at the site of an 8-

oxoGua lesion. OGG1 knockdown makes cells tolerant to ROS-

induced DNA demethylation, while transgenic over-expression of

OGG1 makes cells vulnerable to DNA demethylation by ROS.

These data not only illustrate the importance of BER in DNA

demethylation but also reveal how the DNA demethylation signal is

transferred to downstream DNA demethylation enzymes.
3.1 Reversible cysteines oxidation switches
OGG1 eraser function to reader

The repair-coupled function of OGG1 is examined by a ROS-

induced recruitment from a soluble nucleoplasmic localization to
Frontiers in Immunology 03
the nuclear matrix, where OGG1 colocalizes with nuclear speckles

(10). Its relocation is specific for oxidative stress as it is prevented by

the presence of antioxidant compounds (30). In addition to protein

localization, enzymatic activity also can be regulated in response to

changing redox conditions. Reversible modification in cysteines

highlights their ability to function as redox switches that alter

protein function (31). The reaction of ROS with OGG1 cysteine

residues transiently suspends its enzymatic activity while preserving

recognition and initial steps in substrate processing (32–35). Upon

re-establishing a cellular redox state, enzymatic activity of OGG1 is

completely recovered (36). Germane to this are data demonstrating

that TNFa exposure induced transient oxidation at cysteine

residues of OGG1 with concomitant inactivation of 8-oxoGua

excision (37, 38). Another report demonstrates that C28

oxidation-induced OGG1 dimerization, which does not impede

substrate recognition but suppresses OGG1 catalytic activity at 8-

oxoGua, results in enhancement of Myc recruitment to its E-box
FIGURE 1

Epigenetic changes in OGG1 dependent gene expression. Signaling through ligand-receptor interaction activates local histone demethylation by
LSD1. Upon interaction of LSD1 with mono-methylated or demethylated lysine, the flavin-dependent monoamine oxidase activity, generate an imine
intermediate and FADH2, which is then oxidized to FAD by O2, resulting H2O2. H2O2 → •OH oxidizes Gua to 8-oxoGua. Thus, LSD1 selectively
generates (writes) 8-oxoGua at the site where transcriptional initiation complex is assembled. ROS by various oxidoreductases also generate
intrahelical 8-oxoGua especially in G:C-rich promoters. 8-oxoGua is “read” by oxidatively modified OGG1 (OGG1S-OH) (“reader”) and facilitates
transcription factors DNA occupancy and gene expression. Upon cellular redox homeostasis re-established, reduced OGG1 removes 8-oxoGua
(“eraser”) and DNA is repaired through BER pathway to maintain genome integrity.
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promoter recognition sequences (39). These data imply that under

oxidizing or inflammatory conditions, OGG1 is responsible for

increased expression of Myc target genes. These studies provide

intriguing evidence that redox chemistry of cysteines may represent

a paradigm by which OGG1 transiently functions as an epigenetic

reader, and upon restoration of the intracellular redox environment

acts as an eraser, which guarantees the integrity and stability of the

genome. Another possibility is that the 8-oxoGua erasing function

of OGG1 is coupled with overlapping DNA repair and gene

regulatory events. In this model, the epigenetic mark 8-oxoGua in

promoters and enhancers is erased by OGG1, followed by the repair

intermediates, such as AP-sites binding of AP endonuclease1,

facilitating assembly of transcriptional machinery (23, 40). This

model also permits cells to achieve two vital tasks, accommodating

oxidatively modified DNA bases for timely transcriptional response.
3.2 Locating epigenetic marks and
structural DNA rearrangement
induced by OGG1

OGG1 function is facilitated by diffusion, a mechanism that

primarily involves protein sliding (41, 42). OGG1 scans DNA by

thermal diffusion, moving along DNA by sliding that allows

exploration of modified bases around points of successive DNA

encounters (43). On the basis of structural studies, OGG1-8-

oxoGua associations involve at least two steps, typically an initial

enzyme–substrate interaction followed by DNA structural

remodeling (44). OGG1 induces marked rearrangement of the

DNA structure around the epigenetic mark, eviction of which

leaves the complementary cytosine estranged in the helix, and a

sharp kink (~70°). This subtle but significant DNA topography

change helps us understand how OGG1 acts upon 8-oxoGua in the

context of chromatin, where local DNA flexibility supports OGG1’s

association with other proteins, including transcription factors.

OGG1 is programmed via its structure to recognize and act upon a

particular lesion, and this conformational behavior has furthermore

suggested ways to modulate OGG1 function in terms of substrate

specificity, repair fidelity, handoffs, and the coordination of different

repair steps, as previously reviewed (45, 46).
3.3 OGG1 facilitates DNA occupancy of the
transcriptional machinery

Because 8-oxoGua is virtually identical to the native Gua base as

shown by X-ray crystal and NMR structural studies (47, 48), it is

expected that 8-oxoGua alone does not affect the DNA-binding

efficiency of transcription factors (TFs). However, it appears that

the binding affinities of TFs (like NFkB1p50, AP1, SP1 and CREB)

are affected by 8-oxoGua itself (49–53). It is thus not surprising that

considerable efforts weremade to better understand the role of OGG1

at 8-oxoGua sites in a physiological context. The ability of TFs to bind

to their consensus sequence is impaired by oxidative events (54, 55).

Our studies filled this gap by providing a mechanism for coordination

of intrinsic DNA binding proteins, like OGG1, to act as pioneer
Frontiers in Immunology 04
factors for TF binding under oxidative stress (38).When compared to

a wild-type consensus oligonucleotide, levels of p50-p50 and p50-

RelA(p65) bound to 8-oxoGua containing DNA are higher by 15 to

25-fold in the presence of OGG1, respectively. Moreover, OGG1

significantly shortens the time required for the DNA occupancy of

homo- and heterodimeric NFkB. OGG1 recognizes oxidized

substrates clustered around the NFkB binding element, which

could accommodate local DNA topography suitable for binding,

thus increasing NFkB binding efficiency and activating transcription.

In the chromatin context, genome-wide binding of OGG1 is also

mapped to illustrate stimulus-driven association of OGG1 with NFkB
(56). Another study using chromatin immunoprecipitation (ChIP)

assay shows that OGG1 reading 8-oxoGua accommodates

phosphorylated SMADs complex binding to SMAD binding

elements of pro-fibrotic genes, such a-SMA, fibronectin (FN) and

collagen (COL), thereby facilitating gene activation (57). The

physiological significance is striking, as OGG1 reading 8-oxoGua is

temporally utilized to skew the repair function to trigger

transcription, thereby repurposing OGG1 for the immune response.
4 Role of OGG1 in mucosal
immune landscape

An emerging topic in the field of mucosal immunology is the

influence of epithelial cells on subsequent adaptive responses (58–60).

Functionally, epithelial cells are equipped with a variety of receptors

including pattern recognition receptors, which are necessary and

sufficient to trigger the innate immune response (IIR) (61). Once

activated, epithelial cells can produce cytokines and chemokines,

which are responsible for autocrine and paracrine regulation of

homeostasis. Therefore, an obvious hierarchy exists in the capacity

of the epithelium to set the threshold for restoring lung homeostasis.

Small airway disease is a common feature of pulmonary

pathology. With the advances of single cell sequencing,

heterogeneous epithelial and fibroblast subpopulations in fibrotic

lungs were discovered (62). The various epithelial and mesenchymal

lineages indicate that each lineage has a distinct spatial address and

transcriptional profile leading to unique niche regulatory functions

(63), with the plasticity of the distal lung epithelium driving

pathologic epithelial remodeling and ECM expansion occurring at

the peripheral regions and slowly progressing inward. Genetic lineage

tracing studies in murine models of airway fibrosis have shown that

peripheral fibrotic cells originate from alveolar epithelial cells during

abnormal tissue repair (64). It is becoming increasingly apparent that

distal lung epithelium, or small airway epithelium, could become a

potential therapeutic target in inflammatory lung disease.
4.1 OGG1 facilitates the expression of
inflammatory mediators

Comprehensive ChIP-coupled next generation sequencing

analyzed OGG1 enrichment after airway lung epithelial cells were

exposed to a single dose of TNF-a (56). In controls, NFkB/RelA
DNA occupancy was examined, and its enrichment peaks were
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mapped to the human genome and compared to OGG1. The OGG1

enrichment peaks (over ten thousand) were primarily localized to

promoter regions adjacent to transcription start sites (TSS), and far

fewer enrichment peaks were localized to exons, introns, untranslated

regions (UTRs), or intragenic regions. Similar distribution of NFkB/
RelA was observed, which was enriched in over 8000 cis-acting target

sequences. Importantly, the allocations of the OGG1 and NFkB
enrichment peaks relative to TSS were similar. Systems biology-

level approaches through hierarchical structure and relationship

analysis shows that the primary enriched gene ontology (GO) term

was inflammation and immune response (IIR) processes. The most

significantly modulated processes were the positive regulation of

cytokine production, including TNFa, IL6, IFNs, C-X-C motif

chemokine ligands and IL1, the heterodimeric IL23 and IL17. In

independent studies (65), RNA-seq data clearly showed transient

expression of C-C, C-X-C motif chemokines, cytokines and

interleukins, which facilitates OGG1-driven recruitment of site-

specific transcription factors (NFkB, AP1, SP1) to promoters.

Adaptations in OGG1 substrate-specific reading support the

capacity of TFs binding, resulting in an epigenetic switch that

initiates a chain of transcriptional events to induce IIR. Following

this logic, it is reasonable to justify the attenuated immune response

observed in Ogg1 knock out (KO) mice in inflammatory models.

Compared with wild-type counterparts, Ogg1 KO mice are resistant

to LPS-induced tissue damage and organ dysfunction, with decreased

cytokine and chemokine levels in body fluids (66). In the model of

allergic inflammation induced by ovalbumin (67),Ogg1KOmice also

exhibit lower IIR and infiltration of allergic inflammatory cells in the

airway, manifested as lower expression of pro-inflammatory

mediators and tissue damage. Functional inactivation of OGG1 in

sensitized and ovalbumin-challenged mice resulted in decreased

expression of proinflammatory cytokines and chemokines, goblet

cell hyperplasia and mucus production, with significantly lower

recruitment of eosinophils and other immune cells to the lungs

(68). The essential role of OGG1 in ROS-induced proinflammatory

gene expression has been demonstrated by siRNA-mediated silencing

of OGG1 in airway epithelium (69), small-molecule inhibition of

OGG1 substrate binding (70–72), and functional ablation of excision

activity (73). Absence of OGG1 expression or its pharmacological

inhibition by TH5487 or SU0268 leads to decreased inflammatory

gene expression, thus blocking airway hyperresponsiveness in allergic

reactions and acute inflammation (68). Furthermore, robust OGG1-

dependent influx of neutrophils was observed from 6 hours post-

challenge, with a peak at 24 hours, and by 72 hours the number of

neutrophils returned to pre-challenge levels (37, 69, 74). Together,

these studies establish the frameworks within which OGG1

contributes to IIR and to adaptive responses by regulating the

expression of inflammatory mediators at the transcriptional level.
5 OGG1 contributes to inflammatory
tissue remodeling

Epithelial-immune interactions raise a response to promote

repair of damaged structures, a process that often provides

existing tissue structures with modifications that optimize defense
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from structural perturbations (75, 76). This is the case with the

generation of ECM proteins that are deposited around the damaged

area, which is achieved via consecutive and overlapping phases of

epithelial-mesenchymal interactions, cell proliferation and tissue

remodeling (77). Although inflammatory tissue remodeling is

essential for host defense and allows for efficient healing and

reestablishment of homeostasis, unabated inflammation or

otherwise abnormal remodeling is one of the drivers of fibrosis.

However, the mechanism(s) that underlie sensing and reacting to

these changes that are ultimately required to limit the repair process

and to resolve inflammation, is not well understood.

Initial work by Luo et al. (78) and Aguilera et al. (65) examined

the role of OGG1 in inflammatory airway remodeling in a mouse

model. To gain insight into gene expression, whole transcriptome

analysis was performed. Studies were supported by biomolecular

and tissue histological characterization, including epithelial

alterations, smooth muscle mass, and ECM/collagen deposition in

the airways. Compared to acute inflammation (single challenge),

gene expression induced after multiple inflammatory challenges as a

model for chronic inflammation highlighted quantitatively and

qualitatively different expression profiles (Figure 2). The highly

significant biological processes dependent on OGG1 expression in

chronic inflammation were developmental processes, system

development, cellular processes, cell adhesion, biological adhesion,

cell communications and cell-to-cell adhesion. However, chronic

inflammation (in contrast to acute) has been correlated to

histological changes represented by extensive epithelial

metaplasia, formation of trophic units, collagen deposition and

smooth muscle hyperplasia primarily associated with smaller

airways. Notably, the significance of immune system processes

was the lowest (P = 3.69 × 10^10). The significantly

overrepresented protein classes included ECM proteins, cell

adhesion molecules, structural proteins, actin family cytoskeletal

proteins, ECM structural proteins, cadherins, protease inhibitors,

metalloproteinases, serine protease inhibitors, cell junction

proteins, cell adhesion, in line with tissue histology, cell

morphology and remodeling. Although these experiments utilized

the rodent model, hierarchical clustering using gene-by-

environment (GEN-E) showed that protein expression profiles

and pathways are similar to those involved remodeling in humans

(like the highly significantly expressed protocadherin, cadherin,

catenin, integrin, laminin, a-actin, Rho GTPase, transforming

growth factor-beta (TGFb), epidermal growth factor (EGF), the

TGFb superfamily protein, the growth differentiation factor 2,

myosin heavy polypeptide 1 to 13 and Wingless-type MMTV

integration site family (Wnt), collagen type I to XVII) (Figure 2).

OGG1-dependent inflammatory responses and consequent

tissue damage involve not only ROS generation, but also

increased secretion of tissue remodeling relevant cytokines,

chemokines and growth factors, among them, TGFb (79). TGFb
is renowned as a pleiotropic factor that both promotes and inhibits

processes like inflammation and proliferation, depending on the

physiological context. In the context of fibroblasts, TGFb activates

NOX-4 and generates H2O2 that is required for myofibroblast

differentiation, ECM production and contractility (80). In the

immune system, TGFb mediates naïve T cell transition toward
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immunosuppressive phenotypes, decreased inflammation upon

repeated challenges (81). Excessive release of TGFb can be

activated by mechanical tension-induced cell contraction (82),

which occurs during physical stretch or constriction events that

result from gasping or when using mechanical ventilation in

patients with acute respiratory distress syndrome (ARDS).

Mechanical tension induces tissue injury, causing disruption of

the cell-cell junctions or ECM architecture. This also imposes

supraphysiological mechanical forces on the epithelial cells.

Interestingly, mechanical stress resultant from inflammatory

exudates in lower airways generates oxidative DNA damage, as

detected by the presence of 8-oxoGua (57, 83), suggesting that 8-

oxoGua is actively generated by TGFb signaling. For epithelial

repopulation, integrin avb8-mediated activation of TGFb inhibits

airway epithelial cell proliferation (84). The integrin avb8 is

expressed in basal cells, which are the major contributor to

epithelial regeneration by giving rise to differentiated airway

epithelial cell types (85). Therefore, the presence of TGFb
represents a scenario restricted re-epithelization from dedicated

stem cell lineages (86), indicating that a different sub-population

performs a significant level of repair, which is essential for either

response to acute injury or for retaining architectural integrity.
5.1 Requirement for OGG1 in TGFb-
induced mesenchymal phenotype

The ability of epithelial cells to transition into mesenchymal

cells, either partially or fully, illustrates the inherent plasticity of
Frontiers in Immunology 06
the epithelial phenotype (87). In a recent study by Pan et al. (57),

small airway epithelial cells in culture could phenotypically

convert to spindle-shaped mesenchymal cells, by a mechanism

that involved OGG1-mediated molecular reprogramming in

response to TGFb exposure (Figure 3). Cellular plasticity in

EMT requires transcriptional networks mediated by key

transcription factors, of particular importance is SMAD3 in the

SMAD complex. Like most TFs that are quiescent in steady state,

SMAD3 is activated by phosphorylation to translocate into the

nucleus where it binds to cis-regulatory regions of target genes in

the chromatin. The consensus motif recognized by SMAD3 was

originally identified as an 8 bp palindromic DNA sequence (5′-
GTCTAGAC-3′) (88), where the 4 bp half site (5’-GTCT-3’)

represents the minimal binding sequence for SMAD3 (89). The

5’-GC SMAD binding elements GGC(GC)|(CG) were shown to be

more prevalent in SMAD3 target sites (90), yet alone not sufficient

to confer recognition specificity. Moreover, the chromatin

architecture restricts SMAD3 DNA occupancy. TGFb treatment

alters histone modifications at enhancers eliciting chromatin

opening and enhancer activation (91), which are required for

SMAD sequence occupancy. Critically, high-affinity and high-

specificity recruitment of SMADs to DNA usually requires

additional pioneer factors, which alter DNA structure to

accommodate transcriptional initiation (92). We and others

have shown that DNA oxidation marks an upstream event that

triggers SMAD3 targeted genes (28, 57). TGFb treatment activates

LSD1 generating ROS locally, writing 8-oxoGua into the cis-

regulatory regions in proximity to SMADs binding sites. OGG1

reads 8-oxoGua substrates without delay, making DNA
FIGURE 2

OGG1 dependent signaling pathways in acute and chronic mucosal inflammation. OGG1 reads 8-oxoGua in epithelium, first responding to insults
and continuing throughout the repair process. OGG1 facilitates the DNA occupancy of transcription factors (e.g., NFkB), thereby subsequent
expression of pro-inflammatory mediators in acute inflammation. In repeated injury, OGG1 reprograms immune landscape toward pro-fibrotic and
ECM gene expression that induce damage-responsive epithelium transition by facilitating DNA occupancy of SMADs. In these studies, experimental
animals were challenged once or repeatedly with pro-inflammatory agent. RNA extracted from lungs were RNA sequenced and analyzed at system
levels. Animal studies were performed according to the NIH Guide for Care and Use of Experimental Animals and approved by the University of
Texas Medical Branch Animal Care and Use Committee (approval no. 0807044D). OG, 8-oxoGua; TF, transcription factor, FGF, fibroblast growth
factor; EGF, epidermal growth factor; Rho-GTPases, Ras Homolog family member; SMAD, Mothers against decapentaplegic homolog.
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conformational changes and promoting SMAD complex assembly

into the transcription machinery.

To address the role of OGG1 in fibrotic processes in lungs, mice

were challenged with TGFb intranasally and TH5487 was added

intraperitoneally to pharmacologically inactivate OGG1 (57). TGFb
generated high levels of 8-oxoGua in the genome, which correlated

well with OGG1 enrichment on promoters of fibrotic genes. Studies
Frontiers in Immunology 07
have identified expression of EMT/FMT genes that were dependent

on functional OGG1. These include TGFb/SMAD3-targeted genes

Col1a2, Fn1 and Vim, Keratin 14 (Krt14, which is absent in distal

airways of healthy lungs, but increased specifically in distal airways

and alveolar regions of idiopathic pulmonary fibrosis (IPF) lungs)

(93), Nodal growth differentiation factor (TGFb super family

protein, activator of SMAD family transcription factors), SRY-box
FIGURE 3

Graphical depiction of OGG1 function in the development of airway remodeling. In response to repeated exposures to environmental pollutants,
irradiation, aeroallergens or respiratory virus infection, epithelial cells undergo EMT and the subepithelial fibroblasts are one of several mesenchymal
lineages that transition into myofibroblasts (FMT) expressing aSMA and COL1A1. Both the EMT and FMT paralleled with IIR and initiated by growth
factors (e.g., TGFb, EGF). IIR and both EMT/FMT executed by molecular events surrounding OGG1-facilitated DNA occupancy of transcription factors
(e.g., SMADs, NFkB) and chromatin remodelers (e.g., BRD4, LSD1). Changes in cell stiffness and matrix metalloproteinase secretion, all initiated from
EMC produced by epithelial injury/repair. Epithelial barrier disruption induces secretion of growth factors and fibrogenic cytokines (periostin, IL-17,
IL-11). TGFb activates signaling cascades that result in fibroblast motility, anti-apoptosis, and expression of ECM proteins, FN1 and COL1.
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containing gene 10 (Sox10, transcription factors involved in

development and in cell fate outcomes). In line with gene

expression data, immunoblotting shows that inactivation OGG1

by TH5487 decreased levels of proteins involved in the

mesenchymal phenotype and pronounced ep i the l i a l

characteristics. ChIP analysis showed that these genes were

regulated by OGG1-dependent recruitment of SMAD3, Etv4 and

NFkB to promoters. GO cluster analysis revealed that the regulated

pathways are significantly involved in EMT and ECM organization

networks. Lung histology clearly showed OGG1-dependent

collagen deposition, which was decreased by TH5487. Moreover,

TGFb signaling induced C-terminal phosphorylation of SMAD2

and SMAD3 were not significantly altered with TH5487 treatment.

These data together suggest that OGG1 reading genomic substrates

triggers distinct cell-behaviors in the lung. When redox signaling is

activated in small airway epithelial cells, the repair function of

OGG1 is repurposed to transmit acute inflammatory signals

accompanied by cell state transitions, modifying ECM. Epithelial-

mesenchymal interactions and epithelial-immune effects act in

concert to establish a local niche that instructs the mucosal

immune landscape (Figure 3). If the transitioned cell state

governed by OGG1 remains responsive to chemo-attractants

instead of commencing differentiation, the collateral damage

provides positive feedback to inflammation, and thus supports a

role for inflammatory remodeling as one of the drivers in chronic

inflammatory pathologies (60). OGG1-driven adaptive gene

expression through epigenetic programming shapes the

microenvironment of smal l a irways under oxidat ive

stress conditions.
5.2 Increased OGG1 expression during
fibrotic processes

In TGFb- or bleomycin-induced fibrosis, significant increases in

OGG1 protein levels were documented in lung lysates (57, 94). In

the same study, supraphysiological OGG1 levels were recorded after

repeated TGFb treatment using primary human lung fibroblast and

murine-derived fibroblast cells, which paralleled with increased cell

migration and with an enhanced wound healing capacity of the

cells. Importantly, in lung sections of IPF patients, OGG1

immunoreactivity is significantly higher than in healthy controls,

supporting the functional roles of OGG1 in fibrotic disease (94).

Moreover, adeno-associated virus-driven OGG1 overexpression in

rodent lungs promoted EMT in alveolar epithelia and resulted in

progressive fibrosis (95). Notably, TH5487 significantly decreases

OGG1 levels, which may be due to NEDD4 Like E3 Ubiquitin

Protein Ligase (NEDD4L)-mediated OGG1 degradation. However,

levels of DNA glycosylases (Neil2, Neil1 and Mth1) showed no

change (57), highlighting OGG1 as a specific target. Increased

OGG1 expression was observed in bleomycin-exposed mice and

TGFb exposed cells in culture (96). The increased expression of

OGG1 promotes cell migration, while OGG1 depletion decreases

the migratory ability. Expression of the transformation-associated

markers, vimentin and aSMA, were also increased by OGG1. Taken

together, these observations raise the possibility that the increase in
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OGG1 levels is not secondary, but rather tightly related to lung

injury, tissue repair, and fibrotic processes. Although further studies

are required, we can conclude several points. First, OGG1 is

necessary for reading the epigenetic mark 8-oxoGua to modulate

gene expression, the outcome of which has essential roles in tissue

repair related to EMT. Second, OGG1 erasing oxidatively modified

lesions ensures that epigenetic regulation, a highly dynamic process,

facilitates rapid and transient phenotypic changes.

An important question is how OGG1 expression is regulated

upon TGFb exposure, particularly under pro-fibrotic/fibrotic

conditions. Analysis of the OGG1 promoter revealed the lack of

TATA or CAAT boxes, implying a promoter type similar to

constitutively expressed housekeeping genes. However, signal

transduction, such as ROS signaling, can modulate the activity of

promoters of housekeeping genes (97). Both bleomycin and TGFb
are strong inducers of oxidative stress, in fact, a large amount of

evidence hints that ROS controls TGFb and bleomycin signaling

through various TFs, including SMADs (98–100). Importantly, the

OGG1 promoter region contains an antioxidant response element

with a binding site for NF-E2-related factor 2 (Nrf2), suggesting

that redox signaling upregulates OGG1 expression.
5.3 Potential clinical utility of OGG1
inhibitors in treatment of fibrosis

Chronic injury to the airway epithelium, combined with altered

restoration capacity and fibroproliferative responses leads to IPF, an

incurable condition characterized by increased lung stiffening and

scarring, with an average survival rate of three years post-diagnosis

(101). IPF is defined by fibroblast and myofibroblast overactivation

resulting in excessive ECM deposition around alveolar walls,

leading to significant reduction in alveolar spaces (102). In the

absence of OGG1 function, the production of ECM proteins (like

FN1, VIM and COL1A1) is inhibited within these transitioned cell

states. Ogg1 KO or inhibition of its reader function with TH5487

can be utilized in ameliorating oxidation-induced inflammation

(71, 103), and to treat pulmonary fibrosis (94, 95) or allergic asthma

(68). In bleomycin-induced lung injury, OGG1 KO mice show

decreased collagen deposition and tissue damage (96). OGG1-

targeting siRNA and inhibition (TH5487) of OGG1 significantly

inhibit pro-migratory effects of TGFb. Bioanalytical liquid

chromatography tandem mass spectrometry data-independent

acquisition (LC-MS/MS DIA) analysis showed significant down-

regulation of OGG1-dependent GO terms, including collagen

biosynthesis processes, wound healing involved in inflammatory

response, endothelial cell proliferation, collagen metabolic

processes, response to fibroblast growth factor, regulation of

cytokine production, wound healing, and response to wounding

in fibrotic tissue (94). These studies suggest that TH5487 is clinically

relevant to the observed decreases in fibrotic processes. The

convergence of signaling pathways from chromatin modifications

and intrinsic DNA binding proteins is essential for gene expression

related to inflammatory tissue remodeling. The regulation of NFkB
typically controls proinflammatory gene expression, both alone and

in concert with the SMADs cascade in response to injury, and their
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potential for pathway convergence explains how inflammatory

tissue remodeling can be manipulated at the transcriptional level

and targeted by OGG1.

Currently, there are two FDA-approved therapeutics available

for the treatment of IPF. Nintedanib (Ofev®) targets tyrosine

kinases by binding to the ATP-binding pocket, thereby blocking

signaling cascades that result in the proliferation and migration of

lung fibroblasts (104). The second therapeutic pirfenidone

(Esbriet®) decreases TGFb expression and inactivates

downstream signaling, including phosphorylation of SMAD3

(104–106). Both nintedanib and pirfenidone have documented

limitations, such as modest slowing of disease progression that is

often coupled with poor tolerability (106–108), which highlights the

need for novel therapeutic strategies. The effects of both drugs were

compared to TH5487 in a bleomycin-induced mouse model of IPF

(94). Similar to nintedanib, TH5487 decreased TGFb-induced
wound healing, fibroblast migration, morphological changes in

epithelial cells and F-actin reorganization, as well as production

of collagen around small airways (57, 94). Interestingly, TH5487,

but not nintedanib or pirfenidone, significantly decreased TGFb
levels in bronchoalveolar lavage fluid (BALF), plasma, and lung

homogenates. Treatment with TH5487 also decreased collagen

deposition and structural deformation of the alveoli, indicating

that TH5487 may be an effective inhibitor of bleomycin-induced

fibrosis as characterized by histological lung damage. Finally,

TH5487 decreased immune cell recruitment, levels of

proinflammatory and profibrotic mediators in addition to

alleviating weight loss and rejuvenating pulmonary health in

experimental animals (94). These data show promising preclinical

support for future studies investigating the clinical utility of

TH5487 for treatment of IPF.

The approach of TH5487 targeting OGG1 to suppress fibrosis is

distinct from currently employed nintedanib or pirfenidone.

TH5487 inhibits intrahelical 8-oxoGua repair, raising issues

concerned with genome fidelity and mutagenesis. Previous work

reported that Ogg1 KO mice develop normally, showing tolerable

accumulation of 8-oxoGua in the non-proliferative tissues and a low

frequency of malignancies (109–111). Through our LC-MS/MS

DIA analysis (94), we identified that the back-up repair system is

upregulated in TH5487-treated fibrotic lungs, among which the

levels of Xeroderma pigmentosum complementation group C

protein (XPC), X-ray repair cross-complementing protein1

(XRCC1), DNA polymerase delta subunit 2/3, DNA ligase 1, and

G/T mismatch-specific thymine DNA glycosylase are increased.

Presently, there is no data on any roles of these repair proteins in

type II EMT or fibrosis, however, we note that the elevation of these

repair proteins rather points to a back-up repair system that

maintains genome integrity in the absence of functional OGG1.

In addition to BER, the single strand break (SSB) repair pathway

encompasses a spectrum of glycosylases that recognize 8-oxoGua

mismatched with adenine, guanine, or thymine. For examples,

human homolog of E. coli MutY, MYH, that flip out the normal

adenine from the active site pocket instead of 8-oxoGua. Another

example is E. coli Nei-like glycosylases (NEIL1 and NEIL2) (112–
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116). In the absence of OGG1, the activation of alternative repair

pathways minimizes the mutagenic effects of elevated 8-oxoGua

levels and maintains a low endogenous mutation frequency. These

studies suggest that functional inactivation of OGG1 is not a major

threat for cellular health. To this end, the non-toxic and well-

tolerated TH5487, is a highly selective and specific OGG1 inhibitor

offering clinical utility.
6 Concluding perspectives

8-oxoGua as an epigenetic mark read by OGG1 is captured as

the underlying principle for the genomic response to oxidative

stress. This epigenetic reprogramming induced by OGG1

modulates cell fate in response to environmental changes,

including whether to undergo death or to survive through

transition, and may ultimately result in complex phenotypes or

disease conditions. The aforementioned correlations between the

temporal and repurposed nuances in OGG1 behavior and

transcription profiles in small airway epithelial cells likely

influence the nature and magnitude of mucosal immune

response. There is a transitioned cellular landscape maintained by

OGG1 that is critical for amplifying the stress signal into mucosal

responses. A better understanding of the molecular checkpoints

that control these transitions might provide new insights for

modulating immunity in pulmonary disorders. OGG1-targeted

small molecules such as TH5487 have the potential to mitigate

aberrant inflammatory responses and epithelium reepithelization

through inhibition of NFkB activation and of the SMADs signaling

pathway. Recent advances in single cell sequencing enabled us to

identify cell phenotypes and to examine their proteomes and

metabolomes in addition to surveying their epigenetic

modifications. Mapping cell location in spatial transcriptomic

techniques will undoubtedly enhance our understanding of cell

molecular phenotype and function of transitional cell states driven

by OGG1. Treating airways with small molecule OGG1 inhibitors

will allow us to link molecular changes with disease phenotypes and

could provide clinical relevance to decrease fibrotic processes in

lung injury.
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