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Hepatocellular carcinoma (HCC) is the most common type of primary liver

cancer and shows high global incidence and mortality rates. The liver is an

immune-tolerated organ with a specific immune microenvironment that causes

traditional therapeutic approaches to HCC, such as chemotherapy, radiotherapy,

and molecular targeted therapy, to have limited efficacy. The dramatic advances

in immuno-oncology in the past few decades have modified the paradigm of

cancer therapy, ushering in the era of immunotherapy. Currently, despite the

rapid integration of cancer immunotherapy into clinical practice, some patients

still show no response to treatment. Therefore, a rational approach is to target

the tumor microenvironment when developing the next generation of

immunotherapy. This review aims to provide insights into the hepatic immune

microenvironment in HCC and summarize themechanisms of action and clinical

usage of immunotherapeutic options for HCC, including immune checkpoint

blockade, adoptive therapy, cytokine therapy, vaccine therapy, and oncolytic

virus-based therapy.
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1 Introduction

Hepatocellular carcinoma (HCC), the major type of hepatic malignancy, is the third

leading cause of cancer-related death worldwide (1). Surgery is the best choice of

intervention for early-stage HCC. However, most patients are not able to undergo

surgery at the time of diagnosis due to the advanced disease stage. Other strategies,

including chemotherapy, radiotherapy, molecular targeted medications, radiofrequency

ablation (RFA), and transarterial chemoembolization (TACE), have limited efficacy against

advanced HCC (2).

In the past decade, dramatic advances in immunology have modified the paradigm of

cancer therapy, ushering in the era of immunotherapy. In cancer immunotherapy, the immune
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system is activated and attacks malignant cells through natural

mechanisms, therefore avoiding damage to normal tissues, which is

one of the most serious side effects of chemotherapy and radiotherapy.

This attractive feature has supported the rapid application of

immunotherapy in clinical practice. Currently, the most prevalent

cancer immunotherapies include checkpoint inhibitors, engineered T

cells, lymphocyte-promoting cytokines, and cancer vaccines. Immune

checkpoint blockade (ICB) by monoclonal antibodies targeting

cytotoxic T-lymphocyte associated protein 4 (CTLA-4) and

programmed cell death 1 (PD-1) has been approved for several types

of tumors and substantially benefited a subset of patients. However,

most patients still show resistance to ICB (3). Therefore, targeting the

tumormicroenvironment is a rational approach for the development of

the next generation of immunotherapy. This review will summarize the

components of the immune microenvironment in HCC and the

development of immunotherapy.
2 The immune ecosystem of the
normal liver

The liver is an organ that is nourished by a dual blood supply from

both the hepatic artery and the portal vein. Blood converges in the

hepatic sinusoids, which slow the blood flow and allow interactions

between immune cells and antigens from the gut microbiota and

circulation (4). The liver has a strong ability to remove deleterious

compounds because of its abundance of innate and adaptive immune

cells, including resident macrophages (Kupffer cells [KCs]), natural

killer (NK) cells, and lymphocytes, with a higher CD8+/CD4+ T cells

than in the periphery (4, 5). Accordingly, the liver is an immune-

modulating organ with a controlled T-cell response that is maintained

by resident cells, including KCs, hepatic stellate cells (HSCs), dendritic

cells (DCs), and regulatory T cells (Tregs) (6). The intrinsic immune

tolerogenicity prevents the liver from mounting a hyperactive response

to deleterious stimuli. On the other hand, it impedes immune

surveillance and facilitates oncogenesis and progression (7).
3 The hepatic immune
microenvironment in HCC

Up to 80% of HCC cases arise from chronic inflammation,

which is driven by immune cell infiltration and resident cells, such

as KCs, HSCs, and liver sinusoidal cells (8). Chronic inflammation

creates an oxidative microenvironment and induces DNA damage

and genetic alterations, favoring neoplasia initiation and

progression (8).

The cellular components in the immune microenvironment in

HCC include several types of cells, such as tumor-infiltrating

lymphocytes (TILs), tumor-associated macrophages (TAMs),

dendritic cells (DCs), tumor-associated neutrophils (TANs),

myeloid-derived suppressor cells (MDSCs), mast cells (MCs),

HSCs, and cancer-associated fibroblasts (CAFs), as well as

noncellular components, such as cytokines and the extracellular

matrix (Figure 1).
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3.1 Tumor-infiltrating lymphocytes

3.1.1 T cells
TILs are a heterogeneous cell population comprising T cells, NK

cells, and B cells. HCC patients with T-cell accumulation after

surgery experience lower recurrence and longer survival (34). The

accumulation of CD8+ T cells, the major cytotoxic T lymphocytes

(CTLs) in the liver, is associated with reduced tumor progression

and improved survival of HCC patients (35). However, their tumor-

killing ability is counteracted by various factors, such as

indoleamine 2,3-dioxygenase (IDO), vascular endothelial growth

factor (VEGF), interleukin 10 (IL-10), hypoxia, and CD4+ T-cell

deprivation (35). CD4+ T cells secrete IFN-g and TNF-a to remove

senescent hepatocytes in a CXCR6-dependent manner, thus

controlling hepatocarcinogenesis (36). Accordingly, the ROS-
FIGURE 1

Schematic diagram of the landscape of the immune
microenvironment in HCC. The infiltration of various subpopulations
of immune cells, regulatory cytokines, and certain inhibitory signals
mediate the specific immune response in HCC. The HCC tumor
cells produce various factors, such as IDO, VEGF, IL-10, and
hypoxia, to suppress the tumoricidal ability of CTL, and TGF-b, IL-10
and inhibitory receptors NKG2A, to suppress the tumoricidal ability
of NK cells. Additionally, the HCC tumor cells secrete CXC
chemokines, especially CXCL8, to attract TANs into the tumor
stroma. The activation of PD-1 signaling in B cells promotes the
production of IL-10, which inhibits the anti-tumor immunity of
effector T cells. The crosstalk between MDSCs and TAMs results in a
decreased secretion of IL-6 and IL-12, and an increased secretion of
IL-10, which impair the cytotoxicity of CTL and NK cells. The
aggregation of MDSCs in the tumor stroma is mediated by various
cytokines, such as VEGF, IL-b, and IL-6 that produced by CAFs and
HSCs, and VEGF and GM-CSF that produced by HCC tumor cells.
MDSCs interact with KCs to induce PD-L1 expression on KCs, which
interact with PD-1 on T cells to mediate immune evasion. Galectin-
9 expression on MDSCs can bind to TIM-3 on T cells to induce T
cell apoptosis. Tregs can inhibit CTL activation that mediated by
reduced production of TNF-a and IFN-g, and weaken the anti-
tumor ability of NK cells through the production of IL-2, IL-8, and
TGF-b. DCs can mediate IL-10 production and IL-12 reduction to
suppress the antitumor response of CTL. CTL, cytotoxic T
lymphocyte; NK, natural killer cells; TAM, tumor-associated
macrophage; MDSC, myeloid-derived suppressor cell; TAN, tumor-
associated neutrophil; CAF, cancer-associated fibroblast; HSC,
hepatic stellate cell; KC, Kupffer cell; DC, dendritic cell; IDO,
indoleamine 2,3-dioxygenase; VEGF, vascular endothelial growth
factor; IL-10, interleukin-10; NKG2A, inhibitory receptors natural
killer group 2A; TGF-b, transforming growth factor b; GM-CSF,
granulocyte-macrophage colony-stimulating factor; ICI, immune
checkpoint inhibitor. The figure was drawn at BioRender.com.
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mediated apoptosis of CD4+ T cells promotes HCC in patients with

NAFLD (37). Conversely, regulatory T cells (Tregs), a subtype of

CD4+ T cells characterized by the expression of CD25 and forkhead

box P3 (FoxP3), are capable of suppressing the tumor immune

response and are associated with the metastasis and recurrence of

HCC (38). Transforming growth factor b (TGF-b) induces HCC

progression by promoting Treg polarization and the consequent

repression of cytotoxic CD8+ T cells (39). This phenotype was

reversed by the specific TGF-b inhibitor SM-16, which induced

attenuated Treg infiltration and HCC regression (39). The CTL/

Treg ratio represents the immune ecosystem. A high level of CTLs

might overcome Treg-mediated immune suppression, thus

suppressing HCC tumor growth (40).

3.1.2 NK cells
NK cells are innate lymphocytes that mediate cancer immune

surveillance and eradicate tumor cells without prior sensitization (41).

They account for 30%-50% of hepatic lymphocytes and play an

important role in preventing fibrosis and resisting cancer and viral

infections through strong cytotoxicity and the production of IFN-g
(42). With the progression of HCC, the tumor killing activity of NK

cells decreases, with the characteristics of reduced expression of the NK

cytotoxic factors granzyme and perforin, as well as reduced secretion of

the tumor killing-related cytokines TNF-a and IFN-g (43). The

infiltration of activated NK cells with high natural killer group 2

member D (NKG2D) expression correlates with prolonged survival of

patients with cholangiocarcinoma (44). In contrast, the accumulation

of immature and inactivated NK cells with poor catalytic activity is

associated with HCC progression (45). The catalytic activity of NK cells

is counteracted by several factors, such as the inhibitory receptor

NKG2A and the immunosuppressive cytokines TGF-b and IL-10

(46, 47). Specifically, a subgroup of NK cells expressing CD49a was

discovered to reside in HCC tissues, with high expression of the

inhibitory receptors PD1 and CD96, and was correlated with a poor

prognosis of HCC (48).

3.1.3 B cells
B cells directly present tumor-associated antigens to CD4+ T cells

and CD8+ T cells, produce antibodies to promote the uptake of tumor

antigens by TAMs and DCs, and secrete cytokines to promote

antitumor immunity or directly kill tumor cells. In HCC, IgG+

memory B cells that accumulate at the edge of the invading tumor

generate granzyme B, TRAIL, and IFN-g, express surface markers of

APCs, and cooperate with CD8+ T cells, resulting in a good prognosis

(49). B-cell infiltration is positively correlated with survival and the

response to immunotherapy (50). However, in patients with advanced

HCC, activation of PD-1 signaling in B cells promotes IL-10

production and inhibits effector T-cell-mediated antitumor

immunity, leading to early recurrence after tumor resection (51).
3.2 Dendritic cells

DCs are the major type of antigen-presenting cells that capture

antigens, present them to T cells, and activate the adaptive immune
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response. In the healthy liver, most DCs are immature and activate

effector T cells by inducing the production of antigen-specific CD8+

Tregs (52). This response might be attributed to the low level of IL-

12 and high level of L-10 in the hepatic microenvironment (53). The

liver contains two major groups of DCs, plasma cell-like DCs

(pDCs) and conventional DCs (cDCs), which are further divided

into cDC1s and cDC2s (54). cDC1s are essential for antitumor

immune responses , and their presence in the tumor

microenvironment is associated with a better prognosis (55),

whereas cDC2s act as effective stimulators of nascent T helper

(Th) cells (56). In contrast, immature pDCs in the tumor

microenvironment are mainly associated with a poor prognosis

for some types of human cancers (57). Compared to healthy

controls, both circulating pDCs and cDCs showed a lower

quantity and expression of human leukocyte antigen-DR (HLA-

DR) and molecules CD80 and CD86 in the peripheral blood of

HCC patients (58). Intratumorally infiltrated pDCs predict a poor

prognosis among patients with primary HCC who have undergone

resection, which might be caused by the induction of Treg cell and

IL-17 production (59).
3.3 Tumor-associated macrophages

TAMs in HCC are derived from resident KCs in the liver and

CD14+/CD16+ monocytes in the peripheral blood. They infiltrate

into the tumor following stimulation with cytokines and

chemokines, such as M-CSF, VEGF and CCL chemokines,

secreted by tumor cells or mesenchymal cells (60). KCs are the

major population of liver-resident macrophages with high

expression of PD-L1 and low expression of CD80 and CD86, and

are crucial for maintaining the immunosuppressive hepatic

microenvironment (61). Antigen presentation by KCs induces the

arrest of CD4+ T cells, expansion of antigen-specific Tregs and

tolerogenic immunity. However, KCs lose tolerogenic markers in

the injured liver. The deletion of KCs reduces hepatic tolerance to

particulate antigens (61). Myeloid-derived monocytes can be

attracted to infiltrate HCC, differentiate into TAMs, and acquire a

phenotype similar to that of KCs. Monocyte-derived macrophages

help CD4+ T cells remove senescent premalignant hepatocytes, thus

inhibiting hepatocarcinogenesis (62). Conversely, senescent

hepatocytes secrete CCL2 to attract CCR2+ monocytes into the

liver, differentiate into macrophages and remove senescent

premalignant hepatocytes (63). CD68 is a widely used marker to

identify TAMs; however, it is not specific to distinguish liver-

resident KCs and monocyte-derived macrophages. A recent study

identified that Clecf4 and Tim4 are specifically expressed on the

surface of KCs instead of monocyte-derived macrophages in HCC

and thus might be used as markers for the TAM origin (64).

Similar to most cancers, TAMs in HCC are trained by specific

tumor microenvironments and polarized to the M1 type and M2

type (65). M1 polarization is attributed to typical Th1 cytokines,

such as interferon-g (IFN-g), and microbial components, such as

lipopolysaccharide (LPS). M1 macrophages are classic active

macrophages associated with pathogen clearance, pro-

inflammatory cytokine liberation and matrix component lysis
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(66). M1 macrophages suppress tumor growth by directly killing

tumor cells or presenting antigens to T cells. They efficiently

produce pro-inflammatory cytokines, such as IL-1b, IL-6, and
TNF-a, and are characterized by high expression of IL-12 and

low expression of IL-10 (65). M1 macrophages secrete cytokines,

such as CXCL9 and CXCL10, to attract Th1 cells, which in turn

promote polarization to M1 macrophages (67). On the other hand,

M2 polarization is induced by IL-4 and IL-13 (68) and is associated

with parasite engulfment, anti-inflammatory cytokine release,

matrix deposition and liver injury repair (66). M2 macrophages

are characterized by low expression of IL-12 and high expression of

IL-10 (65). Additionally, tumor-derived cytokines, such as CCL2

and CSF1, attract peripheral blood-derived macrophages to tumors

and induce their differentiation to the M2 type (69). M2

macrophages are alternatively activated macrophages that secrete

large amounts of anti-inflammatory cytokines, such as IL-8, IL-10,

and TGF-b, to promote tumor vasculature development, CD8+ T-

cell apoptosis, and the Th1 immune response, thus favoring tumor

growth and metastasis (68). Notably, macrophages in peritumoral

liver tissue also promote HCC progression and predict a poor

prognosis (70).
3.4 Tumor-associated neutrophils

TANs are tumor-infiltrating neutrophils that directly influence

tumor development and progression. Similar to TAMs, TANs are

classified into the N1 and N2 subtypes, which have antitumor and

protumor roles, respectively (71). TGF-b is the key molecule driving

polarization to the N2 type with an immunosuppressive response,

while TGF-b inhibition promotes N1-type polarization

characterized by enhanced cytotoxicity and inflammation (71,

72). In HCC patients, tumor cells secrete CXC chemokines,

especially CXCL8, to attract neutrophil accumulation in the

peritumor stroma (73). CXCL5 overexpression was also reported

to be correlated with neutrophil infiltration in HCC tumors and

predicted a poor prognosis (74). TANs may enhance the stemness

of HCC cells through the miR-301b-3p/LSAMP/CYLD axis.

Conversely, stem-like HCC cells secrete CXCL5 to facilitate TAN

infiltration into the tumor. The positive feedback loop between

TANs and HCC stem-like cells promotes HCC progression and

metastasis (75). TANs also recruit TAMs and Tregs, thus creating

an immunosuppressive microenvironment to facilitate HCC

carcinogenesis (76). Moreover, TANs produce an increased

number of neutrophil extracellular traps (NETs) to provoke an

inflammatory response and sequester circulating cancer cells

(CSCs) to promote HCC metastasis (77, 78).
3.5 Myeloid-derived suppressor cells

MDSCs represent a heterogeneous population of immature

myeloid cells that are mainly located in the bone marrow, spleen,

peripheral blood, and tumors (79). Normally, myeloid cells

differentiate into mature granulocytes, macrophages, or DCs to

clear pathogens. However, myeloid cells cannot differentiate and
Frontiers in Immunology 04
become immature under conditions of inflammation or cancer.

They are classified into M-MDSCs and PMN-MDSCs based on

their phenotype and function (79). MDSCs create an

immunosuppressive microenvironment through various

mechanisms, including Treg differentiation, DC inhibition,

macrophage M2 polarization, and oxidative stress (80–82).

Compared with healthy volunteers or hepatitis patients,

peripheral blood from HCC patients contained more MDSCs,

which were subsequently revealed to indicate a poor prognosis

(83). Additionally, the number of MDSCs increases with HCC

progression, and these cells are closely associated with tumor size,

tumor node metastasis and tumor multiplicity (84). MDSCs were

reported to reduce the antigen presentation activity of KCs. In a

coculture system containing MDSCs and KCs, KCs showed

increased expression of CD86, CD274 and MHCII, increased

secretion of IL-1b and IL-10, and reduced secretion of CCL2 and

IL-18 (85). MDSC differentiation and infiltration in HCC are

induced by activated hepatic stellate cells (HSCs) through the

COX2-PGE2-EP4 pathway (86). HCC cells produce cytokines,

such as VEGF, GM-CSF, and IL-1b, to attract MDSCs, and

treatments targeting MDSCs might increase the sensitivity of

immune checkpoint inhibitors (ICIs) promoting the antitumor

response (87). MDSCs also reduce NK cell activity through a

direct interaction to reduce NKp30 receptor expression in NK

cells, which is independent of inducible nitric oxide synthase

(iNOS) or arginase expression in MDSCs (88).
3.6 Mast cells

MCs are innate tissue-resident immune cells in the bone marrow

lineage that were previously presumed to be central to the development

of allergy and inflammation (89). However, MCs have recently been

reported to affect tumor cells and the surrounding tumor-associated

stroma, thereby altering tumor cell behavior and the tumor

microenvironment (90). Previous studies have shown that total MC

release, including effluent granules and histamine, reduces the viability

and proliferation of HuH-6 cells (91). In addition, MCs actively

participate in tumor cell clearance and tumor rejection through the

release of IL-1, IL-4, IL-6, and TNF-a. Conversely, MCs release

mediators, such as IL-8, FGF-2, VEGF, NGF, and PDGF, to favor

tumorigenesis and angiogenesis (92). Based on their key role in

orchestrating the cancer stroma, MCs have been recognized as a

promising target for cancer immunotherapy.
3.7 Hepatic stellate cells

HSCs account for 13% of all liver cells and are located in the

Disse space between hepatocytes and endothelial cells, where

substance exchange between hepatocytes and blood occurs (93).

HSCs are mesenchymal cells with the characteristics of adipocytes,

fibroblasts, and myocytes; thus, they function to maintain vitamin A

homeostasis, induce hepatofibrosis, and modulate the hepatic

bloodstream (94). Normally, HSCs remain quiet to maintain

vitamin A homeostasis, with low activity to synthesize the
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extracellular matrix (ECM) (94). Once stimulated with liver-

damaging factors, such as hepatic viruses and toxic chemicals,

damaged hepatocytes secrete a number of cytokines, such as

TGF-b, PDGF, and TNF, to induce lipid loss and morphological

changes and are transdifferentiated into myofibroblasts (MFBs) that

synthesize large amounts of ECM, leading to hepatofibrosis (94).

TGF-b, which is derived from various types of cells, including

macrophages and even HSCs themselves, is the key stimulator of

HSC activation and MFBs (95). Activated HSCs produce angiogenic

growth factors, stimulating angiogenesis and establishing a new

vascular system in the tumor (96). Additionally, activated HSCs

recruit MDSCs and Tregs and reduce the activation of CD8+ T cells

(97). HSC-mediated inflammation/MFBs are well recognized as risk

factors for HCC.
3.8 Cancer-associated fibroblasts

CAFs are detected in almost all types of solid tumors. CAFs in

tumors produce a wide variety of factors to create an

immunosuppressive microenvironment that favors tumor

development (98, 99). A high level of CAF-specific biomarkers, such

as a-smooth muscle cell (a-SMC) actin and fibroblast-activating

protein (FAP), predicts a poor prognosis for HCC patients (100).

CAFs have been reported to promote cancer progression and

metastasis by producing cytokines (101). Activated HCC cells

produce more CCL26 to promote higher levels of CAF infiltration

that facilitate HCC progression (102). In turn, CAFs induce the

epithelial-mesenchymal transition (EMT) process in HCC cells, thus

promoting metastasis (103). Additionally, CAFs create an

immunosuppressive microenvironment by inducing MDSCs and

TANs, thus facilitating immune evasion (104, 105).
4 Immunotherapy in HCC

4.1 Immune checkpoint blockade

T-cell activation is a critical event in tumor immune therapy.

Upon activation, negative costimulatory molecules, also called

immune checkpoints, are expressed on the T-cell surface. The

binding of these molecules to their ligands mediates coinhibitory

signaling, resulting in the suppression of the proliferation and

differentiation of T cells, thus promoting immune evasion (106).

ICIs block ligand−receptor interactions, thus reactivating exhausted

T cells to enhance the antitumor immune response (Figure 2).

4.1.1 Monotherapy with immune
checkpoint inhibitors
4.1.1.1 Antibodies targeting CTLA-4

CTLA-4 is expressed primarily by Tregs and activated T cells

and transmits inhibitory signals to effector T cells upon interacting

with CD80/86 molecules expressed on antigen-presenting cell

membranes (107). CTLA-4 outperforms CD28 in binding to B7

family costimulatory receptors (CD80/CD86) because of its 10-fold
Frontiers in Immunology 05
higher affinity (108), thus blocking B7/CD28-mediated

costimulatory signaling (109). Tremelimumab and ipilimumab are

CTLA-4 inhibitors that have shown anticancer effects on HCC

patients. Tremelimumab has been shown to block signaling from

the costimulatory receptor (CD80/CD86), preventing T-cell

deactivation and subsequently avoiding the induction of tumor

immune escape (110). In a phase II multicenter clinical trial

(NCT01008358), patients with advanced HCC who were

administered tremelimumab showed a disease control rate (DCR)

of 76.4%, partial response (PR) rate of 17.6%, and time to

progression (TTP) of 6.48 months, with good tolerance (13).

Moreover, this treatment was also able to reduce the HCV load in

the patient’s body (13). The most common adverse event of

tremelimumab was pruritic rash, which was alleviated by

antihistamine medication in most cases. These adverse events

reached grade 3 or higher in 45% of cases but were unrelated to a

decline in liver function (13).

4.1.1.2 Antibodies targeting PD-1/PD-L1

PD-1 is the most important immune checkpoint molecule that

belongs to the CD28 family. PD-L1 is the major ligand of PD-1 and

is mainly expressed on the surface of tumor cells and DCs (111).

The interaction between PD-1 and PD-L1 suppresses T-cell activity,

induces apoptosis, and promotes Treg differentiation, thus creating

an immunosuppressive microenvironment and leading to immune

evasion (112). A higher level of the PD-L1 protein is detected in

HCC tissues than in normal liver tissues and is closely associated

with progression, recurrence, and the prognosis (113). Inhibitors of

PD-1 and PD-L1 can block the interaction between these proteins

and thus reverse T-cell activity for tumor killing. Following the

clinical trials CheckMate-040 (9), KEYNOTE-224 (11), and

IMbravel50 (114), the PD-1 inhibitors nivolumab and

pembrolizumab and the PD-L1 inhibitor atezolizumab were

approved for HCC treatment. In addition, other PD-1 inhibitors,

such as tirelizumab and carrelizumab, and PD-L1 inhibitors, such

as atirizumab, valileumab, and avelumab, have shown encouraging

efficacy in clinical trials as HCC therapies (115).

Nivolumab (anti-PD-1) is a second-line ICI approved by the

FDA in September 2017 for HCC patients who were treated with or

intolerant to sorafenib. In a phase I/II clinical trial (CheckMate-

040) with a cohort of 262 patients with advanced HCC, 48 patients

in the dose-escalation cohort received 0.1–10 mg/kg nivolumab

every 2 weeks for up to 2 years, while the other 214 patients in the

dose-expansion cohort received 3 mg/kg nivolumab (9). The

objective remission rates (ORRs) were 15% and 20% during the

dose escalation and dose expansion periods, respectively. In the

dose escalation cohort, the median OS was 15 months, and the

median duration of efficacy was 17 months; in the dose expansion

cohort, although the median OS could not be calculated, the median

duration of efficacy was 9.9 months. This trial provides a rationale

for the use of nivolumab as first-line therapy for patients with

advanced HCC. A phase III trial (CheckMate-459) evaluated the

efficacy of nivolumab versus sorafenib as a first-line treatment for

patients with advanced HCC. The median OS was 16.4 months in

the nivolumab group and 14.7 months in the sorafenib group (116).
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Pembrolizumab (anti-PD-1) is a second-line ICI that was

approved by the FDA in November 2018 for HCC patients who

experienced treatment failure with sorafenib. A phase II clinical trial

(KEYNOTE-224) with a cohort of 104 HCC patients reported an

ORR of 17% (95% CI 11–26), median OS of 12.9 months (95% CI

9.7–15.5), and median progression-free survival (mPFS) of 4.9

months (11). In a randomized controlled phase III trial

(KEYNOTErate-240), a median OS and PFS of 13.9 months and

3 months, respectively, were reported in the pembrolizumab group

compared with 10.6 months and 2.8 months, respectively, in the

placebo group. The ORR of the pembrolizumab group was 18.3%,

which was significantly higher than the ORR of 4.4% for the placebo

group (117).

Tislelizumab is a humanized antibody against PD-1 that was

approved for HCC by the China National Medical Products

Administration (NMPA) based on the results of the randomized

phase II/III clinical trial RATIONALE-301 (NCT03412773).

Although the OS of patients receiving the combination therapy

was not superior to that of patients treated with sorafenib, the

noninferiority median OS was 15.9 months for patients with

combined therapy compared with 14.1 months for patients with

sorafenib (P = 0.0398) (118). An international multicenter phase

IA/IB clinical study (NCT02407990) indicated that tislelizumab

monotherapy produced durable responses in patients with

advanced tumors. The overall response rate (ORR) was 12.2%,

and the disease control rate (DCR) was 51% in a cohort of 50

patients with HCC (119).
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4.1.1.3 Other ICIs

TIM-3 modulates the immune microenvironment of HCC by

mediating T-cell depletion and apoptosis and enhancing Treg-

mediated immune suppression (120). Preclinical studies have

documented the antitumor efficacy of TIM-3 blockade alone or in

combination with PD-1 inhibitors (121–123). Currently, a phase I

clinical study of TSR-022, an anti-TIM-3 antibody, is ongoing in

patients with advanced cancers, including HCC, as a first-in-man

study (NCT02817633).

Although LAG-3 is not expressed on naive T cells, its expression

can be induced on CD4+ and CD8+ T cells with sustained antigen

stimulation (124, 125). LAG-3 blockade was shown to restore the

cytotoxic activity of T cells for tumor killing (126, 127). Evidence

suggests that LAG-3 signal transduction exerts a negative regulatory

effect on Th1 cell proliferation and activation and cytokine secretion

(128). In the tumor microenvironment, tumor cells use this

pathway to avoid immune surveillance. Relatlimab was the first

LAG-3 blocking antibody in clinical development (129). It was

evaluated in clinical trials against solid tumors and hematologic

malignancies as a monotherapy or in combination with nivolumab

(anti-PD-1 mAb), and preliminary data showed that it was

relatively well tolerated and exhibited clinical efficacy (130, 131).

TIGIT is expressed on activated T cells, NK cells, and B cells and

inhibits immune cell-mediated antitumor responses (132, 133).

TIGIT and the immunoactivating receptor CD226 trigger a

signaling pathway similar to CD28/CTLA-4 to regulate tumor

immune responses (134). In preclinical studies, anti-TIGIT
FIGURE 2

Schematic diagram of the current immunotherapeutic options for HCC. Immunotherapeutic approaches for HCC mainly include immune
checkpoint blockade (ICB), adoptive cell therapy (ACT), cytokine based immune regimens, therapeutic vaccine and oncolytic virus. The figure was
drawn at BioRender.com.
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antibodies combined with anti-PD-1/PD-L1 drugs had a synergistic

effect (135, 136). According to related studies, TIGIT expression is

elevated on lymphocytes infiltrating HCC tissues and may be

involved in tumorigenesis and progression. At present, several

exciting new drugs targeting TIGIT, such as tiragolumab,

vibostolimab, etigilimab, ociperlimab, and domvanalimab, are in

preclinical and clinical trials.

4.1.2 Combination of ICIs
Based on the temporospatial expression patterns of CTLA-4

and PD-1/PD-L1, dual ICI therapy further improves therapeutic

efficacy (15, 137). In the CheckMate-040 trial (Cohort 4), a

combination of ipilimumab (anti-CTLA-4) and nivolumab (anti-

PD-1) was administered to HCC patients with sorafenib treatment

failure (15). The recommended regimen was ipilimumab (3 mg/kg)

plus nivolumab (1 mg/kg) every 3 weeks for 4 cycles, followed by

nivolumab (240 mg) biweekly, which yielded an ORR of 32% and a

medium duration of response (DOR) of 17 months. This impressive

result encouraged the approval of the ipilimumab plus nivolumab

strategy after sorafenib by the FDA in March 2020 (137). In a phase

I/II clinical trial of patients with advanced HCC who were

previously treated with sorafenib, the regimen of tremelimumab

(anti-CTLA4, 1500 mg) plus durvalumab (anti-PD-L1, 300 mg)

every 4 weeks produced an ORR of 24% with a median OS of 18.7

months (17) (Table 1).

4.1.3 ICIs combined with molecular targeted
drugs

Molecular targeted drugs, such as sorafenib, regorafenib, and

lenvatinib, promote tumor antigen presentation, thus activating T

cells to improve the efficacy of immunotherapy (138). VEGF is a

chemokine that induces angiogenesis and contributes to tumor

invasion and metastasis. In addition, it helps recruit and induce the

activation of Tregs, TAMs, and MDSCs to shape an

immunosuppressive microenvironment (139). Although anti-

VEGF therapy alone reduces the activity of Tregs and MDSCs

and induces cytotoxic T-cell infiltration, it shows only modest

efficacy against HCC (140, 141).

Based on a phase Ib clinical trial of patients with unresectable

HCC, the PD-L1 inhibitor atezolizumab plus the VEGF inhibitor

bevacizumab significantly suppressed HCC progression and

improved PFS compared to atezolizumab monotherapy (20). In

2020, a randomized phase III clinical trial, IMbrave150

(NCT03434379), was approved by the FDA to compare the

efficacy of atezolizumab plus bevacizumab (n = 336) with

sorafenib (n = 165) in 501 treatment-naive patients with

unresectable Child–Pugh A HCC (21, 142). The atezolizumab

plus bevacizumab regimen mediated dual immune modulation by

inhibiting PD-L1 and VEGF signaling and showed an OS benefit

compared with sorafenib. The median survival time (MST) was 19.2

months (HR 0.66; 95% CI 17.0–23.7) in the atezolizumab plus

bevacizumab group and 13.4 months in the sorafenib group.

Currently, the atezolizumab plus bevacizumab combination is the

standard regimen for patients with advanced Child–Pugh A HCC.

ORIENT-32 (NCT03794440) is a phase II/III clinical trial

comparing the PD-1 inhibitor sintilimab plus a bevacizumab
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biosimilar, IBI305, with sorafenib in Chinese patients with

unresectable or metastatic HCC (23). Sintilimab plus IBI305

produced both PFS and OS benefits compared with sorafenib,

and had an acceptable safety profile. Another PD-1 inhibitor,

camrelizumab, plus a tyrosine kinase inhibitor (TKI), apatinib,

was reported to effectively prolong the survival of patients with

mid- and advanced-stage HCC with good tolerance (143).

Lenvatinib is a multi-TKI that targets FGFRs, VEGFRs,

PDGFRa, and KIT that was approved by the FDA in August

2018 as the first-line drug for patients with unresectable HCC

(144). The combination of pembrolizumab and lenvatinib was

evaluated in a phase Ib trial of untreated HCC patients,

generating an ORR of 46%, a median OS of 22 months, and a

median PFS of 9.3 months (22). Although grade ≥ 3 treatment-

related adverse events (TRAEs) occurred in up to 67% of the

patients, these toxicities were controlled by dose modifications

and interruptions (22).

4.1.4 ICIs combined with chemotherapy
The combination of chemotherapy and immunotherapy

produces multiple complex effects. While killing cancer cells,

chemotherapy stimulates the release of antigens from tumor cells,

reduces the number of immunomodulatory cells, and induces an

increase in the number of antitumor effector T cells (145–147). A

phase II study (NCT03434379) evaluated camrelizumab plus the

FOLFOX4 or GEMOX regimens as a first-line strategy for patients

with advanced primary HCC or cholangiocarcinoma (26). The ORR

was 26.5%, and the disease control rate (DCR) was 79.4% in 34

patients. In terms of safety, 85.5% of HCC patients experienced

TRAEs of grade ≥ 3, with myelosuppression and allergic reactions

reported as the most common TRAEs.

4.1.5 ICIs combined with radiotherapy
Radiation therapy (RT) induces tumor cell apoptosis and the

release of tumor-specific antigens to activate the immune system,

suggesting that radiotherapy may exert a synergistic effect on tumor

killing with immunotherapy. Numerous preclinical studies have

shown that the combination of RT and ICIs produces synergistic

effects and significant tumor suppression (148–151). A study

reported results from five patients with large unresectable HCC

who were treated with nivolumab after SBRT. They all achieved an

ORR of 100%, with two patients in complete remission and three

patients in partial remission (152). Another combination of Y-90-

RE with nivolumab resulted in an ORR of 31%, and the

combination proved to be safe and tolerable, with only a minority

(11%) of treated patients with advanced HCC experiencing grade 3

or higher TRAEs (153).

4.1.6 ICIs combined with TACE
TACE is one of the main treatments for patients with

inoperable HCC. It causes ischemic necrosis of the tumor tissue

by embolizing the artery with chemotherapeutic agents delivered to

the hepatic artery. TACE therapy for patients with unresectable

HCC has been proven effective, but the long-term survival of

patients is not satisfactory. In a clinical trial evaluating the safety
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TABLE 1 Summary of clinical trials investigating ICIs combination therapy in HCC.

Clinical trail N Target Treatment Stage Primary endpoint

Adverse event

Ref.Grade ≥3 Most common
grade 3-4

Leading to
discontinuation

Leading
to

death

Monotherapy

NCT01658878 262 PD-1 Nivolumab I/II

ORR: 15% (n=48,
dose escalation) vs.
20% (n=214, dose
expansion)

Dose
escalation
(25%) vs.
dose

expansion
(19%)

Lipase increase
(13%); elevated
serum AST (10%)
vs. elevated serum
AST (4%) and ALT
(2%)

6% vs. 11%
0% vs.
0%

(9)

NCT02576509 743 PD-1 Nivolumab III
OS: 16.4 months
(n=371)

22%

Serum AST
elevation (6%);
pruritus (1%);
diarrhoea (1%)

4% 1% (10)

NCT02702414 104 PD-1 Pembrolizumab II ORR: 17.0% 26%
Elevated serum AST
(7%) and/or ALT
(4%); fatigue (4%)

23% 1% (11)

NCT03389126 30 PD-L1 Avelumab II ORR: 10.0% 23%

Elevated serum
AST/ALT (36.7%);
neutropenia (3.3%);
thrombocytopenia
(3.3%)

7% 0% (12)

NCT01008358 20
CTLA-
4

Tremelimumab II
PRR: 17.6%, DCR:
76.4% (n=17)

–

Elevated serum AST
(45%) and/or ALT
(25%);
hyponatraemia
(30%)

– – (13)

NCT02989922 217 PD-1 Camrelizumab II
ORR: 14.7%, OSR:
74.4%, OS: 13.8
months

22%

Serum AST
elevation (5%);
hyperbilirubinaemia
(3%); neutropenia
(3%)

4% 1% (14)

ICIs Combinations

NCT01658878 148
PD-1 +
CTLA-
4

Nivolumab +
Ipilimumab

I/II

ORR: 32% (n=50,
arm A)/27% (n=49,
arm B)/29% (n=49,
arm C)

53% (arm
A)

Elevated serum AST
(16%); lipase (12%)
and/or ALT (8%)

18% 2% (15)

NCT03222076 30
PD-1 +
CTLA-
4

Nivolumab +
Ipilimumab

II

TRAEs (grade ≥ 3):
43% (n=14,
Nivolumab +
Ipilimumab) vs.
29% (n=13,
Nivolumab)

43%
Elevated serum AST
(29%) and/or ALT
(29%)

0% 0% (16)

NCT02519348 332

PD-L1
+
CTLA-
4

Durvalumab +
Tremelimumab

I/II

ORR: 24% (n=75,
T300/D), PFS: 2.2
months, OS: 18.7
months

37.8%
Elevated serum AST
(12%); lipase (7%)
and/or amylase (7%)

10.8% 1% (17)

ICI + Anti-angiogenes

NCT03299946 15
PD-1 +
TKIs

Nivolumab +
Cabozantinib

I
TRAEs (grade ≥ 3):
13.3% (n=15)

13.3%
Fatigue (53.3%);
nausea (33.3%)

40% 0% (18)

NCT03755791 740
PD-L1
+ TKIs

Atezolizumab +
Cabozantinib

III

PFS: 6.8 (n=649,
combination) vs. 4.2
(n=188, control)
months, OS: 15.4 vs.
15.5 months
(control)

57%

Elevated serum AST
(9%) and/or ALT
(8%), hypertension
(9%), diarrhoea
(4%)

14% 0% (19)

NCT02715531 243
PD-L1
+
VEGF

Atezolizumab +
Bevacizumab

I

ORR: 36%(n=104),
PFS: 5.6 (n=60) vs.
3.4 months (n=59,
control)

20%

Hypertension
(14%); proteinuria
(7%); elevated
serum AST
(5%)

17% 3% (20)

(Continued)
F
rontiers in Immu
nolog
y
 08
 frontiers
in.org

https://doi.org/10.3389/fimmu.2023.1188277
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2023.1188277
of TACE plus pembrol izumab for HCC, TACE plus

pembrolizumab had a tolerable safety profile with no synergistic

toxicity (154).

4.1.7 ICIs combined with RFA
RFA is the first-line therapy for early local ablation and plays a

leading role in the treatment of HCC. A large body of evidence

suggests that ablative therapy not only physically eliminates tumors

but also activates systemic antitumor immune responses and

suppresses immunosuppressive effects (155–157). In a clinical study

evaluating the efficacy of tremelimumab plus RFA for advanced

HCC, it showed that 5 of the 19 evaluable patients achieved partial

remission, 12 of 14 HCV+ patients had a significantly reduced viral
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load, and patients who experienced a clinical benefit had significantly

increased CD8+ T-cell numbers, with a median OS of 12.3 months

and median time to tumor progression of 7.4 months (24).

4.1.8 Immune-related adverse events
Although ICIs activate antitumor immunity, they inevitably

alter the original immune homeostasis, resulting in a hyperactive

immune response and a series of adverse reactions similar to

autoimmune diseases. irAEs involve multiple organs but mainly

affect the skin, liver, lung, gastrointestinal tract and endocrine

organs (158). HCC usually develops from cirrhosis and has

systemic manifestations (159). Therefore, the symptoms caused

by multiple organs overlap with irAEs and increase their severity.
TABLE 1 Continued

Clinical trail N Target Treatment Stage Primary endpoint

Adverse event

Ref.Grade ≥3 Most common
grade 3-4

Leading to
discontinuation

Leading
to

death

NCT03434379 501
PD-L1
+
VEGF

Atezolizumab +
Bevacizumab

III

OSR at 12 months:
67.2% (n=336) vs.
54.6% (n=165,
control), PFS: 6.8 vs.
4.2 months
(control)

56.5%

Hypertension
(15.2%), elevated
serum AST (7%)
and/or ALT (3.6%)

15.5% 0% (21)

NCT03006926 104
PD-1+
VEGFR

Pembrolizumab +
Lenvatinib

Ib

ORR: 46%
(mRECIST)/36%
(RECIST v1.1),
DOR: 8.6 months
(mRECIST)/12.6
(RECIST v1.1)
months

67%

Hypertension
(17%); serum
AST elevation
(11%); diarrhoea
(5%)

18% 3% (22)

NCT03794440 595
PD-1 +
VEGF

Sintilimab + IBI305 II/III

ORR: 20.5%
(n=380) vs.
4.1% (n=191,
control), PFS: 4.6 vs.
2.8 months

33.7%

Hypertension
(14%); decreased
platelet count
(8%); proteinuria
(5%)

13.7% 2% (23)

ICI + Locoregional therapy

NCT01853618 32
CTLA-
4

Tremelimumab +
RFA or CA or
TACE

I TRAEs: 13.0% 53%

Elevated serum AST
(22%) and/or ALT
(9%);
hyperbilirubinemia
(9%)

13% 0% (24)

NCT03033446 39 PD-1
Nivolumab + Y-90
Radioembolization

II ORR: 31% (n=36) 14%
Ascites (3%); fever
(3%); liver abscess
(3%)

6% 0% (25)

ICI + Chemotherapy

NCT03092895 157
PD-1+
VEGF

Camrelizumab +
Apatinib or
fluorouracil +
calcium/folinate +
oxoliplatin or
gemcitabine +
oxoliplatin

II
ORR: 26.5% (n=34),

DCR: 79.4%
85.3%

Decreased
neutrophil count
(55.9%) and/or
white blood cells
(38.2%) and/or
platelet count
(17.6%)

0% 0% (26)
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Overall, the PD1 inhibitors pembrolizumab and nivolumab result in

severe irAEs in 10-20% of patients with advanced HCC and over

30% of patients with other cancer types (160). However, the

incidence of liver-related irAEs is higher in patients with HCC

than in patients with other tumor types. Anti-PD1 monotherapy

induces hepatitis-related enzymes in 14% of HCC patients but in

only 3% of patients with other cancer types (161, 162).

Principally, irAEs are attributed to the hyperactive immune

system. The role of the CTLA-4 and PD-1 checkpoints in

autoimmunity and immune homeostasis is fundamental to our

understanding of the mechanisms of irAEs. Although the precise

mechanism of irAEs is not fully understood, the incidence of irAEs

involves complex dynamic changes, including the regulation of

effector T-cell and Treg activity, toxic effects of macrophages and

granulocytes, cytokine release, and antibody production by B cells

(160). The life-threatening nature of irAEs limits the application of

ICIs. Therefore, biomarkers predicting the severity of irAEs are key

points to improve patient survival and quality of life. The possible

biomarkers for irAEs are summarized below. (1) Autoimmune

diseases are caused by hyperactive or suppressive immune-related

cells, and the immunosuppressive microenvironment is a

characteristic of tumor initiation and progression. The

investigation of the heterogeneity of immune-related cells may

promote a better understanding of immune disorders, thus

improving the prediction and management of irAEs. (2)

Cytokines, such as interleukin, TNF-a, and IFN-g , are

indispensable for cancer immunotherapy. Their secretion changes

remarkably with ICI treatment and might be involved in irAEs.

Previous studies examining immunotherapy revealed that the levels

of cytokines are closely correlated with the incidence of irAEs,

suggesting the possibility that cytokines may serve as biomarkers for

irAEs. (3) Tumorigenesis is acknowledged as a consequence of

genetic mutations, which may interfere with communication

between immune cells and tumor cells. NGS and single-cell RNA

sequencing technology may enable the extensive screening of

genetic mutations as potential biomarkers for irAEs. (4) Serum

biomarkers reflecting the tumor burden were revealed to be

associated with the response to ICIs. Therefore, studies

investigating the prediction of irAEs are worthwhile.
4.2 Adoptive cell therapy

Adoptive cell therapy (ACT) is a host cell-based immunotherapy

that endows lymphocytes with long-lasting antitumor immunity and

produces low cytotoxic effects on normal cells. The basic principle

involves isolating host lymphocytes, followed by their enrichment,

activation, and amplification in vitro via stimulation with cytokines

or peptides or via genetic modification. The modified cells are then

infused into the host to exert cytotoxic effects on autologous tumor

cells (163). The most commonly used ACT-based therapies for HCC

include chimeric antigen receptor (CAR)-modified T cells, cytokine-

induced killing (CIK) cells, and T-cell receptor (TCR)-engineered T

cells (Table 2).
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4.2.1 CAR-T cells
CAR is a fusion protein composed of a tumor-associated

antigen (TAA) binding domain, an extracellular hinge region, a

transmembrane domain, and an intracellular signal domain (164,

165). Following CAR modifications, T lymphocytes recognize a

broader range of target antigens than the natural TCR (164) and

participate in the identification of cancer cells independently of the

major histocompatibility complex (MHC). Glypican-3 (GPC3) is

specifically expressed on the surface of HCC cells and was used as

the TAA for CAR-T cell construction (166, 167). CAR-T cells

targeting GPC3 have proven effective in vitro and in animal models,

with a clinically significant prolongation of survival (168). In recent

phase I trials (NCT02395250 and NCT03146234) comprising 13

patients with advanced HCC receiving CAR-T-cell infusions, two

patients showed partial responses, and one patient showed

persistent stable disease (SD) (27). In another ongoing phase I

clinical trial (NCT03198546), complete tumor disappearance was

observed in patients with GPC3+ advanced HCC after 30 days of

treatment with intratumor injections of 19.9 × 108 CAR-GPC3 T

cells (169).

Although CAR-T cell therapy has made breakthroughs in the

treatment of hematologic malignancies through its targeting

specificity, CAR-T cell therapy for solid tumors, including HCC,

still faces many challenges. These challenges are mainly attributed

to the intricate immune microenvironment within solid tumors,

with specific histopathological features leading to hypoxia, a low

pH, immunosuppressive cells, an increased number of inhibitory

checkpoints, and higher levels tumor-derived cytokines (170, 171).

These characteristics make T-cell infiltration in local tumor tissues

more challenging (172), thus affecting the cytotoxic antitumor effect

of T cells. A number of studies have been conducted to overcome

the detrimental effects of the tumor microenvironment in solid

tumors, including the modification of CAR-T cells by knocking

down PD-1 expression and the use of CAR-T cells in combination

with ICIs (173–175).
4.2.2 CIK cells
CIK cells are heterogeneous and non-MHC-restricted

lymphocytes consisting of T cells (CD3+CD56−), NK cells

(CD3−CD56+), and NKT cells (CD3+CD56+) (176). CD3+CD56+

NKT cells are the main effector cells exerting antitumor activity due

to the higher proportion of CD8+ cells, more differentiated effector

cells, and higher granzyme A content (177). CIK cells are produced

by the expansion and activation of peripheral blood mononuclear

cells (PBMCs) in response to stimulators such as an anti-CD3

antibody, IFN-g, and IL-2 (178). With the advantages of non-MHC-

restricted cytotoxicity, dual function of T cells and NK cells, high

proliferation rate, high specificity for tumors, and low impact on

normal cells (179), CIK cells are applied to both hematological

malignancies and solid tumors.

A randomized phase II trial of CIK cells for HCC revealed that

CIK cell therapy significantly prolonged OS and recurrence-free

survival (RFS) compared with the control group (31). In a
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multicenter phase III clinical trial consisting of 230 HCC patients,

adjuvant immunotherapy with activated CIK cells was administered

to HCC patients that treated with surgical resection, RFA, or a

percutaneous ethanol injection. The median PFS was 44 months in

the CIK group and 30 months in the control group. The CIK group

showed lower HRs for all-cause death (0.21; 95% CI 0.06–0.75; P =

0.008) and cancer-related death (0.19; 95% CI 0.04–0.87; P = 0.02).

Although the overall frequency of adverse events (AEs) was higher

in the CIK group than in the control group (62% vs. 41%; P =

0.002), the severe AE incidence did not differ significantly (7.8% vs.

3.5%; P = 0.15) (30). A 5-year follow-up study (NCT01890291)

revealed the sustained therapeutic efficacy of autologous CIK cell

immunotherapy against HCC. The study enrolled 162 patients, with

89 in the CIK group and 73 in the control group. After an average

follow-up of 68.5 months, the recurrence-free survival (RFS) rate in

the CIK group was 44.8% compared to 33.1% in the control group.

Furthermore, the CIK group showed a significant reduction in the

risk of all-cause death with a hazard ratio of 0.33 (95% CI: 0.15-0.76,

P = 0.006) (180). To date, several clinical trials have evaluated the

role of CIK cells in the treatment of HCC and have obtained

encouraging results, suggesting that CIK cells are a very promising

immunotherapy for the treatment of HCC (29, 181, 182).
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4.2.3 TCR-T cell
TCR-T cell therapy is performed by extracting the a and b

chain genes encoding the TCR from tumor antigen-induced effector

T cells, introducing them into mature T cells using genetic

engineering techniques, and then infusing the cells back into

patients who lack tumor antigen-specific responsive T cells. TCR-

T cells perform antigen recognition in an MHC-dependent manner

(183) and have a wider range of applications than CAR-T cells.

Hepatitis B virus (HBV) infection is the leading cause of HCC in

Asia, accounting for 80% of cases (184). HBV infection stimulates

the production of high-affinity T-cell receptors (TCRs), which may

provide a potential therapeutic strategy for targeting HBV-infected

cells. However, a major concern is that viral antigens may also be

expressed on nonmalignant liver tissue in patients with HBV-

associated HCC, posing a risk of severe liver injury (185). Current

candidate TAAs for HCC TCR-T therapy include New York

esophageal squamous cell carcinoma 1 (NY-ESO-1) (186), alpha-

fetoprotein (AFP) (187), GPC3 (188), and human telomerase

reverse transcriptase (hTERT) (189). NY-ESO-1 is the most

commonly used target antigen in clinical trials of TCR-T cells.

NY-ESO-1 is expressed in approximately 45% of HCC tumors

(190); therefore, NY-ESO-1-specific TCR-T cells have been used in
TABLE 2 Summary of clinical trials investigating ACT in HCC.

Clinical
trail N Target Treatment Stage Primary end-

point

Adverse event

Ref.Grade
1-2

Most common
grade 1-2

Grade≥3 Most common
grade 3-4

NCT02395250 13 GPC3 CAR-T cells I

ORR: 15.4%, OSR:
10.5% (3-year),

42.0% (1-year), and
50.3% (6 months)

85%

Pyrexia (85%); CRS
(62%); CRP

increased (54%);
chills (54%); cough

(54%)

92%
Decreased

lymphocyte count
(92%)

(27)

NCT03980288 6 GPC3 CAR-T cells I
ORR: 16.7%, DCR:

50%, PFS: 4.2
months

50% – 50%
Lymphocyte

depletion (50%)
(28)

NCT00769106 200 – CIK cells III
TTR: 13.6 (n=100)
vs. 7.8 months
(n=100, control)

11.8%
Fever (7.8%);

abdominal pain
(5.8%)

0% 0% (29)

NCT00699816 230 – CIK cells III
RFS: 44.0 (n=115)
vs. 30.0 months
(n=115, control)

35%
Fever (9%); chills

(8%)
0% 0% (30)

– 132 – CIK cells II

OSR: 74.2% (3-
year), 53.0% (2-
year), and 50.3%
(1-year) (n=66)

41%

Leukopenia (41%);
fever (29%);
headache pain

(12%)

0% 0% (31)

NCT03899415 8 HBV TCR-T cells I

TRAEs: 25.0%,
TTP: 6.18 months,
OS: 33.1 months

(n=8)

12.5%
Elevated serum ALT

(12.5%)
37.5%

Elevated serum
AST (12.5%) and/
or ALT (12.5%)
and/or GGT
(12.5%)

(32)

NCT02719782 10 HBV TCR-T cells I
TTP: 1.3 months,
OS: 14 months

(n=4)
67% Fever (67%) 0% 0% (33)
frontier
ACT, adoptive cell therapy; GPC3, glypican 3; CAR-T, chimeric antigen receptor T cells; ALT, alanine
aminotransferase; AST, aspartate aminotransferase; CRS: cytokine release syndrome; CRP, C-reactive protein; GGT, g- glutamyltransferase; ORR, objective response rate; OSR, overall survival
rate; DCR, disease control response; PFS, progression-free survival; CIK, cytokine-induced killer cells; TTR, time to recurrence; RFS, recurrence-free survival; HBV, hepatitis B virus; TCR-T, T
cell receptor engineered T cells; TRAEs, treatment-related adverse effects; TTP, time to progression; OS, overall survival; –, not applicable..
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clinical therapeutic trials for HCC (NCT01967823, NCT02869217,

and NCT03159585). Recently, Docta et al. obtained an HLA-A2+/

AFP-specific TCR (191), and a clinical trial of this TCR-T cell

population for HCC is underway to confirm its effectiveness in

treating HCC by examining AFP expression and T-cell infiltration

in biopsied tissues (NCT03132792). In contrast to AFP, fewer

studies have been conducted on GPC3-specific TCRs. A study

obtained HLA-A2/GPC3367-specific TCRs by transfecting HLA-

A2 with GPC3 into HLA-A2-negative donor DCs and coculturing

them with host T cells; the expression of this receptor on T cells

enabled them to recognize and kill GPC3-positive HCC cells (188).
4.3 Cytokine therapy

Cytokines are an important component of the immune system

and promising therapeutic targets in liver diseases due to their

importance in modulating immune and inflammatory responses

(192). In recent years, many cytokines, such as IL-2, IL-15, IL-21,

GM-CSF, and IFN-a, have proven effective in preclinical tumor

models and are used as potential options for cancer immunotherapy

(193). With the ability to mediate antiviral, antitumor, and other

immune responses, IFN-a reduces the mortality and early relapse

rates of HCC patients after curative treatment (194). In addition,

adjuvant IFN therapeutic efficacy on postoperative recurrence

differed between patients with HBV-related HCC and patients

with HCV-related HCC; therefore, the adjuvant IFN strategy

should be used according to the hepatitis background (195). A

preclinical study suggested that hepatocyte growth factor (HGF)

may be involved in the progression of HCC (196). Two studies have

documented that pretreatment serum HGF levels are potential

independent predictors of OS in prospective cohorts of HCC

patients (197, 198). Notably, lower HGF levels at the initiation of

treatment are often associated with longer OS and PFS benefits

from sorafenib treatment (198). IL-2 is capable of promoting T-cell

proliferation and activation, which is essential for tumor-killing

activity. In a clinical trial of patients with inoperable HCC, IL-2

administration prolonged OS (199). A study of patients with HCC

treated with sorafenib therapy evaluated the prognostic value of

pretreatment serum IL-6 levels. In both the discovery and validation

cohorts, higher pretreatment serum IL-6 levels (threshold: 4.28 pg/

mL) were an independent predictor of shorter OS. However, this

result was unrelated to the efficacy of sorafenib, as PFS and TTP

were similar, regardless of pretreatment IL-6 levels. Additionally,

pretreatment IL-6 levels were not associated with macrovascular

invasion or extrahepatic metastasis (200). A recent study using

cellular models showed that inhibition of IL-6-related pathways

may reduce resistance to sorafenib (201). TGF-b serves as a tumor

suppressor at early stages of tumorigenesis. However, with tumor

progression, TGF-b loses its growth-inhibitory ability and initiates

the EMT and cell migration (202). Galunisertib (LY2157299), a

novel TGF-b inhibitor, was evaluated in a phase II trial of HCC

patients with disease progression on sorafenib therapy. The median

OS for the cohort with AFP levels < 200 ng/mL was 17 months

compared to 8.4 months for patients with AFP levels > 200 ng/mL.

Notably, an obvious improvement in OS was noted in patients with
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TGF-b1 levels that were reduced by more than 20% (203, 204). In

addition, preclinical studies have shown that galunisertib modulates

the inhibition of T-cell proliferation and shows potential synergy

with PD-1/PD-L1 inhibitors (205). Galunisertib is currently being

evaluated for efficacy and safety in the treatment of HCC patients in

several ongoing clinical trials (NCT02240433, NCT01246986,

NCT02178358, NCT02906397, and NCT02423343). However,

only high concentrations of cytokines are able to reach the tumor

microenvironment, and parenterally administered cytokines have

difficulty reaching effective concentrations and exerting their effects

on the tumor microenvironment. The combination of cytokines

with other immunotherapies is currently being clinically

investigated to enhance their antitumor capacity and avoid

these obstacles.
4.4 Therapeutic vaccine

Therapeutic vaccines are active immunotherapies in which

TAAs (including peptides, tumor cells, and viruses) are

introduced into patients to overcome the immunosuppressive

tumor microenvironment and further activate the patient’s

immune system to produce a tumor-specific response with

enhanced potency (206). The identification of target TAAs is the

most critical step in exerting a specific antitumor response. Several

HCC peptide vaccines targeting TAAs, such as GPC3, AFP, and

hTERT, have been developed for use as immunotherapeutic targets

for vaccines (207).

The GPC3 peptide is considered an ideal vaccine for HCC

treatment due to its overexpression on HCC tumor cells and low

level on normal cells (208). A phase I clinical study of patients with

advanced HCC showed that the GPC3 vaccine was well tolerated

and induced a GPC3-specific CTL response in 30/33 patients (91%)

(209). In a phase II study of 41 HCC patients who underwent

surgical resection, adjuvant GPC3 vaccine administration

significantly reduced the recurrence rate (1- and 2-year

recurrence rates of 24% vs. 48% and 52.4% vs. 61.9%,

respectively; P = 0.047, 0.387). In addition, the postoperative

administration of the GPC3 peptide vaccine was shown to

prolong RFS (210).

AFP is a classic diagnostic marker for HCC due to its specific

expression on HCC cells (211). AFP blockade reduces the

proliferation and promotes apoptosis of liver cancer cells (212).

In a clinical trial, two AFP-positive HCC patients received an AFP

vaccine, which showed good tolerance and safety without clinically

significant adverse events (213).
4.5 Oncolytic viruses

Oncolytic viruses (OVs) are a group of genetically modified

viruses that have acquired the ability to kill tumor cells in a targeted

manner without damaging normal cells. During the killing of tumor

cells by oncolytic viruses, the antitumor immune response is

activated in the body, and the inflammatory response generated

by viral infection further promotes the immune response (214).
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OVs are usually divided into two categories, namely, natural viruses

(including Newcastle disease virus and eutherian virus) and

genetically modified viruses (including adenovirus and herpes

simplex virus) (215). JX-594 is an engineered oncolytic virus that

selectively targets tumors by inactivating viral thymidine kinase

(vTK) (216). In a phase II clinical trial of the cowpox vaccine JX-594

for the treatment of HCC, JX-594 was well tolerated even at high

doses. The study showed a positive correlation between the dose of

JX-594 and survival benefit, with a longer median OS for the high-

dose group than the low-dose group (14.1 months and 6.7 months

for the high- and low-dose groups, respectively) (216). Currently,

two clinical studies of OVs in combination with anti-PD-1

antibodies for the treatment of HCC (NCT04612504 and

NCT05061537) are ongoing. A recent study showed that

treatment with the cancer-favoring vaccinia virus (CVV) resulted

in a significantly lower incidence of metastasis than treatment with

sorafenib alone in an animal model (217). Although OVs for HCC

show promising clinical applications, more clinical trials are needed

to further validate their efficacy and safety.
5 Conclusions

The tumor microenvironment and cancer immunotherapy have

been at the forefront of cancer research in recent decades. Immune

cells in the immune microenvironment of HCC tumors provide new

targets for the next generation of immunotherapy. Immune

checkpoint therapies targeting CTLA-4 and PD-1/PD-L1 are the

main drugs used in the treatment of HCC, and other

immunotherapies are rapidly evolving, including CAR-T cells,

TCR-T cells, therapeutic vaccines, and OVs. Although response

rates to ICIs in HCC patients are modest, more new treatment

modalities will emerge as our understanding of the interaction of

ICIs with adaptive and innate immune responses improves. Many

strategies have been developed that combine ICIs with other first-

line therapies (including chemotherapy, local therapies, and targeted

therapies) in ideal combinations, and these new therapies have

provided palliation and prolonged the survival of patients with HCC.
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Glossary

AFP alpha-fetoprotein

ACT Adoptive Cell Therapy

a-SMC a-smooth muscle cell

CAR chimeric antigen receptor

CCL26 C-C motif chemokine 26

CIK cytokine-induced killing

CTLA-4 cytotoxic T lymphocyte associated protein 4

CAF cancer-associated fibroblasts

CTL cytotoxic T lymphocyte

CSC sequester circulating cancer cells

CCA cholangiocarcinoma

CXCL chemokine (C-X-C motif) ligand

CYLD cylindromatosis

CVV cancer-favoring vaccinia virus

cDCs conventional DCs

DC dendritic cells

DCR disease control rate

ECM extracellular matrix

EMT epithelial–mesenchymal transition

FDA US Food and Drug Administration

FoxP3 forkhead box protein 3

FGF fibroblast growth factor

FAP fibroblast activating protein

GPC3 Glypican 3

GM-CSF granulocyte-macrophage colony stimulating factor

HCC Hepatocellular carcinoma

HSC hepatic stellate cell

hTERT telomerase reverse transcriptase

ICB immune checkpoint blockade

ICIs immune checkpoint inhibitors

IDO indoleamine-2,3-dioxygenase

IFN-g interferon gamma

KCs Kupffer cells

KIT c-kit receptor

LPS lipopolysaccharide

LSAMP limbic system-associated membrane protein

LAG-3 lymphocyte-activation gene 3

MDSC myeloid-derived suppressor cells

MC mast cells

(Continued)
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MST median survival time

MFB myofibroblast

MHC major histocompatibility complex

NK natural killer cells

NET neutrophil extracellular traps

NKG2D natural killer group 2D

NKG2A natural killer group 2A

NGF nerve growth factor

NY-ESO-1 New York esophageal squamous cell carcinoma 1

NMPA national medical products administration

OS overall survival

OVs oncolytic viruses

ORR objective remission rates

OS overall survival

PD1 programmed cell death 1

PD-L1 programmed death ligand 1

PFS progression-free survival

PBMC peripheral blood mononuclear cells

PDGF platelet-derived growth factor

PDGFR platelet-derived growth factor receptor

pDCs plasma cell-like DCs

RFA radiofrequency ablation

RFS recurrence-free survival

SIRT selective internal radiation therapy

SBRT stereotactic body radiation therapy

TAA tumor-associated antigen

TACE transarterial chemoembolization

TIL tumor infiltrating lymphocytes

TAM tumor-associated macrophages

TAN tumor-associated neutrophils

TGF-b transforming growth factor-b

TNF-a tumor necrosis factor-a

TCR T cell receptor

TIGIT T cell immune receptor with Ig and ITIM domains

Tim-3 T cell immunoglobulin and mucin domain-containing protein 3

VEGF vascular endothelial growth factor

VEGFR vascular endothelial growth factor receptor.
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