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Psoriasis is a common chronic inflammatory skin disease, associated with

substantial comorbidity. TH17 lymphocytes, differentiating under the influence

of dendritic cell-derived IL-23, andmediating their effects via IL-17A, are believed

to be central effector cells in psoriasis. This concept is underlined by the

unprecedented efficacy of therapeutics targeting this pathogenetic axis. In

recent years, numerous observations made it necessary to revisit and refine

this simple “linear” pathogenetic model. It became evident that IL-23

independent cells exist that produce IL-17A, that IL-17 homologues may

exhibit synergistic biological effects, and that the blockade of IL-17A alone is

clinically less effective compared to the inhibition of several IL-17 homologues. In

this review, we will summarize the current knowledge around IL-17A and its five

currently known homologues, namely IL-17B, IL-17C, IL-17D, IL-17E (also known

as IL-25) and IL-17F, in relation to skin inflammation in general and psoriasis in

particular. We will also re-visit the above-mentioned observations and integrate

them into a more comprehensive pathogenetic model. This may help to

appreciate current as well as developing anti-psoriatic therapies and to

prioritize the selection of future drugs’ mode(s) of action.
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Introduction

Psoriasis is a frequent, chronic, noncommunicable inflammatory skin disease, for

which there is no clear cause or cure. Psoriasis affects all ethnicities and of all ages. The

disease manifests as well-defined, red, scaly plaques, appearing with a chronic-recurrent

course at preferential sites such as elbows, knees, and scalp (1). Individuals with psoriasis

are at an increased risk of developing other chronic and serious diseases, including psoriatic

arthritis, metabolic syndrome, cardiovascular diseases and depression (2, 3).
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Psoriatic inflammation is triggered by environmental factors,

such as infections (4). These initiate an innate immune response

with dendritic cells playing a major role. A well-defined cascade

starting with keratinocyte damage results in release of self-nucleic

acids, which are subsequently complexed to antimicrobial peptides,

and sensed by plasmacytoid dendritic cells (pDCs) (5). These

produce IL-6 as well as transforming growth factor b, and induce

differentiation of naïve T-lymphocytes towards a TH17 phenotype,

which is subsequently maintained by IL-23, derived from the above-

mentioned pDCs (6). TH17 cells are named after their key effector

cytokines, namely different isoforms of IL-17 (7). These cytokines

target keratinocytes, which respond by producing IL-17s

themselves, but also neutrophil-attractant chemokines, thus

constituting a positive feedback-loop (comprising dendritic cells

and TH17-cells) and boosting inflammation further though

recruitment of additional inflammatory cells, namely neutrophils

(8). The presence of tissue-resident memory T-cells contributes to

the chronicity of the disease and may explain the recurrent

appearance of lesions at previously affected sites (9).

Taken together, the concept of a central pathogenetic axis

evolved, starting with activated dendritic cells that produce IL-23

and thus favoring the development of TH17-cells, which exhibit

their effector functions through IL-17s (10). Additional processes

directly linked to this axis are leukocyte extravasation and migration

as well as leukocyte activation, elements of which represent

“drugable” targets (11). Indeed, all of these approaches have been

or are currently being explored. However, most of the drugs

currently used for targeted therapy of psoriasis block elements of

the IL-23/TH17/IL-17 axis.

In this review, we will re-visit the above-mentioned observations

and integrate them into a more comprehensive pathogenetic model

(Figure 1). Subsequently, we will summarize the current knowledge

around IL-17A and its five currently known homologues, namely IL-

17B, IL-17C, IL-17D, IL-17E (also known as IL-25) and IL-17F, in

relation to psoriasis with a focus on the most recent discoveries. In the

last part of the review, we point towards the clinical implications of a

more detailed understanding of IL-17 biology.
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From a “linear” to a “complex”
pathogenetic model of psoriasis

The above-mentioned “linear” model of psoriasis has proven

most helpful when it comes to understanding the impressive

progress in terms of therapeutic efficacy in the field:
• Biologics targeting elements of the central pathogenetic axis

exhibit unprecedented efficacy: In direct comparator

studies, the conventional disease-modifying anti-

rheumatic drug (DMARD) methotrexate was inferior to

the TNF-a inhibitor adalimumab (PASI75 after 12 weeks:

25 versus 76%) (12); TNF-a inhibition by etanercept was

inferior to IL-23/IL-12 inhibition by ustekinumab (PASI75

at week 12: 57 versus 74%) (13), which was inferior to the

IL-17A inhibitor secukinumab (PASI90 at week 16: 58

versus 79%) (14).

• IL-17A inhibition was shown to exhibit a faster mode of

onset compared to IL-23 inhibition (15), which is in line

with the idea that blocking a “downstream” effector

cytokine such as IL-17A should reduce psoriasis

symptoms faster than blocking an “upstream” regulatory

cytokine such as IL-23.

• In contrast, IL-23 inhibition has a particularly long-lasting

therapeutic effect, as evidenced in randomized-withdrawal

studies (16). This observation was initially interpreted as

being due to the longer time needed to produce TH17 cells

again. More recent studies suggest that this may also be

related to the reduction in resident memory T cells in the

skin (17).
Despite these conformities between model-based predictions

and clinical observations, more recent findings make it necessary to

revisit this simple “linear” model. One such finding is that IL-23

inhibition is insufficient to completely suppress IL-17A production.

This is due to the fact that IL-17A production is not restricted to

conventional CD4+ T helper lymphocytes (TH17 cells). Innate-like
FIGURE 1

From linear to complex pathological model of psoriasis.
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lymphoid cells, namely gd T-cells, invariant natural killer T cells

(iNKTs), mucosal-associated invariant T-cells (MALTs), as well as

innate lymphoid cells (ILCs) are often skewed to type-17 profiles

and may substantially contribute to IL-17A production in an IL-23

independent manner [reviewed in (18)]. Besides, cells other than

lymphoid cells are also capable of producing IL-17A (19).

Moreover, IL-17 homologues other than IL-17A have long been

overlooked. This is particularly true for IL-17F, which is actually

more abundant in lesional psoriatic skin when compared to IL-17A

(20). As IL-17 homologues exhibit partially overlapping biological

effects (see below), molecules were developed that block IL-17A as

well as IL-17F. This approach yields synergistic effects in-vitro (21)

and proved superior to selective IL-17A inhibition in a direct

comparator clinical trial (22).
The IL-17 cytokine family – an update

The IL-17 cytokine family consists of six members, named IL-

17A to IL-17F (Figure 2). All members form functionally active

homodimers. IL-17A also forms heterodimers with IL-17F. IL-17

cytokines signal through the IL-17 receptor family (IL17Rs),

exclusively using the adaptor Act1 as the primary intermediate to

activate downstream signaling events. A functionally active receptor

comprises a combination of two of five homologous receptor

subunits, IL-17RA to IL17RE (7).
IL-17A

Described in 1993 and initially named CTLA-8, IL-17A is the

most vigorously studied IL-17. It is produced by immune cells and

targets primarily non-hematopoietic cells in barrier tissues, such as

the skin, playing a central role in protective immune responses to

extracellular pathogens and fungi.

IL-17A is classically considered to signal through the IL17RA-

RC receptor, as do IL-17A/F heterodimers and IL-17F (7, 23).

Recent data have however shown that these cytokines can also
Frontiers in Immunology 03
bind to a receptor composed of two IL17RC subunits, transducing

signal in an IL-17RA-independent manner (24). The IL-17RA/

RD heterodimer has also been reported as an alternative receptor

for the IL-17A homodimer, but not for IL-17F/F and IL-17A/F

(25, 26).

Activation of the IL17RA-RC heterodimer leads to the unique

recruitment of the adaptor protein Act1 via homotypic SEFIR

domain interaction. Act1 acts like a docking station for TRAF

proteins, facilitating target gene transcription through the activation

of NFkB, MAPK and C/EBP pathways. Additionally, activation of

various RNA-binding proteins (such as HuR and Regnase-1)

downstream the IL-17RA-RC receptors allows IL-17A to control

post-transcriptional events, often resulting in increased target RNA

stability (7, 27). Recent crystallography data point to the formation

of a 2:2:2 hexameric signaling assembly composed of two units each

of IL-17A, IL-17RA and IL-17RC. IL-17RA dimerization was

shown to be functionally important, leading to the potentiation of

IL-17-induced IL-36g and CXCL1 mRNA expression in human

keratinocytes (28).

IL-17A is secreted by IL-23-dependent Th17 cells in the

skin. Additional cellular sources exist. 10 years ago, it was

demonstrated that CD8+ T cells located in the epidermis of

lesional psoriatic skin secrete IL-17A, possibly upon recognition

of antigens presented by HLA-Cw6 (29). These so-called Tc17

cells exhibit a resident memory phenotype and express both PD-1

and IL-23R (30). Additionally, neutrophils, mast cells, and

innate immune cells (MAILT, ILC3 and gd T-cells) all are

capable of producing IL-17A in an IL-23 independent manner

(19, 31–33).

IL-17A has four major effects on mesenchymal and epithelial

cells in the skin:
• establishing a pro-inflammatory loop geared towards

activation of neutrophils and Th17 responses through

induction of inflammatory mediators and chemoattractants

such as IL-8, CCL20, and G-CSF

• promoting a cathelicidin- and defensin-dominated

antimicrobial response
FIGURE 2

The IL-17 family of cytokines. Schematic representation of the different IL-17 cytokines, their receptors, and the currently available therapeutics that
target them.
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• de-regulating the keratinocyte differentiation program,

leading to decreased expression of late differentiation

molecules and loosening of the epidermal barrier

• promoting metalloproteinase-dependent tissue remodeling,

facilitating the influx of newly recruited leukocytes
With regard to keratinocyte proliferation, recent publications

show that IL-17A induces proliferation, either directly through

activation of YAP-AREG signaling in keratinocytes, or indirectly

via IL-19 and IL-24, produced in response to IL-17A in dermal

stromal cells (34, 35).

Finally, new data suggest that IL-17A may alter immune

regulatory responses. In psoriasis, regulatory T cells are

dysfunctional, exhibiting reduced suppressive capacity and an

exhausted phenotype (36, 37). The underlying mechanism

comprises reduced TGF-b release and increased IFN-g
production. This skewing is reversed under therapy with IL-17A

inhibitors (38). In addition, IL-17A (as well as IL17F and the IL-

17A/F heterodimer) induces resistance to CD8-mediated

suppression in CD4+ T cells primed with IL-17A, which is

reversible via blocking IL-1b, IL-6, or STAT3 (39).
IL-17F

L-17F shows the highest homology to IL-17A amongst all IL-17

family members. Besides homodimers, there exist IL-17A/F

heterodimers as well. IL-17F signals via the canonical IL-17A

receptor, composed of an IL17RA and -RC subunit. It has

functions similar to IL-17A, namely with regard to an effective

defense against muco-epithelial bacterial and fungal infections. IL-

17F is generally considered less “potent” than IL-17A, with the IL-

17A/F heterodimer exhibiting an intermediate potency (40).

Similar to IL-17A, IL-17F is expressed by immune cells of both

innate and adaptive lineages, including Th17 cells, gd T cells, and

ILC3. IL-17F is believed to be generally co-expressed with IL-17A

(the two genes are at the same locus), but this concept is being

challenged by more recent data, analyzing emigrating cells from

psoriasis samples at a single cell level. Such analyses show that most

T17 cells express either IL-17A or IL-17F, with <10% of cells co-

expressing both cytokines (36). Interestingly, most T cells in lesional

psoriatic skin express IL-17F and not IL-17A. These cells exhibit a

cytokine profile which differs from “conventional”, i.e. IL-17A-

producing T cells. This may explain the clinical observation that

simultaneous blockade of IL-17A and IL-17F resulted in successful

treatment of patients who failed to respond to selective anti IL17A

therapy before (41). Besides, IL-17F may also play a role in the

recurrent course of psoriasis (42).

While the contribution of IL-17F in psoriasis is now accepted, its

role in psoriatic arthritis remains under debate. To this end,

expression of both IL-17A as well as IL-17F has been shown to be

increased in synovial tissue and entheses of patients with psoriatic

arthritis. While data from head-to-head comparator trials are not yet

available, indirect evidence suggests comparable efficacies of selective

IL-17A inhibition and blockade of IL-17A along with -F (43).
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IL-17C

IL-17C is only 23% homologous to IL-17A and, unlike the

latter, is expressed by and acts on epithelial cells. Keratinocytes are

the main producers of and responders to IL-17C in the skin.

Signaling occurs via a receptor composed of the IL-17RA and IL-

17RE subunits. IL-17Cs physiological role is to establish

antimicrobial protective responses at barrier tissues.

It is now also widely accepted that IL-17C contributes to the

psoriatic inflammation. It is increased in lesional skin, induces a

gene expression pattern similar to that induced by IL-17A in

keratinocytes in vitro, and is pathogenic in animal models in vivo

(44–46).

Recent data, based on bioinformatic analysis of RNA seq

experiments comparing non-lesional skin with the leading edge of

evolving psoriatic plaques, identified IL-17C as a functional

regulator of the initial psoriatic cytokine network, suggesting a

role during the early stages of psoriatic inflammation, or the

“priming” for plaque formation (47).

Of interest, the level of IL-17C in lesional skin was reduced to

levels comparable to non-lesional skin upon therapy with an anti-

IL17A/F inhibitor (48), and effective systemic therapy with

methotrexate, ustekinumab, Secukinumab, or adalimumab were

all associated with markedly decreased IL-17C concentrations in

peripheral blood (49). These data suggest a potential role for IL-17C

as a biomarker for therapeutic efficacy.
IL-17B and IL-17D

IL-17B signals through a receptor that contains the IL-17RB

subunit. While IL-17B is recognized for its role in cancer

pathophysiology, it may not play a major role in the context of

inflammation (50). Its concentration in psoriatic plaques is

low (51).

Little is known about IL-17D, and its receptor has yet to be

identified. IL-17D induces the production of pro-inflammatory

cytokines and appears to play a regulatory role in anti-tumor and

anti-viral responses (52). IL-17D levels are decreased in chronic

plaque-type (51), but increased in palmoplantar pustulosis (53). It

inhibits the expression of DDX5 helicase RNA in keratinocytes,

promoting the production of membrane-bound IL-36R, and leading

to the amplification of IL-36R-mediated skin inflammation. This

newly identified pathway suggests a novel role of IL-17D in the

control of skin inflammatory disorders, which needs to be further

elucidated and studied in the context of pathology (54).
IL-17E (also known as IL-25)

L-17E, also known as IL-25, shares only 6% homology with IL-

17A. It signals through a heterodimeric receptor composed of the

IL-17RA and IL-17RB subunits. IL-17E is produced by and acts on

several cell types, including those of epithelial, mesenchymal, and

hematopoietic origin.
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Although primarily recognized as a cytokine that participates in

type 2 cell responses (55), IL-17E may also play a role in the

maintenance of skin inflammation at large (56). Keratocyte-derived

IL-17E promotes the expression of pro-inflammatory cytokines in

an autocrine manner, participates in the amplification of the

psoriatic inflammatory network (57–59), and promotes

recruitment of neutrophils in neutrophilic dermatoses (60).

IL-17E exhibits effects on keratinocytes that are distinct from

those of IL-17A in as much as it induces cell motility and

proliferation rather than antimicrobial responses. IL-17Es

functions clearly go beyond those of a “simple” alarmin; it seems

to play an important role in epidermal homeostasis (61).

Interestingly, serum levels of IL-17E could perhaps be used as

biomarkers of psoriasis activity or severity, as particularly high

levels are detectable in erythrodermic psoriasis (62).
Therapeutic implications of a
more detailed understanding of
IL-17 biology

In recent years, IL-17 inhibition has become a mainstay of

psoriasis treatment. Currently approved anti-psoriatic drugs

interfering with IL-17 function comprise biologics and a JAK

inhibitor, additional molecules are under development (11). These

are (Table 1, Figure 2):
Fron
• Antibodies selectively blocking IL-17A (secukinumab,

ixekizumab)

• Molecules blocking IL-17A and –F (bimekizumab,

sonelokimab)

• Inhibitors of IL-17 signalling (brodalumab)
tiers in Immunology 05
Besides, IL-23 inhibitors can be regarded as indirect IL-17

inhibitors, as this mode of action results in reduced production of

IL-17A. All of these molecules exhibit distinct efficacy and safety

profiles reflecting their respective mode of action.

Secukinumab and ixekizumab are monoclonal antibodies

binding IL-17A selectively and directly. They are both highly

effective, and “clear skin” became a feasible treatment goal in

psoriasis with the approval of these drugs, as most patients

achieved treatment responses superior to the previous treatment

goal of a 75% reduction in the Psoriasis Area and Severity Index

(PASI) (63). They also exhibit a particularly fast mode of onset, as

expected by the fact that they block a key “effector” cytokine directly

(see above). This is evidenced by superior efficacy data in direct

comparator studies against IL-23 inhibitors during the induction

phase of treatment (15, 64). As IL-17A plays an important role in

mucosal immunity in general and protection against infections

(namely by candida) in particular, it is not surprising that

candida infections are a common adverse event of these drugs

(65). Nevertheless, the interest in novel strategies to block IL-17A

remains unbroken, as exemplified by clinical development

programs using innovative molecules such as izokibep, a fusion

protein exhibiting a particularly high affinity to IL-17A (66) or the

oral IL-17 inhibitor DC-806 (67).

IL-17F is an IL-17 homologue who’s relevance in the

pathogenesis of psoriasis has long been overlooked. Once it was

realized that IL-17F is actually more abundant in lesional psoriatic

skin (20), with partially overlapping functions (21), it became an

obvious target for novel anti-psoriatic therapies. The monoclonal

antibody bimekizumab has recently been approved for this

indication. It binds IL-17A and IL-17F homodimers as well as the

IL-17A/F heterodimer. As it blocks two strongly pro-inflammatory

cytokines involved in the pathogenesis of psoriasis, a greater depth
TABLE 1 Synopsis of anti-psoriatic drugs interfering with IL-17s. Only molecules with published positive phase III trial data are included.

Mode of action Molecule Approved for psoriasis
therapy

Comment

Binding to IL-17A Secukinumab Yes Fast mode of onset

Binding to IL-17A Ixekizumab Yes Fast mode of onset

Binding to IL-17A and –F Bimekizumab Yes • Mode of onset faster than anti IL-17As
• more effective compared to secukinumab
• candida infections more common compred to selective IL-17A

inhibition

Binding to IL-17A and –F Sonelokimab No Nanobody

Binding to the IL-17RA
receptor

Brodalumab Yes Risk of relapse/rebound

Binding to IL-23 (p19 subunit) Guselkumab Yes • Slower mode of onset compared to anti IL-17As
• long lasting efficacy after withdrawal

Binding to IL-23 (p19 subunit) Risankizumab Yes • Slower mode of onset compared to anti IL-17As
• long lasting efficacy after withdrawal

Binding to IL-23 (p19 subunit) Tildrakizumab Yes • Slower mode of onset compared to anti IL-17As
• long lasting efficacy after withdrawal

JAK inhibitor Tofacitinib No Less effective compared to antibody therapies

TYK2 inhibitor Deucravacitinib Yes Less effective compared to antibody therapies
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of clinical response was hypothesized (68). This hypothesis proved

right, as bimekizumab showed superior efficacy in a direct

comparator trial against secukinumab. But as IL-17F does not

only contribute to psoriasis, but also to mucosal immunity, the

blockade of IL-17F along with IL-17A results in an increased risk for

candida infections (22). Another molecule binding to both IL-17A

and IL-17F is the nanobody sonelokimab. The clinical trial data

published so far document its efficacy in the treatment of

psoriasis (69).

Finally, the monoclonal antibody brodalumab blocks the IL-

17RA receptor and thus signaling of IL-17A, -C –E, and –F. As

expected, this strategy is highly effective (70). The brodalumab

clinical development program was abruptly interrupted for safety

reasons (several cases of major adverse cardiovascular events in the

brodalumab arm but not the placebo arm in one clinical study,

resulting in a statistically significant safety signal) and subsequently

resumed (brodalumab’s safety profile with regard to such major

adverse cardiovascular events has recently been documented by an

integrated safety analysis based on 5 clinical trials (71).

Discontinuation of brodalumab treatment resulted in numerous

relapses and even rebounds (72). This observation may be explained

by the fact that a mediator may still be present (or even increased in

concentration due to blockade of potential feedback loops), ready to

signal through the receptor once it becomes available for interaction

again. Meanwhile, brodalumab is approved for the treatment

of psoriasis.

IL-17 inhibition may also be achieved indirectly via blocking IL-

23 and consequently a reduction of sources of IL-17. There are

currently three anti IL-23 antibodies approved for the treatment of

psoriasis, namely guselkumab, risankizumab, and tildrakizumab.

Their efficacy is comparable to the one of the IL-17 blocking

antibodies (63, 73). However, as expected when blocking an

upstream “regulatory” cytokine, clinical trial data tend to

document longer time to onset of action in studies assessing

approved dosing ranges of IL-23 inhibitors compared with

studies assessing IL-17 inhibitors (74). However, speed of onset

does not depend on a drug’s mode of action alone, but is also

influenced by affinity and potency, as well as the selected clinical

end point. Therefore, individual comparisons between one specific

IL-23 inhibitor and one specific IL-17 inhibitor may yield

different results.

Blocking the intracellular signal transduction of IL-23 at the

level of the JAKs follows a similar reasoning. The pan JAK inhibitor

tofacitinib as well as the specific TYK2 inhibitor deucravacitinib,

have both shown clinical efficacy in clinical trials (75, 76).

Deucravacitinib has meanwhile been approved for the treatment

of psoriasis, while the manufacturing company of tofacitinib

decided not to file for approval.

In this review, we focused on psoriasis. From a physician’s

perspective, it is also important to which extent psoriatic

comorbidities can either also be treated or represent potential

contraindications for a given anti-psoriatic drug (77). This is also

highlighted in the current S3 treatment guidelines (78). Clinically,

the single most important comorbidity of psoriasis is psoriatic
Frontiers in Immunology 06
arthritis, affecting up to 30% of psoriasis patients (79). In the

context of this review, it is therefore important to stress that all of

the above-mentioned anti-psoriatic drugs are also effective in the

treatment of psoriatic arthritis. IL-17A inhibitors are by now readily

accepted by rheumatologists and recommended by expert groups

such as EULAR (80) or GRAPPA (81). JAK inhibition is an

established treatment strategy for psoriatic arthritis as well (82).

And there are positive data from a phase II trial with the above-

mentioned TYK2 inhibitor deucravacitinib (83). Finally,

guselkumab was the first IL-23 inhibitor approved for psoriatic

arthritis (84), exhibiting efficacy data comparable to IL-17A

inhibitors (85).

In summary, our growing understanding of the IL-17 cytokine

family helps us to better understand the pathophysiology of psoriasis

as well as the distinct profiles of numerous drugs either already

approved or in advanced stages of clinical development for this

indication with regard to efficacy, mode of onset, and safety. To this

end, it seems as if direct blockade of more than one IL-17 homologue

potentially increases efficacy, but also characteristic safety signals

(candida infections), while modulating the inflammatory milieu via

interference with signal transduction may result in a lower clinical

efficacy compared to direct blockade of IL-17. This may open the

door towards development of systemic therapies for moderate rather

than severe psoriasis as well as – finally – innovative topical therapies,

as small molecules such as JAK inhibitors may be used in topical

formulations. It remains to be seen to which extent IL-17 homologues

other than –A and -F are valid targets for anti-psoriatic therapies.

One company’s Il-17C program has recently been shut down (WHB,

personal communication). And IL-17E/IL-25 as an important player

in epithelial homeostasis at large might be more relevant as

therapeutic target in other pathologies (56).
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