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Nutritional immunity regulates the homeostasis of micronutrients such as iron,

manganese, and zinc at the systemic and cellular levels, preventing the invading

microorganisms from gaining access and thereby limiting their growth.

Therefore, the objective of this study was to evaluate the activation of

nutritional immunity in specimens of Atlantic salmon (Salmo salar) that are

intraperitoneally stimulated with both live and inactivated Piscirickettsia

salmonis. The study used liver tissue and blood/plasma samples on days 3, 7,

and 14 post-injections (dpi) for the analysis. Genetic material (DNA) of P. salmonis

was detected in the liver tissue of fish stimulated with both live and inactivated P.

salmonis at 14 dpi. Additionally, the hematocrit percentage decreased at 3 and 7

dpi in fish stimulated with live P. salmonis, unchanged in fish challenged with

inactivated P. salmonis. On the other hand, plasma iron content decreased

during the experimental course in fish stimulated with both live and inactivated

P. salmonis, although this decrease was statistically significant only at 3 dpi.

Regarding the immune-nutritional markers such as tfr1, dmt1, and ireg1 were

modulated in the two experimental conditions, compared to zip8, ft-h, and

hamp, which were down-regulated in fish stimulated with live and inactivated P.

salmonis during the course experimental. Finally, the intracellular iron content in

the liver increased at 7 and 14 dpi in fish stimulated with live and inactivated P.

salmonis, while the zinc content decreased at 14 dpi under both experimental

conditions. However, stimulation with live and inactivated P. salmonis did not

alter the manganese content in the fish. The results suggest that nutritional
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immunity does not distinguish between live and inactivated P. salmonis and

elicits a similar immune response. Probably, this immune mechanism would be

self-activated with the detection of PAMPs, instead of a sequestration and/or

competition of micronutrients by the living microorganism.
KEYWORDS

nutritional immunity, Piscirickettsia salmonis, Salmo salar, iron, zinc, manganese,
Atlantic salmon
Introduction

Aquaculture in Chile focuses on the industrial-scale production

of salmonids fish, mainly Atlantic salmon (Salmo salar). However,

the aquaculture companies suffer significant economic losses

due to the high prevalence of infectious diseases, of which,

Piscirickettsiosis caused by the bacterium Piscirickettsia salmonis

is the most important disease (1, 2). Despite the fact that the

identification of this bacterium dates back more than 30 years (3),

the antimicrobial treatments so far were not effective in eliminating

or in the least regulating the disease. It is estimated that this might

be due to the ability of the bacterium to modulate the immune

system of Atlantic salmon (Salmo salar) for the benefit of its

permanence and replication (4). Similarly, the host-pathogen

interaction modulates the regulation of micronutrients such as

iron, as reported by Pulgar et al. (5), who demonstrated that

families of Atlantic salmon (Salmo salar) that are resistant to

infection with P. salmonis decrease the content of this

micronutrient in the head kidney, compared to families with high

susceptibility, suggesting that the regulation of iron-associated

nutritional immunity could have a key role in fish survival.

Nutritional immunity involves the regulation of the availability

of micronutrients such as iron, manganese, and zinc at systemic and

cellular levels so that pathogenic microorganisms cannot access

them (6). The activation of this mechanism has not only been

evaluated in Atlantic salmon (Salmo salar) (5), and this mechanism

has previously been described in Patagonian blennie (Eleginops

maclovinus) challenged with P. salmonis (7, 8), as well as in

Antarctic fish “Notothenia rossii – Notothenia coriiceps”

stimulated with LPS (9) and, in vitro in Atlantic salmon head

kidney cells (SHK-1) stimulated with several Pathogen-Associated

Molecular Patterns (PAMPs) from P. salmonis (10). From a

genomic point of view, orthologous genes involved in metabolism

and iron uptake in P. salmonis have been identified as markers

involved in the classical components of the tonB system, tonB-

dependent siderophore synthesis/receptor, membrane exporters,

ABC transporter, ferrous ion transport, tonB-dependent heme/

siderophore receptor, and Fur family transcriptional regulator (5,

11, 12). In addition, it has been functionally demonstrated that P.

salmonis can be cultured in artificial media supplemented with both

ferric ammonium citrate and ferric nitrate inducing the synthesis of

siderophores under experimental conditions (13).
02
The nutritional immunity also regulates other critical

micronutrients such as manganese and zinc (6, 14). However, the

uptake systems of these micronutrients by P. salmonis and how

Atlantic salmon (Salmo salar) could regulate its homeostasis under

infection conditions have not yet been investigated, although Pulgar

et al. (5) reported no differences in the zinc content in the head

kidney of Atlantic salmon (Salmo salar) between the families

resistant and susceptible to P. salmonis were found after 14 dpi.

Despite that micronutrients such as iron, manganese, and zinc can

be captured from the water by fish (gills), the most important route

of acquisition is from the diet (gastrointestinal tract) (15, 16). Thus,

once assimilated they can be used in numerous biological functions

within the cells (17, 18). Therefore, it is not surprising that their

deficiencies or imbalances have repercussions on the immune

response (19, 20) and much less that they are also considered

micronutrients. that other bacteria require to induce their

pathogenesis mechanisms (21–33).

Studies reveal that microorganisms have evolved sophisticated

strategies to capture these micronutrients, and thus the proteins

involved in their homeostasis in the host tissues must be correctly

regulated. So far, iron-associated nutritional immunity has been

evaluated in S. salar challenged with live P. salmonis (5) and in the

SHK-1 cell line stimulated with outer membrane vesicles (OMVs),

lipopolysaccharides (LPS) and total proteins (TP) of P. salmonis

(10). Yet it is still unknown whether this antimicrobial defense

mechanism discriminates between: live pathogens that require

micronutrients and dead pathogens (inactivated bacteria) that do

not. Therefore, the current research aimed to evaluate the activation

of nutritional immunity through an in vivo approach using Atlantic

salmon (Salmo salar) challenged with live and inactivated P.

salmonis at different times post-injection (dpi).
Material and methods

Piscirickettsia salmonis

P. salmonis strain type LF-89 (ATCC VR-1361) was grown

under standard conditions in Austral-SRS broth medium for 5 days

at 18°C and 50 rpm of agitation (34). The identity was confirmed by

Gram staining, polymerase chain reaction (PCR), and

immunofluorescence antibody test (IFAT) (IFAT, SRS-Bios
frontiersin.org
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Chile), following the instruction manual. Subsequently, the

inoculum used for the salmon treatment with inactivated P.

salmonis was obtained by applying the previously described

methodology for bacterial inactivation by thermal shock at 100°C

for 30 min (35). The inactivation of the culture was confirmed by

cultivating 100 mL of the inactivated inoculum in Austral-SRS broth

solid medium without colony formation.
Experimental challenge

Post-smolt specimens of Atlantic salmon (Salmo salar) (700 g)

were obtained from local fish cultures (Valdivia, Chile) and

transferred to Salmon Clinical Trials Facility, Institute of Animal

Pathology, Faculty of Veterinary Medicine, Universidad Austral de

Chile. The fish were kept in 1000 L ponds at 16°C, 12:12 photoperiod,

33 PSU salinity, 90-100% oxygen saturation, and fed once a day with

Biomar pellets at 1% of their body weight (Proximate food analysis

was 45-50% crude protein, 21-23% lipids, 9.5% carbohydrates, 12%

ashes, 10% water, and 2.5% fiber). After the acclimation period, the

fish (n=54) were randomly distributed into six 1000 L ponds for the

implementation of the experimental treatments by intraperitoneal

injection (i.p) and in duplicate: control (i.p fish with 100 mL of

bacterial culture medium), live Ps (i.p fish with 100 mL of live P.

salmonis at 1x104 bact/mL) and inactivated Ps (i.p fish with 100 mL of

inactivated P. salmonis at 1x104 bact/mL). Three fish were randomly

extracted from each pond (six for each treatment) at 3, 7, and 14 days

post-injections (dpi) for blood/plasma and liver extraction. The

bacterial dose applied was the same one used in a previous trial (5)

and the experimental conditions in terms of temperature, salinity,

oxygen, photoperiod and feeding were the same as those detailed in

the acclimation period.
Total DNA extraction

Total DNA extraction was from 60 mg of sample pool (liver)

per experimental condition at 14 dpi, using a commercial Bacterial

DNA isolation kit (Matchery-Nagel) and following the

manufacturer’s instructions. Subsequently, the total DNA pellet

was dissolved in diethylpyrocarbonate water, quantified by

spectrophotometry (NanoDrop Technologies), and used for the

detection of P. salmonis by qPCR with specific primers described in

the literature (36). The last day (14 dpi) was selected to increase the

sensitivity of the qPCR due to the bacterial load administered and

the experimental times evaluated.
Total RNA extraction

Total RNA was extracted from 50 mg of each tissue sample

(liver) using the commercial kit E.Z.N.A ® Total RNA Kit I

(Omega) and Rnase-free Dnase I, following the manufacturer’s

guidelines. Then the total RNA pellet was dissolved in
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diethylpyrocarbonate water, quantified by spectrophotometry

(NanoDrop Technologies), and its quality was evaluated using 1%

agarose gel. Subsequently, 1 mg of total RNA was used as a template

for cDNA synthesis, using MMLV-RT reverse transcriptase

(Promega) and oligo-dT primer (Invitrogen), according to the

standard procedure (10).
qPCR analysis

For the qPCR analysis, the QuantStudio™ equipment, Master

Mix SYBRGreen (Life Technology, Thermo Scientific), and cDNA

at 100 ng were used. Reactions were performed in triplicates in a

total volume of 12 mL (6 mL SYBRGreen, 0.5 mL forward primers,

0.5 mL reverse primers, 3 mL PCR-grade water and 2 mL cDNA).

Primers were designed for: transferrin receptor 1 (tfr1), divalent

metal transporter 1 (dmt1), ferroportin 1 (ireg1), hepcidin (hamp),

ferritin heavy-chain (ft-h), zinc transporter 8 (zip8), and small

ribosomal subunit (18s) (10). The qPCR cycle conditions were 95°

C for 10 min followed by 40 cycles of 95°C for 10 s and 60°C for

1 min. At the end of each reaction, the melting curve was evaluated

to confirm the amplification and detection of a single PCR product,

and the respective expression levels were analyzed using the

comparative Ct method (2-DDCT) (37). The data are presented as

fold changes in gene expression normalized to an endogenous

reference gene (18s) and relative to the uninfected fish (Control).

The specific primers are listed in Table 1.
Plasma iron

Plasma iron levels were analyzed following the procedure

indicated by Quilapi et al. (39), using the photometric technique

of the Fer-color AA reaction kit (Wiener lab.) and the automatic

biochemical analyzer (Erba XL-100). Briefly, 200 µL of plasma were

mixed with 1 mL of reagent A (200 mM citric acid solution, 34 mM

ascorbic acid, 100 mM thiourea and surfactant) and then, the

absorbance was read by spectrophotometry at 600 nm.

Subsequently, 200 µL of reagent B (ferene stabilized solution > 3

mM) were added to the previous mix and the absorbance was read

after 5 minutes at 600 nm. The obtained absorbance is directly

proportional to the iron concentration in the sample.
Micronutrients in liver

The liver samples (1 g) were freeze-dried for 24 h in the

Sumtrom model CT-FOL-12P freeze-dryer, belonging to the

Center for Applied Biological Research (CIBA). Subsequently,

they were sent to the Service Laboratory, Solespectro Ltda.

(Santiago, Chile) for the quantification of micronutrients such as

iron, manganese, and zinc using flame atomic absorption

spectroscopy (FAAS). The concentration of micronutrients was

expressed as µg metal/g DW.
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Statistical analysis

Two-way ANOVA was applied using injection type (Control,

Live Ps, and Inactivated Ps) and time (3, 7, and 14 dpi) as variation

factors. Data were transformed when necessary to meet parametric

assumptions and post hoc Tuckey was applied to identify differences

among groups. Each value is the mean ± S.E.M (n = 6). Different

letters indicate statistical differences in the same treatment over

time and symbols indicate statistical differences between the three

conditions (Control, Live Ps, and Inactivated Ps) at the same time.

Statistical differences were considered for a value of P < 0.05.
Results

Mortality and detection of P. salmonis DNA

No mortality or behavioral changes were observed for any fish

group during the experimental period (3-14 dpi). As estimated, the

genetic material of P. salmonis (DNA) was detected at 14 dpi in the

liver of fish stimulated with live and inactivated P. salmonis. No

evidence of P. salmonis DNA was detected in the control

group (Figure 1).
Hematocrit

The hematocrit percentage decreased in a statistically

significant manner at 3 [37.89 ± 0.72] and 7 [46.0 ± 2.33] dpi in

fish stimulated with live P. salmonis, compared to the control group

[48.11 ± 1.21 (3 dpi)/54.68 ± 0.96 (7 dpi)]. On the other hand, no

statistical differences between control fish group and the fish group

stimulated with inactivated P. salmonis were observed. However,

statistical differences between the different times for this treatment

were determined (Figure 2).
Frontiers in Immunology 04
Plasma iron

Plasma iron levels decreased statistically at 3 dpi in both the

groups offish stimulated with live P. salmonis [38.58 ± 6.48 µmol/L]

and inactivated [43.97 ± 4.93 µmol/L], compared to the control

group [88.28 ± 10.34 µmol/L]. In addition, a decrease in the iron

levels at 7 and 14 dpi was also observed in both treatments;

However, this decrease was not statistically significant (Figure 3).
Gene expression of markers involved in
nutritional immunology

The tfr1 marker involved in micronutrient uptake exhibited an

increase in its transcription at 3 dpi [0.90 ± 0.03 Log2 FC] and

decreased at 7 dpi [-1.36 ± 0.12 Log2 FC] in fish stimulated with live
TABLE 1 Primer sequences.

Gene Nucleotide sequences (5`!3`) PCR product size (bp) Accesion Number References

dmt1
Fw: CGTCTTTTTCACGGGACAGC
Rv: CGTACATGCATATAAATTGGTGGC 126 - Martıńez et al. (10)

ft-h
Fw: TCTGAACACAACGACCCACA
Rv: GTCAAACAGGTACTCGGCCA 150 - Valenzuela-Muñoz et al. (38)

ireg1
Fw: ACCACCGTGTAGCCCATTAAA
Rv: TTGATAGCTAGCGGGCAGGA 105 XM_014173032.1 Martıńez et al. (10)

hamp
Fw: GCCGATGCATTTCAGGTTCA
Rv: AATGGCTTTAGTGCTGGCAGG 127 NM_001140849.1 Martıńez et al. (10)

tfr1
Fw: GGGTCTAACTGGGAAGCAGC
Rv: AACGGAATGAGACGGATGGG 100 XM_014188394.1 Martıńez et al. (10)

zip8
Fw: ATGAACAGGACGGATCGACG
Rv: AGCATTGGCTCTAACCCAGG 135 - Martıńez et al. (10)

18s
Fw: GTCCGGGAAACCAAAGTC
Rv: TTGAGTCAAATTAAGCCGCA 116 AJ427629.1 Martıńez et al. (10)

P. salmonis
Fw: AGGGAGACTGCCGGTGAT
Rv: ACTACGAGGCGCTTTCTC 151 - Karatas et al. (36)
FIGURE 1

Detection of genetic material (DNA) of P. salmonis in the liver tissue
at 14 dpi. Melting curve (Tm) of the 16s gene from P. salmonis
amplified by qPCR of pooled DNA from each experimental
condition.
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P. salmonis. On the contrary, fish stimulated with inactivated P.

salmonis showed a decrease in the transcription of this marker at 3-

7 dpi [-0.69 ± 0.02 (3 dpi)/-1.41 ± 0.06 (7 dpi) Log2 FC] with a

statistically significant increase at 14 dpi [1.77 ± 0.18 Log2
FC] (Figure 4A).

Markers involved in the transport of micronutrients such as

dmt1 and ireg1 displayed the same expression profile, i.e., increasing

statistically at 3 dpi in fish stimulated with live [2.02 ± 0.04 (dmt1)/

1.85 ± 0.09 (ireg1) Log2 FC] and inactivated P. salmonis [1.17 ± 0.04

(dmt1)/0.64 ± 0.07 (ireg1) Log2 FC]; however, at 7 dpi, the increase

was statistically significant only in fish stimulated with live P.

salmonis [3.17 ± 0.07 (dmt1)/3.23 ± 0.10 (ireg1) Log2 FC],

compared to at 14 dpi, where the transcription of both markers

decreased significantly in fish stimulated with live P. salmonis [-3.74

± 0.07 (dmt1)/-3.89 ± 0.22 (ireg1) Log2 FC] and inactivated [-6.94 ±

0.09 (dmt1)/-6.74 ± 0.09 (ireg1) Log2 FC] (Figures 4B, C).
Frontiers in Immunology 05
The zip8 marker, which is also involved in the transport of

micronutrients, significantly decreased its transcription in fish

stimulated with live P. salmonis [-1.82 ± 0.03 (7 dpi)/-3.43 ± 0.05

(14 dpi) Log2 FC] and inactivated bacteria [-0.57 ± 0.02 (3 dpi)/-

1.80 ± 0.07 (7 dpi)/- 3.52 ± 0.07 (14 dpi) Log2 FC]. At 3 dpi, fish

stimulated with live P. salmonis did not show statistical differences

compared to the control group (Figure 4D).

Finally, the markers involved in the storage (ft-h) and regulation

(hamp) of micronutrients showed a statistically significant decrease

in their transcription levels at 3, 7, and 14 dpi in fish stimulated with

live P. salmonis [-1.11 ± 0.03 (3 dpi, ft-h)/-3.26 ± 0.08 (7 dpi, ft-h)/-

1.36 ± 0.07 (14 dpi, ft-h)/-0.17 ± 0.02 (3 dpi, hamp)/-4.14 ± 0.23 (7

dpi, hamp)/-1.30 ± 0.04 (14 dpi, hamp) Log2 FC] and inactivated

[-1.33 ± 0.03 (3 dpi, ft-h)/-1.90 ± 0.04 (7 dpi, ft-h)/-2.17 ± 0.09 (14

dpi, ft-h)/-1.77 ± 0.05 (3 dpi, hamp)/-3.16 ± 0.07 (7 dpi, hamp)/-

2.17 ± 0.08 (14 dpi, hamp) Log2 FC] (Figures 4E, F).
Micronutrients in liver

The concentration of iron in the liver tissue did not reflect any

statistical differences with respect to the control group at 3 dpi;

however, at 7 and 14 dpi, the tissue concentration of this

micronutrient increased significantly in fish stimulated with live

P. salmonis [1923.40 ± 85.07 (7 dpi)/1526.83 ± 13.92 (14 dpi) µg Fe/

g DW] and inactivated [2127.00 ± 59.87 (7 dpi)/1736.00 ± 20.87 (14

dpi) µg Fe/g DW], compared to the control group [1444.00 ± 32.31

(7 dpi)/1402.83 ± 12.42 (14 dpi) µg Fe/g DW] (Figure 5A).

On the other hand, the zinc concentration did not show

statistically significant changes at 3 and 7 dpi but decreased

significantly at 14 dpi in fish stimulated with live P. salmonis

[88.33 ± 1.89 µg Zn/g DW] and inactivated [86.00 ± 1.48 µg Zn/g

DW], compared to the control group [112.16 ± 4.31 µg Zn/g

DW] (Figure 5B).

Finally, the manganese content did not show statistically

significant changes among the different treatments evaluated

during the experimental course (Figure 5C).
Discussion

This study evaluated the activation of nutritional immunity

in Atlantic salmon (Salmo salar) specimens challenged

intraperitoneally with P. salmonis, which causes high mortality

rates in the Chilean salmon industry. We detected genetic

material (DNA) of this bacterium in the liver of fish after 14 days

of stimulation with both live and inactivated P. salmonis, indicating

that the live bacterium could be established in this tissue, and that

fish injected with the inactivated bacterium still retain remnants of

genetic material that must be eliminated from their system. This

may correlate with the bacterial dose administered (medium dose)

into the tissue and the experimental time evaluated (3-14 dpi) since

in fish the innate (early and non-specific) and adaptive (late and

specific) immune responses have activation time ranges and both

are necessary to combat pathogens and/or PAMPs at the cellular

and systemic levels (40). In fact, Isla et al. (41) reported that IgM
FIGURE 3

Plasma iron levels in S. salar. The samples were taken at 3, 7, and 14
days after injection (dpi). Black bar: control condition, white bar (fish
stimulated with live P. salmonis), and gray bar (fish stimulated with
inactivated P. salmonis). Symbol (#) over the bars indicates statistical
differences between the different treatments at the same time
points. Different letters a, b indicate statistical differences in the
same treatment at different times. Two-way ANOVA, p < 0.05; n=6.
FIGURE 2

The hematocrit percentage in the blood of S. salar. The samples
were taken at 3, 7, and 14 days after injection (dpi). Black bar:
control condition, white bar (fish stimulated with live P. salmonis),
and gray bar (fish stimulated with inactivated P. salmonis). Symbols
(+, #) over the bars indicate statistical differences between the
different treatments at the same time points. Different letters (A, B)
indicate statistical differences in the same treatment at different
times. Two-way ANOVA, p < 0.05; n=6.
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levels increase from day 28 in S. salar that are challenged with P.

salmonis. Interestingly, an increase in IgM Anti-P. salmonis was

observed from day 14 in E. maclovinus exposed to two strains of P.

salmonis (42), suggesting that the immune response could be

dependent on the species, stage of fish development, as well as

doses and time of exposure to the pathogen.

Regarding the hematocrit, in the fish stimulated with live P.

salmonis, it decreased in a statistically significant manner its

percentage at 3 and 7 dpi while no changes were detected at 14

dpi. On the other hand, the fish stimulated with inactivated P.

salmonis did not show changes in this parameter over the

experimental course. The latter was to be expected since only a

living pathogen provides its functional cellular machinery for the

synthesis of hemolysins to be induced in P. salmonis, and

consequently, the lysis of erythrocytes in Atlantic salmon (Salmo

salar) (5), which could corroborate the anemia generated by

Piscirickettsiosis (2). These results are not in agreement with
Frontiers in Immunology 06
what was previously published by Isla et al. (41), who reported a

decrease in hematocrit from day 7 to 28 post-inoculation with live

P. salmonis. However, this may be correlated to the bacterial dose

they administered (low dose) and the size of the used smolt

specimens (60-70 g), compared with the post-smolt specimens

(700 g) used in this study, according to the ranges determined by

Rozas-Serri et al. (43).

The lysis of erythrocytes is a mechanism of pathogenicity of P.

salmonis that culminates in the release of iron that is contained in

the heme group from these cell types (5). Interestingly, genomic

(sequencing/annotation) and functional studies indicate that P.

salmonis possesses the necessary machinery to sequester this

micronutrient from different sources (5, 11–13, 44). Similarly, fish

have developed mechanisms to avoid the sequestration of

micronutrients, decreasing the levels of micronutrients at a

systemic level (6). Our research demonstrated a decrease in the

levels of plasma iron in fish stimulated with live and inactivated P.
D

A B

E F

C

FIGURE 4

Gene expression of markers involved in nutritional immunology in S. salar. The samples were taken at 3, 7, and 14 days after injection (dpi).
(A): transferrin receptor 1. (B): divalent metal transporter 1. (C): ferroportin 1. (D): zinc transporter 8. (E): ferritin heavy chain. (F): hepcidin. Symbols
(+, #, &) over the bars indicate statistical differences between the different treatments at the same time points. Different letters a, b, c indicate
statistical differences in the same treatment at different times. Two-way ANOVA, p < 0.05; n=6.
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salmonis (3 dpi); however, this decrease was not statistically

significant at 7 and 14 dpi. These findings agree with previous

reports on smolt specimens of Atlantic salmon (Salmo salar)

inoculated with a low dose of live P. salmonis (41) and in

Patagonian blennie (E. maclovinus) challenged with Francisella

noatunensis subsp. Noatunensis (39), which is a facultative

intracellular bacterial pathogen that have similarities in terms of

pathogenesis with P. salmonis (45).

The findings suggest that nutritional immunity is not capable of

differentiating between live pathogens and dead or inactivated ones.

Thus, the activation of this response could be induced by the

detection of specific PAMPs rather than by the establishment of

functional bacterial machinery. This was previously suggested in an
Frontiers in Immunology 07
in vitro assay using the SHK-1 cells stimulated with LPS, OMVs,

and TP extracted from P. salmonis, where markers such as zip8,

zip14, dmt1, ireg1, tfr1, ft-h, ft-m, il6, hamp, irp1, and irp2 were

modulated between 15 and 120 min post-stimulation with these

different PAMPs (10), although in Antarctic fish such as Notothenia

rossii and Notothenia coriiceps, the stimulation with commercial

LPS did not alter plasma iron levels on day 5 post-intraperitoneal

stimulation (9).

Immuno-nutritional markers that participate in the

homeostasis of iron, manganese, and zinc are fundamental so that

these are not sequestered by microorganisms (6, 14). In our

research, these markers showed different expression profiles based

on the type of bacterial stimulation (live and inactivated P.

salmonis) and the experimental time evaluated (3-14 dpi).

Specifically, tfr1 involved in micronutrient uptake, showed a

modulation in its transcription in fish stimulated with live and

inactivated P. salmonis, while the transcription of the dmt1 and

ireg1 transporters presented the same expression profile, increasing

at 3 dpi and decreasing at 14 dpi in the fish stimulated with live and

inactivated P. salmonis. On the other hand, zip8 involved in the

transport of Zn2+, Fe2+, HseO3
- y Mn2+ (46), ft-h involved in storage

(47), and hamp involved in the regulation of micronutrients (48)

showed down-regulation in their transcription levels in the liver of

fish stimulated with both live and inactivated P. salmonis

throughout the experimental course. The results suggest that

stimulation with live and inactivated P. salmonis induces the

transcriptional modulation of immune-nutritional markers in the

liver of S. salar and that this modulation could be related to the

decrease in plasma iron levels. These transcriptional findings have

been corroborated by previous studies, which describe the

activation of these markers in the head kidney of S. salar families

with high and low susceptibility to P. salmonis (5), as well as in the

liver and brain of E. maclovinus challenged with P. salmonis (7, 8),

F. noatunensis subsp. Noatunensis (39), and in Antarctic fish such

as Black rockcod (Notothenia coriiceps) and Marbled rockcod

(Notothenia rossii) stimulated with commercial LPS (9).

Finally, the micronutrient content in the liver of Atlantic

salmon (Salmo salar) revealed that the intracellular iron increased

at 7 and 14 dpi in fish stimulated with live and inactive P. salmonis,

while zinc content decreased at 14 dpi in both experimental

conditions. However, stimulation with live and inactivated P.

salmonis did not modulate the manganese content during the

experiment. These results indicate that the decrease in iron in

plasma could be related to the increase of this micronutrient in

the liver and, more importantly, this mechanism could be a

pathogenesis strategy used by P. salmonis , focused on

concentrating the availability of intracellular iron necessary for its

replication, similar to performed by Francisella spp (49). This was

corroborated by Pulgar et al. (5), who indicated that families of

Atlantic salmon (Salmo salar) susceptible to P. salmonis infection

did not reduce the iron content in the head kidney unlike by the

families resistant to this bacterial pathogen. In addition, these

researchers concluded that the levels of zinc in the head kidney

did not present any statistical differences between the families

susceptible and resistant to P. salmonis. However, we observed a

decrease in the zinc content at 14 dpi in the liver of fish stimulated
A

B

C

FIGURE 5

Micronutrient content in the liver of S. salar. The samples were
taken at 3, 7 and 14 days after injection (dpi). Black bar: control
condition, white bar (fish stimulated with live P. salmonis) and gray
bar (fish stimulated with inactivated P. salmonis). (A): iron. (B): zinc.
(C): manganese. Symbols (+, #, &) over the bars indicate statistical
differences between the different treatments at the same time
points. Different letters a, b indicate statistical differences in the
same treatment at different times. Two-way ANOVA, p < 0.05; n=6.
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with live and inactivated P. salmonis, which suggest that there could

also be competition for this micronutrient, similar to that observed

in other bacterial pathogens such as Escherichia coli (50),

Staphylococcus aureus (51), Salmonella typhimurium (52) y

Mycobacterium tuberculosis (53).

In conclusion, this study is the first to reveal the activation of

nutritional immunity associated with micronutrient such as iron,

manganese, and zinc at the systemic and cellular levels in S. salar

when challenged with live and inactivated P. salmonis. The study

results suggest that nutritional immunity in S. salar would not

distinguish between live P. salmonis that needs micronutrients for

its replication and inactivated P. salmonis which does not. The

immune-nutritional markers involved in this response were

modulated in both treatments, live and inactivated bacteria,

during the experimental course (3, 7 and 14 dpi). This indicates

that the nutritional immunity, being part of innate immunity, could

be activated through the detection of PAMPs rather than a real

sequestration and/or competition for the micronutrient by the

live bacteria.
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Transcriptional response of Atlantic salmon families to Piscirickettsia salmonis
infection highlights the relevance of the iron-deprivation defence system. BMC
Genomics (2015) 16:495. doi: 10.1186/s12864-015-1716-9

6. Hood I, Skaar E. Nutritional immunity: transition metals at the pathogen-host
interface. Nat Rev Microbiol (2012) 10:525–37. doi: 10.1038/nrmicro2836
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