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Idiopathic inflammatory myopathy (IIM) is a heterogeneous group of autoimmune

diseases with various clinical manifestations, treatment responses, and prognoses.

According to the clinical manifestations and presence of different myositis-specific

autoantibodies (MSAs), IIM is classified into several major subgroups, including PM,

DM, IBM, ASS, IMNM, and CADM. However, the pathogenic mechanisms of these

subgroups remain unclear and need to be investigated. Here, we applied MALDI-

TOF-MS to examine the serum metabolome of 144 patients with IIM and analyze

differentially expressed metabolites among IIM subgroups or MSA groups. The

results showed that the DM subgroup had lower activation of the steroid hormone

biosynthesis pathway, while the non-MDA5MSA group had higher activation of the

arachidonic acid metabolism pathway. Our study may provide some insights into

the heterogeneous mechanisms of IIM subgroups, potential biomarkers, and

management of IIM.

KEYWORDS

idiopathic inflammatory myopathy (IIM), arachidonic acid metabolism pathway, steroid
hormone biosynthesis pathway, serum metabolome, myositis-specific autoantibody
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Introduction

Idiopathic inflammatory myopathy (IIM), also known as

myositis, is a heterogeneous group of autoimmune diseases

usually characterized by chronic inflammation of the muscle with

varying clinical manifestations, treatment responses, and prognoses.

Epidemiological studies have reported incidence rates for IIM

ranging from 2.47 to 7.8 per 100,000 person-years, with

prevalence rates ranging from 9.54 to 32.74 per 100,000

individuals (1). IIMs are categorized into subgroups based on

clinical and histopathological manifestations, including

polymyositis (PM), dermatomyositis (DM, juvenile and adult-

onset), amyopathic DM (ADM), and inclusion body myositis

(IBM). Recently, the discovery of myositis-specific autoantibodies

(MSAs) has led to the identification of new IIM subgroups, such as

anti-synthetase syndrome (ASS) and immune-mediated necrotizing

myopathy (IMNM), which exhibit distinct clinical phenotypes.

Both subgroups and MSAs can aid in the classification of the

heterogeneous symptoms of IIM and inform medication and

treatment decisions (2–4).

The accurate diagnosis of IIM presents a significant challenge

due to the heterogeneity of clinical symptoms and variable

responses to immunosuppressive drugs, which are typically used

as first-line treatments for autoimmune diseases. There are no

standardized therapeutic guidelines for the treatment of IIM due

to the lack of robust clinical evidence derived from clinical trials (5).

Oral glucocorticoids are typically the first-line treatment for most

patients with IIM, while other immunosuppressive drugs and

intravenous immunoglobulin may also be used in clinical

practice. However, despite these treatment options, some patients

may exhibit resistance to therapy, and the underlying reasons for

this remain unclear. In recent years, the discovery of MSAs in up to

60% of patients with IIM has represented a significant breakthrough

in the field. These MSAs have been proven to be valuable tools in

the diagnosis of IIM (6). Autoantibodies such as anti-MDA5, anti-

Mi-2, anti-TIF1, anti-SAE, and anti-NXP2 are commonly

associated with the DM subgroup. In the ASS subgroup, typical

autoantibodies include anti-Jo-1, anti-EJ, and anti-PL7, which

target tRNA synthetases. The IMNM subgroup is specifically

characterized by the presence of anti-HMGCR or anti-SRP

autoantibody. A subset of patients with IIM, approximately 20-

30%, exhibit no known autoantibodies and are classified as

seronegative IIM (MSA-). MSAs can be associated with clinical

manifestations, such as amyopathic myositis and interstitial lung

disease (ILD) in anti-MDA5 positive DM patients. However, the

underlying mechanisms of different IIM subgroups and MSA

groups are still not fully understood (5, 7), and the discovery of

new biomarkers is crucial for enhancing our understanding of IIM

and improving the accuracy of diagnosis and treatment.

Metabolomics is the study focused on the analysis and

characterization of low-molecular-weight molecules and

metabolites in cells and biological systems (8). The metabolome

serves as a comprehensive measure of the inputs and outputs within

biological pathways, providing valuable insights into the
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pathological changes occurring in various diseases (9).

Specifically, the analysis of the serum metabolome unveils the

global dynamics of metabolism resulting from physiological or

pathological alterations (10). This approach presents researchers

with the opportunity to uncover pathogenic mechanisms and

identify potential biomarkers, facilitating prompt and precise

diagnosis. Such advancements address the requirements for the

effective treatment of IIM. However, there are few recent studies

about the serum metabolome of IIM. Here, we collected serum

samples from a cohort of 144 IIM patients from February to

September 2022. Our study represents the largest sample size

compared to previous investigations on the serum metabolome of

IIM patients and encompasses major IIM subgroups and MSA

groups. Our study significantly contributes to the field by providing

a better understanding of the underlying pathological mechanisms

of IIM and identifying new biomarkers that have the potential to

enhance clinical diagnosis and management.

In this study, we utilized matrix-assisted laser desorption

ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to

investigate the serum metabolome of 144 patients with IIM. We

conducted an analysis of differentially expressed peaks among

various IIM subgroups or MSA groups. To enhance the

characterization of these peaks and identify them as differentially

expressed metabolites (DEMs), we utilized liquid chromatography-

mass spectrometry (LC-MS) for metabolite identification.

Following the identification, we conducted enrichment and

pathway analysis on these DEMs. Our analysis revealed that the

DM subgroup exhibited decreased activation of the steroid

hormone biosynthesis pathway, while the non-MDA5 MSA group

displayed increased activation of the arachidonic acid metabolism

pathway. These results suggested the heterogeneity of pathological

mechanisms, particularly within these two pathways, among

different IIM subgroups and MSA groups.
Materials and methods

Diagnosis of IIM subgroups and
measurement of MSA groups

DMwas diagnosed based on the criteria of Bohan and Peter (11,

12). CADM was diagnosed based on the criteria of Sontheimer RD

(13). ASS was defined by the presence of an anti-synthetase

autoantibody in patients with DM or PM according to the criteria

of Bohan and Peter (14). IMNM was defined by the presence of

anti-signal recognition particle (SRP) or anti-3-hydroxy-3-

methylglutaryl-CoA reductase (HMGCR) autoantibodies in

patients with proximal weakness and creatine kinase (CK)

elevation as per 2018 European Neuromuscular Centre (ENMC)

criteria (15). IBM was defined by the Lloyd et al. criteria (16),

although no IBM patients were involved in our study. MSA was

measured by standard immunoblotting techniques with the

diagnostic kit for antibody profile in autoimmune myositis

(YHLO, China).
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Serum samples from patients with IIM

All patients in this study were from the outpatient department

of Peking Union Medical College Hospital and received varying

recommended doses of glucocorticoid therapy depending on their

conditions. Blood samples were collected from patients with IIM at

the Department of Rheumatology and Clinical Immunology of

Peking Union Medical College Hospital from February to

September 2022. After clotting at room temperature for 30 min,

the blood samples were centrifuged at 2,000×g at 4°C for 5 min, and

immediately, the supernatant serum was transferred to 1.5 mL

Eppendorf tubes and stored at -80°C for further analysis.
Sample preparation before
MALDI-TOF-MS analysis

5 mL of serum was added to 20 mL of methanol. Then, the

mixture was placed on a vortex for 5 min in an ice bath to dissociate.

The mixture was diluted to 50% methanol with water and

centrifuged at 15,000×g and 4°C for 15 min. The supernatant was

isolated for testing.
MALDI-TOF-MS analysis

A 7 mg/mL HCCA matrix (in 60% acetonitrile solution) was

mixed with 1:1 sample to 2.5 mL. The mixture was spotted on an

MTP BigAnchor 384BC MALDI target plate (Bruker Daltonics).

Mass spectrometry analysis was performed on a rapifleX MALDI-

TOF mass spectrometer with a Smartbeam 3D laser in reflection

negative (RN) mode, controlled by flexControl 4.0 (Bruker

Daltonics). Sample measurements were performed with a mass

range from 100 to 1,200 m/z at a laser frequency of 10,000 Hz.
Metabolomics analysis based on
MALDI-TOF-MS

Data cleaning was processed by the R package MALDIquant

(version 1.22) (17). The functions and parameters were listed:

transformIntensity, log2 method was used; smoothIntensity,

SavitzkyGolay method and 2 halfWindowSize were used;

removeBaseline, SNIP method was used; calibrateIntensity,

median method was used; alignSpectra, 20 halfWindowSize, 2

SNR, 0.002 tolerance, and lowess warpingMethod were used;

detectPeaks, MAD method, 2 halfWindowSize, and 5 SNR were

used. There might be some samples with no signal in fact due to the

technique. We checked them out by their small number of peaks

and removed the abnormal samples. Only one sample had an

abnormal duplicate, and was removed with no impact on our

data because we had two duplicates for each sample. Filtered

samples were processed the same as described above until

detectPeaks. The function averageMassSpectra with a mean
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method was used to merge the duplicates of each sample. Then,

the function detectPeaks with the same parameters was used to

detect peaks. The function binPeaks with a tolerance of 0.002 was

used to group peaks in different samples. The function filterPeaks

with a minFrequency of 0.1 was used to filter peaks only presented

in less than 10% of samples. For each peak, samples with a 5 SD

deviation from the mean of intensities were considered an outlier

and set as a missing value. Missing values were imputed using the

k-nearest neighbor (KNN) algorithm by the R package DMwR

(version 0.4.1). Principal component analysis (PCA) was performed

by R package factoextra (version 1.0.7) and FactoMineR (version

2.7). Partial least squares-discriminant analysis (PLS-DA) was

performed by the R package mixOmics (version 6.22.0) (18).

Differentially expressed peaks were analyzed with the Wilcox test,

and peaks with p<0.05 were retained. Metabolite identification was

performed by pairing MALDI-TOF-MS MS1 (major adducts in

negative mode include [-H]- and [+Cl]-) with the LC-MS metabolite

database within 100 ppm. Multiple candidates were allowed in the

metabolite identification. Enrichment and pathway analysis was

performed by Metaboanalyst (https://www.metaboanalyst.ca/

home.xhtml) (19). A pathway overview was drawn with the R

package pathview (version 1.36.1) (20).
LC-MS analysis

Data acquisition was performed using a Q Exactive (Thermo

Fisher Scientific, USA). A Waters ACQUITY UPLC BEH C8

column (particle size, 1.7 pm; 100 mm (length) × 2.1 mm (i.d.))

was used for LC separation. Mobile phase A was 40% ethyl cyanide

in water, and mobile phase B was 10% ethyl cyanide in isopropanol.

Both phases A and B had 0.1% ammonium hydroxide (NH4OH)

and 0.1% ammonium acetate (NH4OAc). The flow rate was 0.25

mL/min, and the gradient was set as follows: 0-1 min, 98% B; 1-5

min, 98% B to 30% B; 5-8 min, 30% B to 0% B; 8-14 min, 0% B; 14-

16 min, 0% B to 98% B. The QC samples were prepared by pooling

aliquots of several subject samples and injecting every sample after

washing and balancing (total 5 samples and 5 QC samples).

The data acquisition was operated in full MS scan mode and

ddMS2 scan mode. The source parameters were set as follows: spray

voltage, 2,500 V or -2,500 V for positive or negative modes,

respectively; capillary temperature, 320°C; ion source, HESI. The

resolution for full MS scan mode was set at 70,000, and the AGC

target was set at 3e6 for both positive and negative modes. The

maximum IT was set at 100 ms. The mass range was set at 100-

1,500 Da. For the dd-MS2 scan mode, the MS resolution was set at

17,500, and the AGC target was set at 1e5. The maximum IT was set

at 50 ms. The collision energy was set at SNCE 20-30-40%.
LC-MS metabolomics data processing

The raw data were acquired using Xcalibur (Thermo Fisher

Scientific, USA). ProteoWizard (version 3.0.22356) was used to
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convert raw MS data (.raw) files to the.mzML (for full scan mode)

or.mgf format (for ddMS2 mode) (21), and the R package XCMS

(version 3.18) was used for peak detection, retention time

correction, and peak alignment (22–24). The centWave method

was used. The XCMS processing parameters were set as follows:

mass accuracy for peak detection = 15 ppm; peak width c= (5, 40);

snthresh = 10; and minfrac = 0.5. Metabolite identification was

performed using MetDNA2 (http://metdna.zhulab.cn/) (25). The

metabolite annotation parameters were set as follows: ionization

polarity, positive or negative according to the mode chosen; liquid

chromatography mode, HILIC; MS instrument, Thermo Orbitrap;

collision energy, SNCE_20_30_40%. Metabolites in level 2 or level

3.1 were kept to establish an LC-MS database. Annotated

metabolites were categorized into different levels based on the

Metabolomics Standards Initiative (MSI) guidelines (26).

Metabolites classified as level 1 were identified using standardized

procedures that involved accurate mass determination, retention

time analysis, and comparison of MS/MS spectra. These

identifications must be performed using the same LC conditions

as MetDNA2. Level 2 metabolites were identified based on accurate

mass matching and MS/MS similarity. Level 3.1 included the

remaining known metabolites annotated by MetDNA2, while

level 3.2 consisted of unknown metabolites that could not be

matched to the existing database. The database used in our study

included a total of 1,144 metabolites, with 234 classified as level 2

and 910 classified as level 3.1.
TABLE 1 Demographic, subgroup, and MSA characteristics of IIM patients.

Level ASS CADM

Number 25 22

Age (SD)) 51.40 50.32

(9.74) (13.14)

Sex (%) Female 18(72.0) 17 (77.3)

Male 7 (28.0) 5 (22.7)

MSA (%) EJ 5 (20.0) 2 ( 9.1)

HMGCR 0 ( 0.0) 0 ( 0.0)

Jo-1 14(56.0) 0 ( 0.0)

MDA5 0 ( 0.0) 13 (59.1)

Mi-2 0 ( 0.0) 1 ( 4.5)

MSA- 1 ( 4.0) 4 (18.2)

NXP2 0 ( 0.0) 0 ( 0.0)

PL7 5 (20.0) 0 ( 0.0)

SAE 0 ( 0.0) 0 ( 0.0)

SRP 0 ( 0.0) 0 ( 0.0)

TIFl 0 ( 0.0) 2 ( 9.1)

IIM, idiopathic inflammatory myopathies; ASS, anti-synthetase syndrome; CADM, clinically am
myopathy; JDM, juvenile dermatomyositis; PM, polymyositis; MSA, myositis-specific antibody; EJ
histidyl-tRNA synthetase; MDAS, melanoma differentiation-associated gene 5; Mi-2, nucleosome
threonyl-tRNA synthetase; SAE, small ubiquitin-like modifier activating enzyme; SRP, signal rec
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Results

Serum collection and IIM groups

Blood samples were collected from a total of 144 patients with

IIM at the Department of Rheumatology and Clinical Immunology

of Peking Union Medical College Hospital from February to

September 2022. Among the patients, there were 26 cases of ASS,

22 cases of CADM, 89 cases of DM, 2 cases of IMNM, 1 case of

JDM, and 7 cases of PM. Additionally, the patients were categorized

based on the presence of MSAs as follows: 13 cases of anti-EJ, 1 case

of anti-HMGCR, 17 cases of anti-Jo-1, 68 cases of anti-MDA5, 2

cases of anti-Mi-2, 5 cases of anti-NXP2, 9 cases of anti-PL7, 1 case

of anti-SAE, 1 case of anti-SRP, 10 cases of anti-TIF1, and 17 cases

of MSA- (Table 1). Due to the limited number of samples, the

IMNM and JDM subgroups were excluded from further analysis

among IIM subgroups in our study. Anti-EJ, anti-Jo-1, and

anti-PL7, which are autoantibodies targeting tRNA synthetases

and commonly found in patients with ASS, were combined into

the anti-tSy group for subsequent analysis and discussion (27).

Except for patients without known MSA in the MSA- group, the

remaining patients mainly included patients with DM, although

different MSAs were generally associated with varying clinical

manifestations and specific IIM subgroups. Anti-MDA5 was

strongly associated with ILD, and the frequency of anti-MDA5

positive DM seemed higher in Chinese patients (7, 28). Therefore,
DM IMNM JDM PM

87 2 1 7

43.60 33.50 11.00 50.71

(12.98) (7.78) (NA) (17.47)

59 (67.8) 0 (0.0) 1 (100.0) 5 (71.4)

28 (32.2) 2 (100.0) 0 (0.0) 2 (28.6)

5 ( 5.7) 0 (0.0) 0 (0.0) 1 (14.3)

0 ( 0.0) 0 (0.0) 0 (0.0) 1 (14.3)

1 ( 1.1) 0 (0.0) 0 ( 0.0) 1 (14.3)

52 (59.8) 1 ( 50.0) 1 (100.0) 0 ( 0.0)

4 ( 4.6) 0 (0.0) 0 (0.0) 0 ( 0.0)

8 ( 9.2) 1 ( 50.0) 0 (0.0) 3 (42.9)

5 ( 5.7) 0 (0.0) 0 (0.0) 0 ( 0.0)

4 ( 4.6) 0 (0.0) 0 (0.0) 0 ( 0.0)

1 ( 1.1) 0 (0.0) 0 (0.0) 0 ( 0.0)

0 ( 0.0) 0 (0.0) 0 ( 0.0) 1 (14.3)

7 ( 8.0) 0 (0.0) 0 (0.0) 0 ( 0.0)

yopathic dermatomyositis; DM, dermatomyositis; IMNM, immune- mediated necrotizing
, glycyl-tRNA synthetase; HMGCR, 3-hydroxy-3- methylglutaryl-coenzyme A reductase; Jo-1,
remodeling deacetylase complex; MSA-, MSA negative; NXP2, nuclear matrix protein 2; PL7,
ognition particle; TIF1, transcriptional intermediary factor 1.
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we grouped all anti-MDA5 positive patients into the MDA5 MSA

group. Other MSAs, including anti-HMGCR, anti-Mi-2, anti-

NXP2, anti-SAE, anti-SRP, and anti-TIF1, were classified into the

non-MDA5 group. Supported by MALDI-TOF-MS, we hoped to

identify new potential biomarkers of IIM subgroups and reveal the

pathological mechanisms of IIM.
The serum metabolome of IIM was
detected by MALDI-TOF/TOF and LC-MS

Serum samples from 144 IIM patients were analyzed by MALDI-

TOF-MS and LC-MS by the pipeline shown in Figure 1. The raw data

obtained from MALDI-TOF-MS underwent a cleaning process to

generate a peak expression matrix. Subsequently, the Wilcox test was

employed to identify differentially expressed peaks among the IIM

subgroups or MSA groups. Metabolite identification of these

differentially expressed peaks was supported by utilizing the LC-MS

database, which was constructed using several mixed serum samples

from IIM patients. Specifically, metabolites annotated as level 2 and

level 3.1 by MetDNA2 were retained for establishing the LC-MS

database, as described in Materials and Methods. The DEMs

annotated by the LC-MS database were subjected to the

enrichment and pathway analysis using Metaboanalyst.
Enrichment analysis of DEMs among IIM
subgroups

After performing data cleaning, we obtained a peak expression

matrix consisting of 3984 peaks. To investigate the differences among

the IIM subgroups, including ASS, CADM, DM, and PM, we

conducted comparisons between each subgroup and all other IIM

subgroups. Due to the limited number of samples, the IMNM and

JDM subgroups were not included in the analysis (Figure 2A).

Applying a significance threshold of p<0.05, we identified a total of

934 differentially expressed peaks. Among these peaks, 352 DEMs
Frontiers in Immunology 05
were successfully annotated in 150 differentially expressed peaks.

Notably, the DM subgroup exhibited the highest number of DEMs,

with 267 unique ones, while the other subgroups demonstrated a

substantially smaller number of DEMs (Figure 2B). The notable

difference in the number of DEMs, particularly with a higher count in

the DM subgroup, provides strong evidence of the significant

contribution of the DM subgroup to the heterogeneity observed in

the serum metabolome of IIM patients. This finding was further

supported by the PCA analysis (Figure 2C), which clearly shows a

distinct separation between the DM subgroup and other subgroups.

The differentially expressed peaks were depicted in Figure 2D, and the

detailed information of annotated metabolites were provided in the

Supplementary Materials. The results from the enrichment analysis

indicated that a majority of the DEMs were associated with the

steroid hormone biosynthesis and arachidonic acid metabolism

pathways (Figure 2E). Additionally, there is moderate involvement

of pathways related to amino acid metabolism and biosynthesis of

unsaturated fatty acids across the different IIM subgroups.
Enrichment analysis of DEMs among
MSA groups

Each MSA group, namely the anti-tSy, MDA5, MSA-, and non-

MDA5 groups, were compared against all other MSA groups as shown

in Figure 3A. Applying a threshold of p<0.05, we identified 1460

differentially expressed peaks and annotated 491 metabolites with 226

of these differentially expressed peaks. Notably, despite the MDA5

group having the largest number of samples, the majority of the DEMs,

including 304 unique ones, were found in the non-MDA5 group

(Figure 3B). PCA analysis revealed that the non-MDA5 group

exhibited relatively distinct differences from the other MSA groups,

as depicted in Figure 3C. The volcano plot displayed the differentially

expressed peaks, while Supplementary Materials provided detailed

annotation information (Figure 3D). Enrichment analysis of DEMs

among MSA groups presented similar results to those observed among

IIM subgroups. The dominant contributors to the heterogeneity
IIM serum 
samples

LC-MS/MS

MALDI-TOF-MS

Metabolite 
Identification

Rawdata Data 
Cleaning

Peak 
Expression 

Matrix

Differentially 
Expressed Peaks

Differentially 
Expressed 
Metabolites

Enrichment &
Pathway 
Analysis

FIGURE 1

The pipeline for serum metabolome analysis of IIM based on MALDI-TOF-MS. Serum samples from 144 patients with IIM were processed in our
study. The peak expression matrix from MALDI-TOF-MS after data cleaning was analyzed by the Wilcox test to filter differentially expressed peaks.
These differentially expressed peaks were annotated by the metabolite annotation results from the LC-MS database established by several mixed
serum samples of patients with IIM. Enrichment analysis and pathway analysis were performed on Metaboanalyst online.
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among MSA groups were the steroid hormone biosynthesis pathway

and the arachidonic acid metabolism pathway, with the latter ranking

first (Figure 3E). Additionally, other pathways, including caffeine

metabolism, tryptophan metabolism, tyrosine metabolism, valine,

leucine and isoleucine biosynthesis, and biosynthesis of unsaturated

fatty acids, showed moderate influences among MSA groups.
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Pathway analysis of the DM subgroup and
the non-MDA5 group

A detailed view of the DEMs mapped to the steroid hormone

biosynthesis pathway and the arachidonic acid metabolism pathway was

presented in Figure 4.Within the steroid hormone biosynthesis pathway,
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Enrichment results of DEMs among IIM subgroups. (A), the number of samples in each subgroup is shown, and the DM subgroup was dominant. (B),
UpSet analysis showed the DEMs among IIM subgroups. DEMs linked between two or more subgroups indicated that these subgroups had common
DEMs. The number of these DEMs, unique or common, in each subgroup was labeled in the bar plot. (C), PCA results of IIM subgroups. PC1 meant the
first principal component and PC2 meant the second. The mean center of each subgroup was drawn in the plot to represent the subgroup. (D), volcano
plot showing the differentially expressed peaks of the DM subgroup versus other subgroups. (E), the enrichment results of DEMs among IIM subgroups.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1188257
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huo et al. 10.3389/fimmu.2023.1188257
the DM subgroup primarily exhibited downregulation of DEMs,

indicating a potential disruption in steroid hormone metabolism. The

non-MDA5 group displayed upregulation of certain DEMs within the

steroid hormone biosynthesis pathway. Similarly, most DEMs of the

non-MDA5 group in the arachidonic acid metabolism pathway were
Frontiers in Immunology 07
upregulated, and only some of them were downregulated in the DM

subgroup. Notably, several downstream metabolites, such as prostanoids

and dihydroxy eicosatetraenoic acids, were significantly upregulated in

the non-MDA5 group, indicating their potential involvement in the

arachidonic acid metabolism pathway.
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Typical DEMs in the DM subgroup and the
non-MDA5 group

The identification of metabolites using MS1 data from MALDI-

TOF-MS was limited when it came to annotating metabolites with the

same mass. This might result in potential mistakes in overestimation of

the impact of certain DEMs within a pathway, as a single differentially

expressed peak could represent multiple metabolites. Unfortunately, no

suitable solution currently existed to overcome these challenges.

However, it was worth noting that despite the limitations mentioned

earlier, there were specific metabolites that could be individually

annotated by a single differentially expressed peak. Examples of such

metabolites included aldosterone, cholesterol sulfate, and arachidonate

(as shown in Figure 5). Thesemetabolites held particular significance as

they were considered typical and core components of the steroid

hormone biosynthesis pathway or arachidonic acid metabolism

pathway. Furthermore, the observed significant downregulation or

upregulation of these metabolites in the DM subgroup or the non-
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MDA5 group adds to the reliability and validity of our study. Notably,

within the DM subgroup, the metabolite progesterone (including

candidates such as 9,10-DHOME, 12,13-DHOME, 9,10-epoxy-18-

hydroxystearate, and (8E,10S)-10-hydroperoxyoctadeca-8-enoate)

exhibited downregulation. Conversely, in the non-MDA5 group,

metabolites such as prostaglandin H2 (including candidates such as

prostaglandin E2, prostaglandin D2, prostaglandin I2, (5Z)-(15S)-11a-
hydroxy-9,15-dioxoprostanoate, 20-OH-leukotriene B4, 15-keto-

prostaglandin F2a, and 9,10-dihydroxystearate) and prostaglandin

F2a (including candidates such as 11-epi-prostaglandin F2a,
11,12,15-THETA, trioxilin A3, trioxilin B3, and 11,14,15-THETA)

were found to be upregulated.

Model to predict DM subgroup and
non-MDA5 group

To develop prediction models for specific IIM subgroups or MSA

groups, we utilized the top DEMs annotated by the LC-MS database
DM
vs
others

non-
MDA5
vs
others

FIGURE 4

Pathway overview of DEMs in the DM subgroup and non-MDA5 group. The DEMs of the DM subgroup and the non-MDA5 group were marked in
the steroid hormone biosynthesis pathway and arachidonic acid metabolism pathway. Metabolites marked in yellow were upregulated against other
subgroups or MSA groups, while those marked in blue were downregulated.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1188257
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huo et al. 10.3389/fimmu.2023.1188257
between the DM subgroup and other subgroups, as well as between

the non-MDA5 group and other MSA groups. These DEMs were

used as features in a generalized linear model. The performance of

these prediction models was evaluated using receiver operating

characteristic (ROC) curves, as shown in Figure 6. We focused on

the DM subgroup and non-MDA5 group due to their larger number

of DEMs. Given the limited number of samples available in our study,

the results obtained from the generalized linear model were

dependent on the sampling of the training set and test set. To

ensure transparency and reproducibility, we provided detailed

information regarding the composition of the training set, test set,

and the specific DEMs chosen as features for the prediction models in

the Supplementary Materials. Despite the inherent variability

associated with the small sample size, our model demonstrated

promising predictive performance. Multiple repeats of the sampling

process yielded an average AUC of approximately 0.7. This indicates

that our model exhibited a moderate level of predictive ability,

suggesting its potential for aiding in the identification and

classification of specific IIM subgroups and MSA groups.
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Discussion

In our study, we observed significant downregulation of certain

metabolites associated with the steroid hormone biosynthesis

pathway in the DM subgroup. Notably, progesterone, a

metabolite derived from cholesterol, showed decreased levels in

the DM subgroup. Progesterone is known to have anti-

inflammatory properties and is involved in regulating both innate

and adaptive immune responses. Its role in suppressing

inflammation is crucial for maintaining immune homeostasis.

Cholesterol sulfate is known to have a significant impact on the

regulation of inflammation by modulating key targets. One of its

crucial roles is the suppression of leukotriene biosynthesis, a process

involved in inflammatory responses. Leukotrienes are inflammatory

mediators derived from arachidonic acid metabolism. The enzyme

5-lipoxygenase facilitates the conversion of arachidonic acid into

leukotrienes, but this conversion specifically occurs on the nuclear

membrane. Cholesterol sulfate acts by reducing the interaction

between 5-lipoxygenase and the nuclear membrane, thereby
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inhibiting the production of leukotrienes (29). Aldosterone

increases blood pressure by signaling the kidney and colon to

release sodium into the bloodstream. Studies conducted on mouse

and rat models have reported that aldosterone infusion can impair

endothelial function, suggesting a potential negative impact on

blood vessel health (30–33). Patients with DM commonly present

blood vessel damage in the perimysium, and the lower levels of

aldosterone found in the DM subgroup may reflect an adaptive

response to the presence of vascular damage.

The upregulation of typical metabolites in the arachidonic acid

metabolism pathway observed in the non-MDA5 group is of

notable interest. Arachidonate, a key metabolite in this pathway,

plays crucial roles in various biological processes such as

cardiovascular biology, carcinogenesis, and inflammatory diseases

(34). Beyond the previously mentioned conversion of arachidonate

to leukotrienes, there are several other important mediators in

the arachidonic acid metabolism pathway. Prostanoids are
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derived from arachidonate and are involved in diverse

physiological and pathological processes, including inflammation

and vascular homeostasis. Epoxyeicosatrienoic acids (EETs),

dihydroxyeicosatetraenoic acid (diHETEs), eicosatetraenoic acids

(ETEs), and lipoxins (LXs) are also metabolites within this pathway,

and they play significant roles as signaling molecules and regulators

of inflammation and vascular function. EETs promote progenitor

cell differentiation, proliferation, and migration, in addition to

influencing capillary formation inflammation and apoptosis in

endothelial cells (34). The enhanced activation of the arachidonic

acid metabolism pathway in certain patients with DM may

contribute to the observed vessel damage in the perimysium.

Based on our analysis of the serum metabolome in patients with

IIM, we observed lower levels of metabolites associated with the steroid

hormone biosynthesis pathway in the DM subgroup, while the non-

MDA5 group exhibited higher levels of metabolites involved in the

arachidonic acid metabolism pathway. IIM is a group of autoimmune
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diseases characterized by muscle inflammation and damage. However,

the exact mechanisms underlying the development and progression of

autoimmunity in IIM are not fully understood. It remains unclear

whether the immune system directly targets muscle cells, blood vessels,

and connective tissue within the muscle tissue itself. Our study had

significant implications for the understanding and treatment of IIM.

The observed lower levels of steroid hormones and cholesterol sulfate

in the DM subgroup suggested that this subgroup might exhibit

increased sensitivity to glucocorticoids, one of the first-line

treatments for IIM patients. Furthermore, our results suggested that

both proinflammatory and anti-inflammatory factors contributed to

the manifestation of muscle and skin damage in IIM. However, in the

DM subgroup, dysfunction in the anti-inflammatory response played a

more prominent role in the development of symptoms, while the

higher levels of arachidonate and prostaglandins in the non-MDA5

group indicate an opposite pattern. Targeting and inhibiting the

arachidonic acid metabolism pathway could be a more effective

approach for anti-inflammatory therapy in the non-MDA5 group.

In our study, we acknowledge the need for further investigation to

address certain questions that arose from our findings. One important

consideration is the impact of glucocorticoid therapy on the serum

metabolome of the patients. Since all patients in our study received

varying recommended doses of glucocorticoids based on their

individual conditions, the different drug doses and the inherent

heterogeneity of patients could potentially interfere with the results.

Designing appropriate data adjustments to account for these factors

presents a challenge. Additionally, the frequency of anti-MDA5

positive DM patients in our study was found to be higher (59.8%,

52/87) compared to some previous cohort reports in Chinese patients

(36.6%, 53/145) (28). The small number of IIM patients in our study

and the effect of regions and the hospital selection of patients might

contribute to the result. Further investigations involving larger and

diverse patient populations are warranted to gain a better

understanding of these differences.

Some limitations of our study are listed below. One limitation was

the absence of samples from healthy volunteers. This was primarily

due to the presence of the batch effect in the MALDI-TOF-MS

analysis, which made it challenging to integrate the data from IIM

patients and healthy volunteers. We attempted to develop an

algorithm to remove the batch effect between plates used in

MALDI-TOF-MS, but further experiments and data were needed

to refine the approach. Consequently, we decided it was not

appropriate to include data from healthy volunteers in our analysis.

Due to the inherent variability and complexity of the clinical serum

metabolome, achieving significant differences among IIM subgroups

or MSA groups suitable for multivariable analysis, such as PCA or

PLS-DA, can be challenging. Therefore, we chose the Wilcox test to

filter differentially expressed peaks instead of multivariable analysis.

Due to the limited number of samples available in certain IIM

subgroups or MSA groups, such as IMNM and JDM, our study

faced challenges in conducting comprehensive analyses for these

specific groups. To address this limitation and ensure reasonable

analysis, we made the decision to integrate rare MSA groups into a

single group. This integration introduced inherent heterogeneity

within the consolidated group. The sample size of patients with
Frontiers in Immunology 11
IIM in our study was relatively small compared to some large cohort

studies, which may have impacted the reliability and generalizability

of our findings.
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