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Integrative multi-omics analyses
unravel the immunological
implication and prognostic
significance of CXCL12 in
breast cancer

Zhi-Jie Gao1†, Zhou Fang1†, Jing-Ping Yuan2*,
Sheng-Rong Sun1* and Bei Li2*

1Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan,
Hubei, China, 2Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
Background: CXCL12 is a vital factor in physiological and pathological processes,

by inducing migration of multiple cells. We aimed to comprehensively detect the

role of CXCL12 in breast cancer, and explore novel CXCL12-related biomarkers

through integrative multi-omics analyses to build a powerful prognostic model

for breast cancer patients.

Methods: Immunohistochemistry analysis of the tissue microarray was

performed to evaluate the correlation between CXCL12 expression levels and

breast cancer patient outcomes. Combined single-nucleus and spatial

transcriptomics data was used to uncover the expression distribution of

CXCL12 in breast cancer microenvironment. CXCL12-related genes were

identified by WGCNA analysis. Univariate Cox and LASSO regression analyses

were then conducted to screen prognostic genes from above CXCL12-related

genes, followed by the construction of the CXCL12-related prognostic signature,

identification of risk groups, and external validation of the prognostic signature.

Analyses of biological function, mutation landscape, immune checkpoint genes

and immune cells, were performed to further reveal the differences between

high/low-risk groups. Paired single-cell RNA-seq and bulk RNA-seq were

analyzed to further disclose the association between the risk score and the

complex tumor immune microenvironment. To screen potential therapeutic

agents for breast cancer patients, analyses of gene-drug correlation and

sensitivity to immunotherapy were conducted.

Results: High expression of CXCL12 was linked with a prolonged survival in

breast cancer. A total of 402 genes were identified by WGCNA analysis and 11

genes, covering VAT1L, TMEM92, SDC1, RORB, PCSK9, NRN1, NACAD, JPH3,

GJA1, BMP8B and ADAMTS2, were screened as the candidate prognostic genes.

Next, the prognostic signature was built and validated using these genes to

predict the outcomes of breast cancers. The high-risk group patients exhibited

significantly inferior prognoses. The combination of the risk score and tumor

mutational burden (TMB) had remarkably improved performance in predicting

patient outcomes. Besides, high-risk group patients showed higher infiltration of

M2-like macrophages. Finally, several potential anticancer drugs were identified.
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The high-risk group patients weremore sensitive to immunotherapy but resistant

to docetaxel.

Conclusions: CXCL12 has important immunological implication and prognostic

significance in breast cancer. The CXCL12-related prognostic model could well

predict the prognosis and treatment response of breast cancers.
KEYWORDS

breast cancer, CXCL12, prognostic signature, immune landscape, single-cell RNA-seq,
drug screening
Introduction

Worldwide, breast cancer has become one of the most prevalent

malignancies with an estimated 2.3 million new cases in 2020 on the

basis of the latest global cancer statistics (1). Accounting for around

30% of female cancers, breast cancer exhibits a mortality-to-incidence

ratio of 15% (2). These statistics highlight the urgent need to develop

novel effective strategies for breast cancer diagnosis and treatment. The

emergence of molecular targeted therapy and immunotherapy has

brought new treatment prospects for breast cancer patients. However,

not all breast cancer patients respond to the same treatment. For

instance, immune checkpoint blockade (ICB) has shown considerable

efficacy on numerous malignancies, but is ineffective for most patients

owing to primary or acquired resistance (3). In recent years, as

precision medicine is becoming a reality, treatments of breast cancer

have gradually evolved from empirical chemotherapy to personalized

therapies. Thus, an outstanding question is to identify which

underpinning mechanisms and related biomarkers determine

treatment responses.

Chemokines are a family of small and secreted proteins responsible

for regulating directed cell migration (chemotaxis) through binding to

Gai-protein-coupled seven-transmembrane-spanning receptors

(GPCRs) which are so-called classical chemokine receptors (4).

Atypical chemokine receptors (ACKRs) which are also seven-

transmembrane-spanning receptors can also interact with

chemokines and function as scavenging receptors, but fail to induce

chemotaxis (5). Additionally, chemokines exert an important role in

cell survival, proliferation and differentiation, tumor growth and

metastasis, as well as angiogenesis, hematopoiesis, organogenesis, and

multiple other processes. Based on the relative location of the

conserved cysteine residues in their amino acid sequence,

chemokines could be classified as four subfamilies: C, CC, CXC, and

CX3C. Heretofore, nearly 50 different chemokine ligands, as well as 20

diverse signaling GPCRs and 4 ACKRs have been characterized in

humans. Biologically, chemokines are divided into inflammatory and

homeostatic chemokines based on their expression and function.

Induced by response to endogenous and exogenous inflammatory

triggers, inflammatory chemokines are rapidly secreted and can

coordinate the directional chemotaxis of leukocytes to inflammatory

sites. Homeostatic chemokines are constitutively expressed and

regulate homeostatic basal migration of immune cells at
02
physiological conditions. In this way, chemokines and their receptors

play a key role in the positioning of cell populations both in regular

physiological processes and abnormal conditions like infection and

particularly, in cancer.

Initially discovered as pre-B cell growth factor (PBGF), the CXC

chemokine CXCL12 was found to be indispensable for homeostatic

processes such as embryogenesis and lymphopoiesis. Subsequently,

PBGF was found to express constitutively in bone marrow stromal

cells and was therefore named stromal cell-derived factor-1 (SDF-

1). CXCL12 is mostly considered as a homeostatic chemokine

which induces the migration and activation of hematopoietic

progenitor cells, endothelial cells, and multiple leukocytes.

However, CXCL12 can also play an inflammatory function in

particular conditions by the synergy with CXCL8 and other

chemokines to induce chemotaxis of leukocytes (6). Under

homeostatic and pathological conditions, CXCL12 implements its

functions by the interaction with its receptors CXC chemokine

receptor CXCR4 and atypical chemokine receptor ACKR1 and

ACKR3 or by binding to glycosaminoglycans (GAGs) in tissues

and endothelium to present to leukocytes (7). The CXCR4-CXCL12

chemokine axis is found to be important in the preservation of

immature and mature immune cells within the bone marrow (4). In

addition, the CXCR4-CXCL12 axis promotes the differentiation of

newly recruited tumor-associated macrophages (TAMs) into

perivascular TAMs to accelerate vascular leakiness and tumor cell

intravasation (8). Apart from the function in chemotaxis, CXCL12

can also facilitate CD4+ T cell survival by binding to CXCR4 and

subsequently activating the PI3K and MAPK signaling pathways

(9). In breast cancer preclinical models, high expression of CXCL12

is linked with a prolonged disease-free survival (DFS) and overall

survival (OS), presumably owing to decreased metastasis of breast

cancer cells (10). Furthermore, a systematical meta-analysis study

has revealed that breast cancer patients with high CXCL12

expression harbor an OS advantage (11). Nevertheless, it is still

not straightforward to delineate the complex role of CXCL12 and

CXCL12-related biomarkers in the diagnosis and treatment of

breast cancers.

In this study, we systematically investigated the association

between the expression of CXCL12 and clinical characteristics in

breast cancer, and found that CXCL12 was lower expressed in the

tumor tissues and linked with a survival advantage. Besides, we
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performed immunohistochemistry (IHC) analysis to validate that

breast cancer patients with higher expression of CXCL12 possess

preferred outcomes. To further explore the architectural feature of

CXCL12-expressing cell populations and their co-location with

other cell populations, we conducted spatially resolved

transcriptomics analysis with paired single-nucleus RNA-seq

(snRNA-seq), which could determine how diverse cells in the

tumor microenvironment (TME) are organized as functional

units. The most significantly related gene module of CXCL12 was

identified via Weighted Gene Co-expression Network Analysis

(WGCNA). Next, we constructed a prognostic signature by

carrying out univariate Cox regression and least absolute

shrinkage and selection operator (LASSO) regression analyses in

The Cancer Genome Atlas (TCGA) breast cancer training cohort.

After multiple additional validation cohorts, we demonstrated that

this CXCL12-related signature could predict the prognoses of breast

cancers. In addition, the differences in pathway activities,

mutational and immune statuses were explored between the high-

and low-risk groups. Considering single-cell RNA-seq (scRNA-seq)

allowed us to study the heterogeneity of tumors at the single-cell

resolution, we made full use of a public scRNA-seq dataset with

paired bulk RNA-seq data and revealed distinct composition of cell

subpopulations in different risk group samples. We proved that the

M2-like macrophages played a vital role in the high-risk group

patients via deconvolution and scRNA-seq analyses. Responses to

immunotherapy and sensitivities to multiple anti-cancer drugs were

also predicted based on our risk groups. Finally, we built a

nomogram to provide guidance for breast cancer treatment.

Summarily, this study revealed the immunological implication

and prognostic significance of CXCL12 in breast cancer, and that

its related biomarkers might provide us with a novel research

direction for the diagnosis and treatment of breast cancer.
Materials and methods

Collection of public datasets

RNA-sequencing expression matrix and clinical information of

normal breast samples and breast cancer samples from the Cancer

Genome Atlas (TCGA) database were downloaded from cBioportal

(https://www.cbioportal.org/). Two additional datasets (GSE42568

and GSE183947) containing expression matrix of tumorous and

normal breast samples were obtained from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/). We downloaded somatic

mutation data from Genomic Data Commons (GDC, https://

portal.gdc.cancer.gov/). Somatic mutation data sorted in the form

of Mutation Annotation Format (maf) were analyzed and then used

to calculate TMB using the R package maftools.

To validate the predictive power of the CXCL12-related

prognostic model, we downloaded three additional independent

datasets from the GEO database. After eliminating pathologies with

duplicate and incomplete survival information, three validation sets

were obtained, including GSE19615 with 115 samples, GSE21653

with 252 samples, and GSE61304 with 58 samples.
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Immunohistochemistry

We collected the tissue microarray (TMA) containing a total of

157 human breast cancer specimens from the People’s Hospital of

Wuhan University for pathological analysis of CXCL12. IHC

staining was performed as follows: deparaffinization, antigen

retrieval, blocking endogenous peroxidase (3%hydrogen peroxide

solution, room temperature, out of light for 25 minutes), serum

block (3% bovine serum albumin, room temperature, 30 min),

primary antibodies of CXCL12 (Abcam, ab9797,1/200) were

incubated overnight at 4 °C, and horseradish peroxidase (HRP)-

conjugated for 50 minutes at room temperature. Staining was

visualized with DAB and time controlled under a microscope.

Finally, nuclear counterstaining was performed using hematoxylin

for approximately 3 minutes. Human breast cancer specimens

treated with only secondary antibody served as negative controls

and paraffin-embedded human hepatic carcinoma specimens were

used as positive controls. The staining results were scored by two

independent pathologists as follows: the protein expression levels of

CXCL12 were described by the percentage of positive cells

calculated by ImageJ software.
Acquisition of CXCL12-related genes

We analyzed breast cancer expression data using the Weighted

Gene Co-expression Network Analysis (WGCNA) package to

obtain genes most related to CXCL12. Samples were clustered to

ascertain the overall relevance of all samples in the dataset, and

outliers were excluded. The soft thresholding power b was chosen

based on the lowest power for which the scale-free topology fit

index reached a high value. The minimum gene number/module

was set to 50 and, subsequently, 8 modules were generated. Besides,

we conducted correlation analyses between modules and traits to

find the most relevant modules for CXCL12, which contained a

total of 402 genes.
Construction and validation of a CXCL12-
related prognostic signature

First, RNA expression matrix of the breast cancer samples in

TCGA, GSE19615, GSE21653 and GSE61304 datasets was cross-

checked to identify co-expressed genes. To obtain CXCL12-related

genes that could construct a prognostic signature, univariate Cox

regression and least absolute shrinkage and selection operator

(LASSO) regression analyses were carried out. We eventually

obtained 11 genes, including VAT1L, TMEM92, SDC1, RORB,

PCSK9, NRN1, NACAD, JPH3, GJA1, BMP8B and ADAMTS2,

and constructed a CXCL12-related prognostic model based on

these genes. To group the breast cancer patients, the risk score of

each breast cancer patient in the training set was calculated

according to the following formula:

Risk score =oni =o(Coefi*xi)
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The breast cancer patients were then categorized into the high-

risk and low-risk groups according to the median of risk scores. The

predictive sensitivity of the risk score was painted via the R package

survivalROC for estimation. The model effectiveness was evaluated

in the validation set using the same coefficient and cutoff values that

were used in the training set.
Biological functional analysis between
high- and low-risk group patients

The Deseq2 R package was used to perform differentially

expressed genes (DEGs) analysis. DEGs were determined with a

cutoff of an adjust p-value of less than 0.05 and |Log2 fold change|

greater than 1. The clusterProfiler R package was used to perform

gene set enrichment analysis (GSEA). With the use of Fisher’s exact

test, those with false discovery rate FDR-corrected p-values of less

than 0.05 were regarded as marked indicators. Gene set variation

analysis (GSVA) was performed via the R package GSVA. Gene

signatures of recurrent cancer cell states were collected from the

previous study (12).
Tumor immune microenvironment in
breast cancer patients

In order to study the infiltration of immune cells, we used

TIMER2.0, an efficient algorithm for predicting immune cell

infiltration of bulk tumor gene expression data (http://

timer.cistrome.org/). For each sample, CIBERSORT quantified the

relative abundance of 22 immune cells. In addition, we collected

series of tumor immunomodulators from the literatures and

calculated the correlation of risk score with them.
Single-cell transcriptome analysis

First, we downloaded scRNA-seq data and paired bulk RNA-

seq data 24 breast tumors from the GEO (GSE176078) database. We

conducted unsupervised clustering of the single cells using the read

count matrix as input via Seurat package (v4.1.1) in R (v4.1.3). The

quality control was applied strictly and was mainly based on the

number of detected genes and proportion of mitochondrial gene

count per cell. At first, cells with less than 200 detected genes and

cells with over than 15% mitochondrial gene count were filtered.

Aiming to avoid unexpected noise, genes detected in less than 3 cells

were excluded from the downstream analysis. We performed the

fast mutual nearest neighbor (fastMNN) algorithm to integrate

multi-sample data and correct the batch effect via Seurat-Wrappers

package (v0.3.0). Subsequently, we performed dimension reduction

clustering and differential expression analysis following the Seurat-

guided tutorial. The principal component analysis (PCA) and

uniform manifold approximation and projection (UMAP)

dimension reduction were performed with the top 15 principal
Frontiers in Immunology 04
components. The annotation of cell clusters was based on the

canonical gene markers. The signature gene list of M2-like

macrophages has been previous described (13).
Combined single-nucleus and spatial
transcriptome sequencing and analysis

The detailed pipeline of nuclei isolation, single-nucleus RNA-

sequencing (snRNA-seq) and spatial transcriptomics was according

to our previous study (14). Strict data quality control and

downstream dimension reduction clustering were performed

similarly to the above described scRNA-seq data processing. We

conducted data normalization on the independent tissue sections

via the variance-stabilizing transformation method implemented in

the SCTransform function in Seurat package. Furthermore, we

mapped the distribution of cancer-associated fibroblasts (CAFs)

in the breast cancer tissue using the top 50 gene markers based on

the snRNA-seq data, by the single-sample gene set enrichment

analysis (ssGSEA).
Predicting drug responses and
immunotherapy sensitivity

We used the R package oncoPredict to assess the predictive

ability of risk score chemotherapeutic agents by calculating patients

IC50 for various common chemotherapeutic agents. The Wilcoxon

rank test was then used to compare the difference in IC50 between

the high/low-risk groups. To further validate the predictive value

of above immunotherapy responses, we used the extra

immunotherapy data set IMvigor210 (uroepithelial carcinoma) to

predict immunotherapy response.
Univariate and multivariable Cox regression

We performed univariate Cox regression on breast cancer

patients with gene expression and overall survival. Multivariate

Cox regression was used to evaluate independent risk factors in the

same cohort. Genes and factors with a false discovery rate (FDR) <

0.05 were considered statistically associated with patient survival.

The results of univariate and multivariate Cox regression were

acquired and visualized by using the R package forestplot.
Establishment of the nomogram

This study used the Cox regression model along with the R

package rms to build an OS prediction nomogram that set 1-, 3-,

and 5-year OS as the endpoints. The C-index was used to estimate

the discriminative ability of the nomogram. Calibration plots were

used to visualize the consistency between the predicted and factual

1-, 3-, and 5-year OS.
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Statistical analysis

All statistical analyses were performed using R version 4.1.3

(https://www.r-project.org/) and its adequate packages. Statistical

significance was set at p ≤ 0.05.
Results

Analysis of the correlation between clinical
characteristics and CXCL12 in
breast cancer

To explore the complex role of CXCL12 in breast cancer, we

first evaluated the expression levels of CXCL12 in breast cancer

tissues and non-tumor tissues in the TCGA breast cancer cohort. It

was revealed that the mRNA levels of CXCL12 were markedly
Frontiers in Immunology 05
reduced in tumorous tissues (Figure 1A). Additionally, we further

validated the expression levels of CXCL12 within normal and

tumorous breast samples from two GEO datasets and found

similar results (Figures 1B, C). Next, we showed that CXCL12

expression level was lower in the aged population, implying the vital

implication during aging (Figure 1D). Besides, we found that

CXCL12 was highly expressed in breast cancer tissues from

patients with stage I, compared to those with stage II, III and IV

disease (Figure 1E). Among diverse PAM50 molecular subtypes,

CXCL12 was strikingly higher in the normal-like subtype, which is

only a small subset of breast cancers (Figure 1F). CXCL12

expression levels in the basal-like subtype were significantly lower

than those in luminal A/B and human epidermal growth receptor 2

(HER-2)-enriched tumors (Figure 1F). In addition, it is indicated

that CXCL12 expression was substantially associated with

aneuploidy and microsatellite instability (MSI) in breast cancers

(Supplementary Figures 1A, B). We further depicted the landscape
A B D E
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FIGURE 1

Correlation between clinical characteristics and CXCL12 in breast cancer. (A) Expression levels of CXCL12 mRNA of breast cancers in the TCGA
cohort. (B, C) Expression levels of CXCL12 mRNA of breast cancers of two GEO datasets. (D–F) Association between CXCL12 and age, tumor stage
and molecular subtype of breast cancers in the TCGA breast cancer cohort. (G) Kaplan-Meier survival analysis was performed on the relationship
between CXCL12 and OS using the METABRIC cohort. (H) Kaplan-Meier survival analysis was performed on the relationship between CXCL12 and
RFS using the METABRIC cohort. (I) Representative immunohistochemical staining of CXCL12 protein in breast cancer tissue microarrays. (J) Kaplan-
Meier survival analysis was performed on the relationship between CXCL12 and DFS using our validation cohort.
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of somatic mutations in two groups according to the median

expression level of CXCL12, and found more PIK3CA and CDH1,

but less TP53 mutations in the CXCL12-high group patients

(Supplementary Figure 1C). In order to figure out the correlation

between the CXCL12 expression and immune cell infiltration, we

performed CIBERSORT algorithm and found that CXCL12 was

positively related to the infiltration of memory resting CD4+ T cells,

gamma delta T cells, CD8+ T cells, and activated mast cells

(Supplementary Figure 1D).
Prognostic potential of CXCL12 in
breast cancer

Next, we aimed to elucidate the prognostic potential of CXCL12

expression in breast cancer, we first explored the Molecular

Taxonomy of Breast Cancer International Consortium

(METABRIC) cohort, which was the largest breast cancer cohort

so far. We found that high expression of CXCL12 was significantly

linked with superior OS and recurrence-free survival (RFS) of breast

cancers (Figures 1G, H). Considering different expression levels of

CXCL12 among diverse molecular subtypes of breast cancer, we

conducted the survival analyses among every subtype. We found

that high expression level of CXCL12 correlated with a better

survival among luminal A/B and normal-like subtype breast

cancer patients (Supplementary Figures 2A–C). However, patients

with high or low expression levels of CXCL12 among the basal-like

and HER2-enriched subtypes failed to exhibit a different outcome

(Supplementary Figures 2D, E). To further validate these results, we

performed IHC staining on the tissue microarray (TMA) and

survival analysis in independent breast cancer samples. As

expected, CXCL12 expression was cytoplasmic (Figure 1I). Our

validation analysis showed that higher CXCL12 expression level

correlated to superior disease-free survival (DFS) in breast

cancer (Figure 1J).
Combined snRNA-seq and spatial
transcriptome analysis reveal the
expression distribution of CXCL12 in
breast cancer

Given the prognostic implication of CXCL12 for breast cancer,

we further devoted to uncovering the expression pattern of CXCL12

in the complex cellular clusters and architecture. As reported before,

we performed snRNA-seq and sample-paired microarray-based

spatial transcriptome combined analyses (14). For the snRNA-

seq, we identified three epithelial lineages including mature

luminal cells, luminal progenitors and basal cell, and diverse

immune and stromal cell clusters including T cells, myeloid cells,

mast cells, cancer-associated fibroblasts (CAFs), endothelial cells

and pericytes (Figure 2A). Based a series of classical gene markers,

we annotated these cell clusters minutely (Figure 2B). Next, we

profiled the expression of CXCL12 by snRNA-seq via the uniform

manifold approximation and projection (UMAP) algorithm, and

showed that CXCL12 was mainly expressed in the CAFs
Frontiers in Immunology 06
(Figure 2C). Spatially, we mapped CXCL12 and CAFs in the

breast cancer tissue, and found overlapped regions in the spatial

capture locations (Figures 2D, E). Furthermore, we revealed that the

CXCL12high regions exhibited higher CAFs signature score which

was calculated by single-sample gene set enrichment analysis

(ssGSEA) (Figure 2F). Summarily, the combined sample-paired

snRNA-seq and spatial transcriptome analysis uncovers the

expression pattern of CXCL12 in the breast cancer tissue.
Construction of a CXCL12-related
prognostic signature in breast cancer

Next, we looked forward to further clarify the prognostic

potential of CXCL12-realted genes in breast cancer. Firstly, we

conducted WGCNA analysis and obtained eight gene modules

through average hierarchical clustering and dynamic tree clipping

(Figure 3A). To pick out the key modules, the relationship between

the modules and CXCL12 was studied. Among these eight gene

modules, the red module was strikingly correlated with the

expression of CXCL12 (Figure 3B). Thus, the red gene module

was selected as the most important module related to CXCL12 for

further analysis. It was shown that significant correlation existed

between the module membership and gene significance of the red

module (Figure 3C). Finally, 402 genes in the red module were

enrolled for downstream analyses (Supplementary Table 1).

Initially, the univariate Cox regression analysis revealed that 19

genes were linked with the breast cancer prognosis (Supplementary

Table 1). Subsequently, we carried out the LASSO analysis and

identified 11 prognostic signature genes, including VAT1L,

TMEM92, SDC1, RORB, PCSK9, NRN1, NACAD, JPH3, GJA1,

BMP8B and ADAMTS2 (Supplementary Figures 3A, B). According

to the coefficients and expression levels of these prognostic signature

genes, we calculated the risk score of each sample in the TCGA breast

cancer cohort, which was our training set. Then, we divided the breast

cancer patients among the TCGA training cohort into high- and low-

risk groups based on the median risk score, and found that the low-

risk group patients had a significantly superior outcome (Figures 3D–

F). To evaluate the performance of this risk model, we showed the

receiver operator characteristic (ROC) curves and found the area

under the ROC curve (AUC) value at 1, 2, 3, 5 years was 0.69, 0.73,

0.73, 0.7, respectively (Figure 3G). Moreover, we detected the

association between the risk score and clinical features such as the

clinical tumor stage (I-IV) and molecular subtype. It was showed that

the risk score was significantly higher in the stage III and IV patients,

implying this CXCL12-related risk score correlated to the progression

of breast cancer (Supplementary Figure 3A). Next, considering the

very limited number of patients in stage IV, we only investigated the

prognostic role of our risk score among stage I-III. We found patients

with a higher risk score had an evidently improved survival in stage II

and III, but not significantly in stage I (Supplementary Figures 3B–

D). Additionally, we exhibited this risk score was highest in the

HER2-enriched subtype patients, but lowest in the normal-like

subtype patients (Supplementary Figure 3E). Similarly, we decided

not to conduct the survival analysis among normal-like subtype

patients, because of the small number of cases. Elsewhere, we
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exhibited that patients with a higher risk score harbored an inferior

prognosis in luminal A/B and basal-like subtypes, expect for HER2-

enriched subtype (Supplementary Figures 3F-I).

In order to verify the reliability of the CXCL12-related

prognostic signature, we further performed validations in several

additional validation sets. Similarly, we grouped breast cancer

patients in the GSE19615 cohort by the median risk score, which

was coordinate with the training set, and also figured out that high-

risk group patients obtained an inferior prognosis (Figures 3H-J).

The AUC values of risk score in GSE19615 dataset were 0.85 for 1-

year, 0.75 for 2-year, 0.8 for 3-year and 0.82 for 5-year (Figure 3K).

Besides, breast cancer patients with a higher risk score in the

GSE21653 and GSE61304 datasets also showed significantly

shorter survival (Supplementary Figures 2C-J). Taken together,

we built and validated a novel CXCL12-related prognostic

signature for predicting the outcomes of breast cancers.
Functional and genomic features of
CXCL12-related risk score-based
classification

With the intention to delve the underpinning mechanisms

explaining the prognostic implication of this CXCL12-related risk
Frontiers in Immunology 07
score, we first committed to explore the functional and genomic

features. Gene set enrichment analysis (GSEA) analysis revealed

that breast cancer patients in the high-risk group showed a

considerably enrichment in myogenesis, TNFa signaling via NF-

kB as well as early and late estrogen response (Figure 4A,

Supplementary Figures 5A-C). However, E2F targets, G2M

checkpoint, MTORC1 signaling and MYC targets pathways were

enriched in the low-risk group patients (Figure 4A, Supplementary

Figures 5D, E). To obtain insights into the transcriptional

heterogeneity among breast cancer patients, we performed gene

set variation analysis (GSVA) algorithm to calculate 16 recurrent

cancer cell states which interacted with the TME to take shape

organized systems qualified to promote immune escape, metastasis

and drug resistance (12). We uncovered patients in the high-risk

group showed a higher signature score of cycling, hypoxia,

mesenchymal, partial epithelial-mesenchymal transition (pEMT)

and stress (Figure 4B). However, astrocyte (AC)-like and basal

modules were found to be enriched among low-risk group

patients (Figure 4B).

Besides, we depicted and compared the mutation features of

high- and low-risk group patients, and showed higher mutation

frequency of TP53, TTN and KMT2C in high-risk group, but lower

mutation frequency of CDH1 in the low-risk group (Figure 4C).

Considering that tumor mutation burden (TMB) was already well
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FIGURE 2

Combined analysis of snRNA-seq and spatial transcriptomics reveals the expression pattern of CXCL12 in breast cancer. (A) UMAP plot showing the
major cell subpopulations in breast cancer. (B) Bubble heatmap showing expression levels of selected signature genes in breast cancer. Dot size
indicates fraction of expressing cells, colored based on normalized expression levels. (C) UMAP plot showing the expression of CXCL12 in breast
cancer. (D) The spatial image reveals the expression distribution of CXCL12 in breast cancer. (E) Scaled deconvolution values for CAFs overlaid onto
tissue spots. (F) Boxplot showing the signature score of CAFs in CXCL12high and CXCL12low spots. Paired two-sided Wilcoxon test.
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known to predict the response to immunotherapy, we aimed to

compare the TMB levels between different risk groups. Obviously,

high-risk group patients exhibited a higher TMB level (Figure 4D).

In addition, the risk score was positively correlated with the TMB

level (Figure 4E). As expected, patients with higher TMB levels had

a relatively shorter survival, which was not enough significant

(Figure 4F). Therefore, we investigated whether the combination

of TMB and the CXCL12-related risk score could jointly stratify

breast cancer patients into groups with conspicuously distinct

prognoses. Consequently, our work supported that the joint

stratification of TMB and CXCL12-related risk score could be

used to categorize breast tumors into distinct outcomes (Figure 4G).
Frontiers in Immunology 08
Dissection of tumor immune
microenvironment features based on
CXCL12-related prognostic signature

Next, we aimed to uncover differences in the tumor immune

microenvironment (TIME) between two risk groups. Firstly, we

explored that there was a distinct association between

immunomodulators and the CXCL12-related risk score as

illustrated by the bar plot (Figure 5A). In particular, the risk score

showed significantly positive correlation with inhibitory immune

checkpoint markers HAVCR2 and PDCD1LG2, while negative

correlation with stimulatory immune checkpoint markers SELP
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FIGURE 3

Screening of CXCL12-related genes and construction as well as validation of a CXCL12-related prognostic signature in breast cancer. (A, B) Correlation
analysis of modules with traits yielded eight non-gray modules, with the red module considered to be the most relevant module for CXCL12. (C) Scatter
plot of the red module. (D) Kaplan-Meier survival analysis was performed on the relationship between the risk score and OS using the TCGA training
cohort. (E) The rank of risk scores in the TCGA training cohort. (F) Survival status in the TCGA training cohort. (G) Time-dependent ROC curve analysis of
the prognostic model (1, 2, 3, and 5 years) in the TCGA training cohort. (H) Kaplan-Meier survival analysis was performed on the relationship between the
risk score and OS using the GSE19615 validation cohort. (I) The rank of risk scores in the GSE19615 validation cohort. (J) Survival status in the GSE19615
validation cohort. (K) Time-dependent ROC curve analysis of the prognostic model (1-, 2-, 3-, and 5-year) in the GSE19615 validation cohort.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1188351
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gao et al. 10.3389/fimmu.2023.1188351
and TNFRSF14 (Figure 5A). Then, we performed CIBERSORT

algorithms to evaluate the enrichment level of diverse immune

cells (Figure 5B). Dramatically, the M2-like macrophage was

enriched in the high-risk group patients, and its enrichment score

was positively linked with the CXCL12-related risk score

(Figures 5B, C). On the other hand, we observed significantly

abundant infiltration of CD8+ T cells in the low-risk group

patients (Figures 5B, D). The activated natural killer (NK) cells

were also found to be enriched in the low-risk group, and negative

correlated with the risk score (Figures 5B, E).

Furthermore, determining to minutely explore distinct cellular

composition in the high- and low-risk patients at single-cell

resolution, we made full use of the public scRNA-seq with paired

bulk RNA-seq data of breast cancers (15). We integrated 24 samples

with paired bulk and scRNA-seq data and corrected the batch
Frontiers in Immunology 09
effects via mutual nearest neighbor (MNN) algorithm. By strict

quality control within every single sample, we depicted the breast

cancer cellular landscape at single-cell resolution by UMAP

(Figure 6A). Using canonical lineage markers, we annotated each

cell population as epithelial cells, T cells, B cells, plasma cells,

myeloid cells, endothelial cells, pericytes and CAFs (Figure 6B). For

instance, T cells were identified based on the expression of CD3D,

CD3E and IL7R (Figure 6B). Besides, we annotated the epithelial

cells due to the unique expression of EPCAM, KRT8 and KRT19

(Figure 6B). Obviously, CXCL12 was mainly expressed in the CAFs

and a subset of pericytes and endothelial cells (Figure 6C). We also

detected the expression of CXCR4, which was one of the main

receptors of CXCL12, was considerably higher in the immune cells

including T, B and myeloid cells (Supplementary Figure 6A). This

result implied the important role of CXCR4-CXCL12 axis in the
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FIGURE 4

Functional and genomic features of CXCL12-related risk score-based classification. (A) Bar plot showing different pathways enriched in high/low-risk
groups of breast cancer calculated by GSEA. (B) Boxplots showing the signature score of 16 cancer cell states in high/low-risk groups of breast
cancer scored by GSVA. Paired two-sided Wilcoxon test. (C) Waterfall plot represents the mutation distribution of the most frequently mutated
genes in high/low-risk groups. (D) Boxplot showing the levels of TMB in high/low-risk groups. Paired two-sided Wilcoxon test. (E) Scatter plot
showing the correlation between the risk score and TMB in the TCGA breast cancer cohort. (F) Kaplan-Meier survival analysis was performed on the
relationship between TMB and OS in the TCGA breast cancer cohort. (G) Kaplan-Meier survival analysis was performed on the relationship between
combination of TMB and the risk score and OS in the TCGA breast cancer cohort. The asterisks represent the statistical P value (*p<0.05; **p<0.01;
***p <.001; ****p < 0.0001; ns p>0.05).
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immune-stromal interaction of breast cancer. Besides, ACKR3 was

scarcely expressed, and ACKR1 was expressed in a subset of

endothelial cells in breast cancer (Supplementary Figures 6B, C).

Additionally, we classified these 24 samples into high- and low-

risk group based on the median value of the calculated risk score

(Figure 6D). High/low-risk group samples exhibited a distinct

UMAP plot, especial for the epithelial cells (Supplementary

Figures 6D, E). We observed distinct cellular composition in two

groups (Figure 6E). Particularly, the enrichment of the myeloid cells

which generally exerted an immunosuppressive role, was much

higher in the high-risk samples (Figure 6E). This finding was

coordinated with our above immune cell infiltration analysis by

CIBERSORT. To acquire deeper insights into the myeloid cells, we
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further re-clustered the myeloid cells, and identified monocytes,

macrophages, conventional dendritic cells (cDCs), and

plasmacytoid DCs (pDCs) based on multiple cell markers

(Figures 6F, G). It was shown that the composition of

macrophages was significantly higher in the high-risk group

patients (Figure 6H). Afterwards, we calculated the signature

score of the immunosuppressive M2-like macrophage in the

macrophage subset of myeloid cells. We revealed that the

immunosuppressive M2-like macrophage signature score was

markedly higher in the high-risk group patients, which was

anastomotic with the CIBERSORT results (Figure 6I). Above

results showed obvious differences of immune features between

two risk groups, and that the infiltration of M2-like macrophages
A
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FIGURE 5

Dissection of tumor immune microenvironment features based on the CXCL12-related prognostic signature. (A) Bar plot of the correlation between
immunomodulators and the risk score in the TCGA breast cancer cohort. (B) Boxplots showing the proportion of 22 immune cells in high/low-risk
groups of breast cancer estimated by CIBERSORT. Paired two-sided Wilcoxon test. (C–E) Scatter plots showing the correlation between the risk
score and the proportion of M2-like macrophages, CD8+ T cells and activated NK cells in the TCGA breast cancer cohort. The asterisks represent
the statistical P value (*p<0.05; **p<0.01; ***p <.001; ****p < 0.0001; ns p>0.05).
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might chiefly contribute to the poor prognosis of high-risk

breast cancers.
High- and low-risk group patients
differ in drug sensitivity and response
to immunotherapy

A significant implication of tumor heterogeneity is the truth that

distinct group of patients respond differently to treatments,

promoting treatment failure and recurrence. Aiming to figure out
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the relationship between the risk score and drug sensitivity, we

calculated the half maximal inhibitory concentration (IC50) value

of each drug in breast cancer patients in TCGA. The landscape of the

significance and association between the drug sensitivities and the

risk score as well as the candidate prognostic genes was detected

among two groups (Figure 7A). We found the IC50 values of

leflunomide, pevonedistat, sabutoclax and telomerase inhibitor IV

were positively correlated with the risk score (Figure 7A). Besides,

ADAMTS2 was conspicuously positively related to the IC50 of

leflunomide, indicating that leflunomide was more suitable for low-

risk group patients (Figure 7A). On the other hand, several drugs
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FIGURE 6

scRNA-seq analysis of the tumor immune microenvironment features based on the CXCL12-related prognostic signature. (A) UMAP plot showing the
major cell subpopulations in breast cancers. (B) Bubble heatmap showing expression levels of selected signature genes in breast cancers. Dot size
indicates fraction of expressing cells, colored based on normalized expression levels. (C) UMAP plot showing the expression of CXCL12 in breast
cancer. (D) The rank of risk scores based on the bulk RNA-seq expression in the GSE176078 cohort. (E) Relative proportions of diverse cell types
across high/low-risk tumors. (F) UMAP plot showing the diverse subsets of myeloid cells in breast cancers. (G) Bubble heatmap showing expression
levels of selected signature genes for myeloid cells in breast cancers. Dot size indicates fraction of expressing cells, colored based on normalized
expression levels. (H) Relative proportions of diverse subpopulations of myeloid cells across high/low-risk tumors. (I) Boxplot showing the M2-like
macrophage signature scores in the macrophage subset of high/low-risk tumors. Paired two-sided Wilcoxon test. The asterisks represent the
statistical P value (****p < 0.0001).
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such as BMS-536924, foretinib and PRT062607 were more sensitive

to patients with a higher risk score (Figure 7A). Furthermore, we

compared the IC50 levels of a series of FDA-approved drugs for

breast cancer between high- and low-risk group patients. It was

suggested that the IC50 levels of docetaxel, mitoxantrone, palbociclib,

vincristine, vinorelbine and fulvestrant were higher in the high-risk

group (Figure 7B, Supplementary Figures 7A–E). These results

revealed that breast cancer patients with a higher risk score might

be sensitive to such FDA-approved drugs. Considering the

association between the CXCL12-related risk score and

immunosuppressive checkpoint molecules, we committed to

explore the association between the risk score and response to

immunotherapy , which worked main ly by b lock ing

immunosuppressive checkpoint molecules and reactivating effector

T cells to enhance anti-tumor immunity. The patients with a higher

risk score exhibited a superior survival in the immunotherapy cohort

(Figure 7C). Taken together, the above findings revealed that the

CXCL12-related risk score could be a reliable tool for predicting drug

sensitivity and immunotherapy response in breast cancer patients.
Construction of a nomogram to forecast
survival for breast cancer

Univariate and multivariate Cox analyses revealed that age,

tumor stage, metastasis stage and the CXCL12-related risk score
Frontiers in Immunology 12
were independent prognostic factors for breast cancer patients

(Figures 8A, B). Next, we constructed a predictive nomogram to

ameliorate the prognosis efficacy of the CXCL12-related risk

score model and to provide a quantitative and visualization tool

for predicting 1-, 3-, and 5-year OS (Figure 8C). Subsequently,

the AUCs of the 1-, 3-, and 5-year OS for the nomogram were

0.827, 0.827, and 0.781, respectively (Figure 8D), which showed

prominently superior to the prognostic capacity of the CXCL12-

related risk score alone. Besides, we depicted the calibration

curves to assess the performance of the nomogram, which

indicated that the prediction curves of the model were close to

the ideal curve (Figure 8E). These results revealed that the

nomogram model exhibited a critical prediction efficacy for

breast cancer patients.
Discussion

Conducting a comprehensive study using multi-omics data

including bulk transcriptomics and genomics, scRNA-seq,

snRNA-seq and spatial transcriptomics, we systematically

unearthed the immunological implication and prognostic

significance of CXCL12 in breast cancer. Of note, we promoted

an efficacious prognostic signature based on CXCL12-related genes.

Our findings provided a novel accurate classification and

therapeutic strategy for breast cancer patients.
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FIGURE 7

High- and low-risk group patients differ in drug sensitivity and response to immunotherapy. (A) Bubble plot showing the relationship between drugs,
risk score, and model genes. (B) Boxplot showing the comparison of IC50 of docetaxel between high- and low-risk groups, and scatter plot showing
the correlation between the IC50 of drugs and the risk score in the TCGA breast cancer cohort. (C) Kaplan-Meier survival analysis was performed on
the relationship between the risk score and OS in the IMvigor210 immunotherapy cohort.
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As a member of CXC chemokines, CXCL12 is expressed

constitutively and ubiquitously. CXCL12 is traditionally identified

as a homeostatic chemokine, since it involves in several physiological

processes such as hematopoiesis, embryogenesis, angiogenesis,

neurogenesis, cardiogenesis, leukocyte homing, and by inducing

activation and migration of hematopoietic progenitor and stem

cells, endothelial cells, as well as most leukocytes (7). An

upregulated expression of CXCL12 in general or a specific increase

of one of the CXCL12 splice variants could be found in diverse

diseases (16). It reveals that CXCL12 shows diverse activities

depending on the disease and could also be classified as an

inflammatory chemokine. CXCL12 mainly interacts with the seven-

transmembrane receptors CXCR4 and ACKR3, also known as

chemokine receptor RDC-1 or CXCR7. Of late, it has been also

demonstrated that CXCL12 can interact with ACKR1. The binding of

CXCL12 to its receptors induces several intracellular signaling

pathways through divergent pathways initiating signals linked with

chemotaxis, cell survival and proliferation, as well as gene

transcription and increase of intracellular calcium (17). CXCL12 is

one of the most prominent chemokines fostering tumor cell survival

and proliferation in models of ovarian cancer (18). Analogously,

lower expression level of CXCL12 is associated with improved

survival and prolonged OS in esophagogastric, lung cancer and

pancreatic ductal adenocarcinoma (11, 19). Nevertheless, in breast

cancer, high expression of CXCL12 is related to a prolonged OS and
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DFS (10), probably owing to decreased metastasis of breast malignant

cells as found in the preclinical models (20). The effects of CXCL12

and CXCL12-mediated signaling pathways in breast cancer are

multifaceted and highly context-dependent, varying among

different molecular subtypes, stages of tumor progression, and the

microenvironmental context. S100A9-CXCL12 signaling activation

could enhance cancer progression and trigger the expansion and

accumulation of myeloid-derived suppressor cells (MDSCs),

producing a tumor-permissive microenvironment and endowing

resistance to ICB in BRCA1-mutant breast cancers (21). In breast

cancer mice models, olaparib could increase the antitumor efficacy of

chimeric antigen receptor modified T (CAR-T) cell therapy at least

partially through suppressing MDSC migration inhibiting the

CXCL12-CXCR4 axis (22).

The combination of spatial transcriptomics and snRNA-seq or

scRNA-seq serves as a pivotal component to link the pathological

phenomes of human tissues with molecular alterations, which defines

knowledge on spatiotemporal molecular medicine and in situ

intercellular molecular communications. Spatial transcriptomics

provides the molecular profiles and position information with high

throughput, through spatial barcode microarrays for unbiased

mapping of transcripts on the entire tissue section. We depicted

the CXCL12 expression pattern in the histological sections to reveal

the spatial location of CXCL12-expressing cells in breast cancer

tissues. Using gene markers from the snRNA-seq, we identified
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FIGURE 8

Establishment and assessment of the nomogram survival model. (A) Univariate analysis for the clinicopathologic characteristics and the risk score in
TCGA cohort. (B) Multivariate analysis for the clinicopathologic characteristics and the risk score in the TCGA breast cancer cohort. (C) A nomogram
was established to predict the prognostic of breast cancers. (D) Time-dependent ROC curve analysis of the nomogram (1-, 3-, and 5-year) in the
TCGA breast cancer cohort. (E) Calibration plots showing the probability of 1-, 3-, and 5-year OS in the TCGA breast cancer cohort (*p<0.05;
**p<0.01; ***p <.001; ****p < 0.0001; ns p>0.05).
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CXCL12 was mainly expressed in the CAFs on the spatial image.

However, our integrated scRNA-seq analysis further expanded the

notion that CXCL12 was also expressed in a subset of endothelial cells

and pericytes. Additionally, we speculated a significant role of

CXCR4-CXCL12 axis in breast cancer, because of the extremely

high expression of CXCR4 in immune cells, which represented the

important immune-stromal interaction. Recent single-cell

transcriptomics and functional co-culture experiments reported

that CD26+ normal fibroblasts transition into pro-tumorigenic

inflammatory CAFs which recruit myeloid cells through a

CXCL12-dependent manner and induce tumor cell invasion via

matrix-metalloproteinase activity in breast cancer (23).

A comprehensive interrogation of the prognostic implication of

CXCL12 in breast cancer is eagerly needed. We found out that the

expression level of CXCL12 was lower in breast cancer tissues

compared with that in normal breast tissues. The decreased

CXCL12 expression level was related to poor prognosis in the

public breast cancer dataset and our validation cohort. These

results revealed that absence of CXCL12 could be linked with the

development of breast cancer. By performing WGCNA analysis, we

identified the red module containing 402 genes was the most

correlated module of CXCL12. Subsequent univariate Cox

regression and LASSO regression analyses in breast cancer

samples of TCGA screened out 11 genes including VAT1L,

TMEM92, SDC1, RORB, PCSK9, NRN1, NACAD, JPH3, GJA1,

BMP8B and ADAMTS2 as the candidate genes for prognostic

model construction. Among these candidate prognostic genes,

some have been reported to exert an essential role in breast

cancer, but some of them were not studied deeply. For example,

TMEM92 was reported to act as an oncogene to support malignant

cells growth, invasiveness and motility through regulating the EMT

relative proteins in breast cancer (24). Moreover, SDC1 could

enhance triple-negative breast cancer (TNBC) progression by

activating the c-src/FAK signaling pathways (25). Additionally,

Abdelwahed et al. reported that PCSK9 secretion and its

interaction with LDL receptor were inhibited by pseurotin A,

which was identified as a novel suppressor of hormone-dependent

breast cancer progression and recurrence (26). After calculating the

risk score, breast cancer patients in the training set were divided

into high- and low-risk groups based on the median value of the risk

score. We found that patients in the high-risk group harbored a

considerable worse prognosis. Furthermore, we validated the

accuracy of this prognostic model in three additional breast

cancer datasets, which showed significant reliability.

Tumors are often considered to be heterogeneous. Our analysis

thus unraveled the differences between high/low-risk groups at

transcriptional and genetic levels and tried to solve the

underpinning mechanism for their distinct outcomes. Pathway

enrichment analysis revealed that the high-risk group was enriched

in myogenesis, TNFa signaling via NF-kB, estrogen response and

fatty acid metabolism, while the low-risk group was enriched in E2F

targets, G2M checkpoint, MTORC1 signaling and glycolysis.

Redeployment of modules typically expressed in other cellular and

developmental contexts seems to result in the majority of the

heterogeneity observed across cancer cells. We investigated the

recently defined cancer cell states which represents the basic
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underlying units of tumor transcriptional variability and found

different features in two risk groups. The high-risk group showed

higher signature scores of cycling, hypoxia, mesenchymal and pEMT,

but lower signature scores of AC, basal and stress. It has bene

reported that TMB acts as a numeric value or binarized feature can

only partially predict therapeutic response, since previous reports

identifying TMB as a predictor of ICB response for patients with

melanoma (27). Interestingly, we found that TMB was elevated in the

high-risk group and positively connected with the risk score.

Moreover, combination of TMB and the CXCL12-related risk score

exhibited an excellent performance on predicting patient survival.

Tumor occurrence and development are linked with not only the

genetic and epigenetic variation of tumor cells, but also the TME,

which mainly composed of tumor cells, stromal cells and infiltrated

immune cells. Tumor cells could survive and escape from immune

surveillance and drug interference under specific TME. The destiny of

macrophages relies on different environmental conditions, which fuel

polarization to any of the classically triggered pro-inflammatory M1

response or triggered M2 immune response. M1-polarized

macrophages could be induced by microbial products or pro-

inflammatory cytokines, and M2-polarized macrophages could be

triggered via interleukin (IL)-4 and IL-13. The classically activated

M1-like macrophages exert an important role in anti-bacterial and

anti-tumor immune responses, while the alternatively activated M2-

like macrophages mainly participate in would healing, angiogenesis

and immune suppression (28, 29). Previous studies have reported

that the enrichment of M2-like macrophages indicates an inferior

prognosis in breast cancer (30, 31). By CIBERSORT algorithm, we

found high-risk group patients had significantly higher infiltration

level of immunosuppressive M2-like macrophages, and lower

infiltration level of CD8+ T cells and activated NK cells which were

the main immune subsets exerting antitumor roles. The expression

levels of immune checkpoint genes and antitumor infiltrating

immune cells decreased in the high-risk group, implying holistic

damage to immune functions. Moreover, our integrated analysis at

single-cell resolution further demonstrated the risk score was

positively correlated with M2-like macrophages. Thus, the

elimination of M2 macrophages or their progenitors could

represent a potential therapeutic strategy for high-risk group patients.

Owing to the inter- and intra-tumor heterogeneity, patients

respond differently to treatments, contributing to treatment failure

and occurrence. Therefore, we screened out several potential anticancer

drugs for different group of breast cancers. IC50 of docetaxel was

positively correlated with the risk score, indicating docetaxel was more

sensitive to low-risk group patients. Immunotherapy has

revolutionized therapeutic strategies for cancers, but most patients

with solid neoplasms fail to respond to immunotherapy. In addition,

the response to immunotherapy was also investigated in two groups.

We found the high-risk group which showed higher level of TMB, had

a prolonged survival in the immunotherapy cohort. Nevertheless, the

exact function of above treatments needs to be further confirmed by

future prospective studies.

Although our CXCL12-related prognostic model exhibited

excellent performance in both training and validation cohorts,

there are still several limitations. First, the mechanisms of action

of CXCL12 in breast cancer are necessary to be validated in vivo and
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in vitro. Second, it might inevitably lead to some biases to some

extent, because the patients were retrospectively recruited. Thus,

additional validations in more multicenter randomized controlled

trials with high quality, large sample size, as well as adequate follow-

up are further required.
Conclusions

Here, we comprehensively interrogate the role of CXCL12 in

breast cancer by integrative multi-omics analyses. We then

constructed and validated a CXCL12-related prognostic signature.

There were significant differences between high- and low-risk

groups in terms of prognosis, clinical characteristics, enrichment

pathways, TMB, immune infiltration and treatment responses,

which could help us to better understand the immunological

implication and prognostic significance of CXCL12 in breast

cancer, and establish novel directions for further exploration

and research.
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SUPPLEMENTARY FIGURE 1

Correlation between CXCL12 and genetic as well as immunological features
in breast cancer. (A, B) Scatter plot showing the correlation between CXCL12

and aneuploidy and MSI score in TCGA cohort. (C) Waterfall plot represents
the mutation distribution of the most frequently mutated genes in CXCL12high

and CXCL12low patients. (D) Bubble plot showing the relationship between

CXCL12 and the proportion of 22 immune cells estimated by CIBERSORT in
the TCGA breast cancer cohort.

SUPPLEMENTARY FIGURE 2

Prognostic potential of CXCL12 in breast cancer. (A–E) Kaplan-Meier survival
analyses were performed on the relationship between CXCL12 and OS in the

luminal A/B, normal-like, basal-like and HER2-enriched subtypes of breast

cancer in the METABRIC cohort.

SUPPLEMENTARY FIGURE 3

Screening of CXCL12-related genes and validation of the CXCL12-related

prognostic signature in breast cancer. (A) Coefficient profiles in the LASSO
regression model. (B) Cross-validation for tuning parameter selection in the

LASSO regression. (D) Kaplan-Meier survival analysis was performed on the

relationship between the risk score and OS using the GSE21653 validation
cohort. (E) The rank of risk scores in the GSE21653 validation cohort. (F)
Survival status in the GSE21653 validation cohort. (G) Time-dependent ROC
curve analysis of the prognostic model (1-, 2-, 3-, and 5-year) in the

GSE21653 validation cohort. (H) Kaplan-Meier survival analysis was
performed on the relationship between the risk score and OS using the

GSE61304 validation cohort. (I) The rank of risk scores in the GSE61304
validation cohort. (J) Survival status in the GSE61304 validation cohort. (K)

Time-dependent ROC curve analysis of the prognostic model (1-, 2-, 3-, and

5-year) in the GSE61304 validation cohort.

SUPPLEMENTARY FIGURE 4

Correlation between clinical characteristics and the risk score in breast

cancer. (A) Risk scores of different tumor stages of breast cancer in the
TCGA breast cancer cohort. (B–D) Kaplan-Meier survival analyses were

performed on the relationship between the risk score and OS in the STAGE

I, II and III of breast cancer in the TCGA breast cancer cohort. (E) Risk scores of
different molecular subtypes of breast cancer in the TCGA breast cancer

cohort. (F–I) Kaplan-Meier survival analyses were performed on the
relationship between the risk score and OS in the luminal A/B, HER2-

enriched and basal-like subtypes of breast cancer in the TCGA breast
cancer cohort.

SUPPLEMENTARY FIGURE 5

Correlation between the risk score and pathway activities. (A–C). GSEA

analysis showing the up-regulated pathways in the high-risk group. (D, E).
GSEA analysis showing the up-regulated pathways in the low-risk group.

SUPPLEMENTARY FIGURE 6

scRNA-seq analysis of the tumor immune microenvironment features of

breast cancer based on the CXCL12-related prognostic signature. (A, B).
UMAP plot showing the major cell subpopulations of high- and low-risk

breast tumors. (C–E) UMAP plot showing the expression of CXCR4, ACKR3
and ACKR1 in breast tumors.

SUPPLEMENTARY FIGURE 7

High- and low-risk group patients differ in drug sensitivity. (A–E). Boxplots
showing the comparison of IC50 of drugs between high- and low-risk
groups, and scatter plots showing the correlation between the IC50 of

drugs and the risk score in the TCGA breast cancer cohort.
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