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Under the influence:
environmental factors
as modulators of
neuroinflammation through
the IL-10/IL-10R axis

Eryn Bugbee, Angela A. Wang and Jennifer L. Gommerman*

Department of Immunology, University of Toronto, Toronto, ON, Canada
The IL-10/IL-10 receptor (IL-10R) axis plays an important role in attenuating

neuroinflammation in animal models of Multiple Sclerosis (MS) and increased IL-

10 has been associated with a positive response to MS disease modifying therapy.

Because environmental factors play an important role in MS susceptibility and

disease course, identification of environmental factors that impact the IL-10/IL-

10R axis has therapeutic potential. In this review, we provide historical and

updated perspectives of how IL-10R signaling impacts neuroinflammation,

discuss environmental factors and intestinal microbes with known impacts on

the IL-10/IL-10R axis, and provide a hypothetical model for how B cells, via their

production of IL-10, may be important in conveying environmental “information”

to the inflamed central nervous system.
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1 The IL-10/IL-10R axis

In the context of disease, IL-10 and its cognate receptor IL-10R have been implicated in

mitigating autoreactive T cell responses. One such context is multiple sclerosis (MS), a

chronic, inflammatory disease of the central nervous system (CNS) that affects over 2

million people worldwide (1). The disease exhibits heterogeneous clinical presentation and

is characterized by the infiltration of lymphocytes into the brain and spinal cord, resulting

in demyelination and axonal loss (2). The animal model of MS, Experimental Autoimmune

Encephalomyelitis (EAE), has been pivotal to our understanding of how such autoreactive

T cells are primed, infiltrate the CNS and set up an inflammatory milieu that promotes

demyelinating lesions (3). Early studies showed that myelin-specific Th2 cells could inhibit

EAE via their production of Th2-associated cytokines (4–6). Subsequent work using IL-10

knockout and transgenic overexpression revealed that IL-10 is a key regulatory cytokine

required to regulate EAE (7–9). However, the use of therapeutic IL-10 administration has
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yieldedinconsistent outcomes in both EAE and MS (10–13). To

contextualize these data, it is important to understand the

underlying mechanism of IL-10 mediated anti-inflammatory

processes and environmental factors that can modulate levels or

activity of IL-10.
1.1 Historical significance of the
IL-10/IL-10R axis

In 1989, Fiorentino and colleagues discovered a cytokine

produced by Th2 cells acting directly on Th1 cells to inhibit their

function in vitro (14). At the time, they named the secreted factor

“cytokine synthesis inhibitory factor (CSIF)”, but it is now widely

known as interleukin-10 (IL-10) (15, 16). Since this discovery, many

innate immune cells (macrophages, monocytes, dendritic cells

(DCs), and neutrophils) and adaptive immune cells (CD4+/CD8+

T cells and B cells) have been identified as producers of IL-10 (17).

Early evidence supported the concept that IL-10 has an inhibitory

effect on T effector cells via direct and indirect mechanisms (16, 18,

19). For example, IL-10 was shown to prevent T cell proliferation

and cytokine production in an indirect manner by hampering the

maturation and T cell stimulation capabilities of DCs (20–22), or by

downregulating MHC class II expression on monocytes (23–26).

On the other hand, IL-10 was also found to act directly on CD4+ T

cells by inducing their anergy (27), suppressing the expansion of

pathogenic Th17 cells (28, 29) and promoting the regulatory

activity of CD4+ Foxp3+ regulatory T cells (Tregs) (30, 31) and

CD4+ T regulatory type 1 (TR1) cells (32).
1.2 IL-10 producing cells

While T cells and myeloid cells collectively constitute a major

cellular source of IL-10 (16, 33, 34), B cells also restrict

inflammation via IL-10 in the context of neuroinflammation (as

well as other autoimmune settings). Early work by Fillatreau and

Anderton found that mice with B cell specific IL-10 deficiency fail to

recover from EAE, and restoring this population with an adoptive

transfer of IL-10+ B cells leads to disease recovery (35). Further

studies have shown that regulatory B cell populations including

Bregs, plasma cells (PCs) and plasmablasts can all limit the severity

of EAE in an IL-10 dependent manner (36–39). The underlying

regulatory mechanisms of B cell derived IL-10 are still being

explored but it has been shown using human peripheral blood

mononuclear cells (PBMCs) that plasmablast-derived IL-10 can

hinder the ability of DCs to generate autoreactive T cells (39).

Alternatively, IL-10+ Bregs in a murine model of arthritis have been

shown to contribute to the induction of FoxP3+ Tregs and

suppression of Th1/Th17 cells in vivo (37). Related human

studies have found that MS patient B cells exhibit deficient IL-10

production following ex vivo stimulation (40). Following anti-CD20

induced MS remission, B cells that reconstitute the periphery regain

their ability to produce IL-10 (41). Thus, B cell derived IL-10 plays a
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key role in regulating autoimmune inflammation and may

contribute to the mechanism of action of anti-CD20 therapy in MS.
1.3 Downstream signaling through
IL-10/IL-10R

Il-10 signals through the IL-10 receptor (IL-10R), a hetero-

tetramer consisting of two alpha and two beta subunits (15). While

the IL-10Rb subunit can bind to other members of the IL-10 super

family including IL-22 and IL-26 (34), the IL-10Ra subunit is

specific to IL-10 (15). IL-10Ra is expressed at a basal level on most

hematopoietic cells. However, certain immune populations have

higher expression levels of IL-10Ra, especially upon immune

activation (15). For instance, antigen-presenting cells (APCs) and

other myeloid cells such as microglia have been shown to express

high levels of IL-10Ra from development onwards (15, 42, 43).

Conversely, naive CD4+ T-cells have low levels of steady state IL-

10Ra expression that increases upon TCR stimulation both on

multiple T-cells subsets in vivo and in vitro (28, 29).

Upon IL-10 binding, a cascade of intracellular signaling events

occurs (Figure 1). This leads to the activation of tyrosine kinases Jak1

and Tyk2, which then reciprocally phosphorylate tyrosine residues of

the IL-10Ra (15, 44). Receptor phosphorylation leads to the

recruitment and phosphorylation of signal transducer and activator

of transcription 3 (STAT3), which is then activated and subsequently

translocates to the nucleus (45). In the nucleus STAT3 binds to

STAT3-binding elements and activates the transcription of target

genes, one of which is Suppressor Of Cytokine Signaling 3 (SOCS3).

SOCS3 inhibits the transcription of pro-inflammatory cytokines such

as IL-6 and TNFa. SOCS3 also inhibits IL-10 transcription, resulting
in a negative feedback loop downstream of IL-10R signaling (15).

Other STAT3 target genes include Bcl3, a known inhibitor of the NF-

kb pathway that can suppress the production of pro-inflammatory

cytokines (46), and Ddit4, anmTOR inhibitor that has been shown to

decrease the inflammatory activities of macrophages (47).
1.4 Importance of IL-10R signaling during
homeostasis – a focus on the gut

Much of the current understanding of the impact of IL-10R

signaling has been elucidated in the context of gastrointestinal

diseases such as inflammatory bowel disease (IBD), where the

constant interaction between immune cells and the gut

microbiota demands strict regulation within the local intestinal

milieu. In humans, mutations to the IL10RA and IL10RB genes have

both been strongly associated with infant colitis associated with

defects in downregulation of proinflammatory cytokine secretion by

monocytes (48–50). Others have also found that impaired IL-10R

signaling in adult IBD patients is associated with increased T cell

polarization towards a Th17 lineage, decreased IL-10-induced

STAT3 phosphorylation, and increased pro-inflammatory

cytokine expression in monocytes following in vitro stimulation

(51–53).
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In mice, deletion of IL-10Rb results in spontaneous colitis (54)

and deletion of IL-10Ra specifically in macrophages increases

susceptibility to chemically induced colitis (55). In addition, IL-

10R signaling in Foxp3+ Tregs is critical for suppressing pathogenic

Th17 cells and IL-10R signaling in Th17 cells directly suppresses

their expansion (29, 32). Beyond T cells, IL-10Ra deletion in

monocytes/macrophages leads to an increase in IL-17 and IL-6

proinflammatory cytokine levels in serum, the production of nitric

oxide (NO) and reactive oxygen species (ROS) by lamina propria

macrophages, and an overall proinflammatory gene expression

signature in intestinal macrophages (56, 57). Similarly, anti-IL-

10Ra antibody blockade increases the expression of pro-

inflammatory and STAT1-inducible genes such as Cxcl9 and

Cxcl11 in colonic macrophages (58). Elimination of IL-10R in

CD11c+ cells, including DCs, is associated with an amplified

immune response to bacterial and fungal pathogens as well as

allergens in the skin (55, 59, 60).

Taken together, IL-10R signaling has clear immunoregulatory

roles in restraining inflammation in the gut – an environment that

is constantly exposed to microbial antigens.
2 IL-10/IL-10R axis in MS and EAE:
some paradoxes

The IL-10/IL-10R axis has been implicated as a key mechanism

for constraining inflammation during MS/EAE. Several EAE studies

have found that both global and cell specific IL-10 knockout leads to

worsened disease, yet therapeutic administration of IL-10 has had
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mixed results in EAE andMS (10–13). In this section we explore the

pro- and anti-inflammatory effects of IL-10 during MS/EAE and the

contexts that separate potentially helpful versus harmful impacts of

this cytokine.
2.1 Anti-inflammatory effects of IL-10/IL-
10R signaling in EAE and MS

In EAE, IL-10 deficiency leads to increased disease incidence

and severity (8), and mice with APCs that over-express IL-10 driven

by a class II MHC promoter are strongly resistant to the

development of EAE (7, 8). Moreover, several studies have found

that serum IL-10 levels in MS patients are decreased prior to and

during disease relapses, but are increased during remission (61–67).

Profiling of CCR6+ myelin-reactive CD4+ T cells from MS patients

also found that these cells had decreased IL-10 production in

comparison to healthy control T cells (68). Furthermore,

treatment with first-line disease-modifying therapies DMTs such

as glatiramer acetate (GA) and interferon-beta (IFNb) is associated
with increased IL-10 production by PBMCs isolated from EAEmice

and MS patients (61, 62, 69, 70). Of note, treatment with

fingolimod, GA, and IFNb also increases the proportion of IL-10

producing B cells in MS patients (71–73).

Several IL-10 producing cells have been implicated in the

regulation of MS and EAE including regulatory T cells (Tregs)

and B cells (Bregs) (30, 35, 38). A higher frequency of IL-10

producing Tregs in the CNS during EAE has been shown to

correlate with disease recovery and depletion of these cells leads
FIGURE 1

The IL-10/IL-10R Signaling pathway. IL-10 binding to its heterodimeric receptor leads to the phosphorylation of STAT3 by JAK1 and Tyk2. Upon
phosphorylation, STAT3 translocates to the nucleus where it binds to STAT3-binding elements and activates the transcription of target genes. STAT3 is
responsible for activating the transcription of several IL-10 responsive genes including SOCS3, Bcl3, and Ddit4. Tyk2, Tyrosine kinase 2; JAK1, Janus kinase 1;
STAT3, Signal transducer and activator of transcription 3; SOCS3, Suppressor of cytokine signaling 3; DDIT4, DNA damage-inducible transcript 4.
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to an exacerbation of disease (74). Moreover, during EAE the loss

of Breg derived IL-10 prevents disease recovery and leads to a

Th1-dominant response (35). A link between IL-10 producing B

cells and Foxp3+ Tregs has also been established during EAE. B

cell deficient mice were shown to have lower levels of both IL-10

and Foxp3 expression in the spinal cord during EAE, suggesting

that B cells may play a role in promoting Foxp3+ Treg

accumulation in the CNS through an IL-10 dependent manner

(75). Furthermore, plasma cells- the terminally-differentiated B

cell typically associated with antibody production, have also been

shown to contribute to protection against EAE through the

production of IL-10 (38, 39).

Despite the clear role for IL-10 in limiting the severity of EAE

(7, 8), and its association with reduced white matter lesions and an

improved Expanded Disability Status Scale (EDSS) score in MS (63,

76), relatively less is known about the impact of its cognate receptor

IL-10Ra in regulating neuroinflammation. CD4+ T cells derived

from the blood of MS patients are relatively hyporesponsive to the

immunosuppressive function of IL-10 in vitro compared to healthy

controls, and this hyporesponsiveness is associated with impaired

STAT3 phosphorylation (77), suggesting defects in IL-10Ra
signaling. In addition, one allele of the IL-10Ra S138G

polymorphism, which encodes for a loss-of-function allele for IL-

10-induced STAT1 and STAT3 activation (78) is associated with

MS disease susceptibility and severity in Tunisians (79), and two

mutant alleles confers an increased risk for MS specifically in men

who are normally less susceptible than women in developing

relapsing-remitting MS (79). The same polymorphism has been

linked to a higher risk of ulcerative colitis (80) and systemic lupus

erythematosus (81, 82).
2.2 Pro-inflammatory effects of IL-10/IL-
10R signaling in EAE and MS

While the bulk of research indicates that IL-10/IL-10R signaling

contributes to the dampening of EAE/MS, some studies suggest

otherwise. For example, IL-10 mRNA levels in serum are increased

in MS patients in comparison to healthy controls (83–85), and in

PBMCs IL10 mRNA levels are increased 2 weeks post-MSrelapse

but subsequently return back to baseline after 4 weeks (64).

However, it is unclear whether these increased levels of IL-10

mRNA/protein are involved in promoting pro-inflammatory

conditions or represent a counter-regulatory mechanism that is

triggered by neuroinflammation.

In two separate studies examining MOG35-55 EAE, IL-10ra
deletion specifically in T cells reduced disease severity (86, 87). Liu

et al. found that T cell specific IL10Ra deletion led to increased

proportions of Tregs during the early phase of disease and an

overall decrease in T cell accumulation during the disease course in

the CNS and secondary lymphoid tissue (86). Using competitive

bone marrow chimeras, T effector cells expressing IL10Ra exhibited

a survival advantage over Il10Ra-deficient T effectors cells (86). In

addition, Yogev et al. found that although CD4+ T cells are a

relatively minor source of IL-10, T cell-derived IL-10 worsens EAE
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by acting on Th1 cells (and Th17 cells to a lesser extent) to promote

their survival and proliferation in the CNS (87).

These results may explain why investigations into the

therapeutic delivery of IL-10 have yielded mixed findings (10–13).

As different immune populations produce IL-10 at different time

points during MS/EAE, therapeutic efficacy could be dictated by the

dose, delivery method, and timing.
3 Environmental factors that influence
IL-10/IL-10R during MS/EAE

A person’s sex, age, diet, exercise, prior infections, geographic

location, antibiotic use, exposure to pollution and early life factors

(breastfeeding, mode of delivery) can all influence the composition

of one’s microbiome (88). As such, the microbiome is a window into

environmental exposures and accordingly has been studied for its

potential role as a risk factor for MS incidence and/or severity (89,

90). However, there are also other environmental factors that can

exert a direct impact on the immune system and by extension

potentially on MS pathogenesis, independent of the microbiome.

For example EBV infection and Vitamin D have been shown to act

directly on immune cells in vitro, altering their functionality. In this

section, we review how environmental factors can impact the IL-10/

IL-10R axis in MS and EAE via the microbiome (section 3.1-3.2) or

potentially independent of the microbiome (section 3.3-3.4)
3.1 The intestinal microbiome

The intestinal microbiome has a profound impact on host

immunity even at distal sites such as the CNS (90, 91). Several

human studies have revealed differences in the composition of the

microbiome comparing patients with MS and healthy controls, the

most common alterations being Akkermansia, Acinetobacter, and

Parabacteriodes taxa (92–95). Shifts in microbiome composition in

MS patients have also been associated with changes in

immunomodulatory metabolites (96). However, causal

associations between microbiome alterations in disease

susceptibility or severity are difficult to establish in the real world.

To address this, EAE models involving colonization of germ free or

antibiotic treated mice via fecal microbial transplant (FMT) can be

used to gain fundamental understanding into causality (94, 95).

Evidence that host commensal microbial communities

influence IL-10 levels and subsequently CNS autoimmunity was

first derived from antibiotic treatment studies. In these studies, oral

administration of an antibiotic cocktail protected mice against the

onset and severity of EAE. This phenomenon was associated with

significantly increased levels of IL-10 secretion from cells isolated

from secondary lymphoid tissue, specifically, IL-10 producing

Foxp3+ Tregs (97, 98). Subsequently, Bacteriodes fragilis, a

commensal bacteria that produces polysaccharide A (PSA), was

found to be responsible for protection against EAE by triggering the

activation of IL-10+ Tregs through the Toll-like receptor 2 pathway

(99–102). Indeed, mice treated with oral PSA that were lacking IL-
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10 had similar clinical disease as wild-type mice, indicating that

PSA and Treg mediated protection against disease requires IL-10

(99). Other intestinal commensal microbes have been implicated for

their disease altering properties in EAE. For example, colonization

with Prevotella histicola reduces EAE severity and is associated with

increased IL-10 production by DCs (103). Cekanaviciute and

colleagues identified a reduction in the bacterial genera

Parabacteroides distasonis in MS patients and showed that P.

distasonis exposure increases the differentiation of IL-10+ Tregs

from healthy donor PBMCs in vitro. Moreover, in vivo

monoclonization of germ free (GF) mice with P. distasonis

significantly increased the amount of IL-10+ CD4+ T cells in the

spleen and mesenteric lymph nodes (94). In two distinct models of

EAE, Berer et al. found that GF mice colonized with fecal material

from MS-affected twins exhibited increased incidence and severity

of disease compared to mice colonized with fecal material from

non-MS twins. The relative protection afforded by the non-MS twin

FMT was abrogated by administration of an anti-IL-10 neutralizing

antibody, indicating that the FMT influenced CNS autoimmunity in

an IL-10 dependent manner. Moreover, the mice given the MS FMT

had a marked absence of IL-10+ Treg induction in the mesenteric

lymph nodes (95).

Several studies have indicated that both the prophylactic and

therapeutic administration of probiotics can reduce the severity of

MOG35-55 and PLP139-151 EAE (104–106). Probiotic treatment was

shown to suppress Th17 cell differentiation, promote the expansion

of IL-10 producing T cells in the mesenteric lymph nodes and the

CNS, and increase systemic IL-10 levels in serum (104). Two

separate MS patient studies have also shown that administration

of probiotics can increase the relative frequency of IL-10+ Tregs and

levels of IL-10 in serum from the blood (107, 108). Furthermore,

administration of a probiotic containing Lactobacillus ,

Bifidobacterium and Streptococcus was found to increase the gene

expression of IL-10RA on monocytes derived from MS patient

PBMCs (108).
3.2 Diet

The human diet plays a key role in influencing the gut

microbiome, thus identifying dietary factors that lie upstream of

the microbiome provides insight into potential therapeutic

interventions for MS patients. A link between diet and

autoimmune neuroinflammation has been demonstrated. For

example, a cellulose rich diet which promotes the accumulation

of Lactobacillaceae in the intestine, alleviates EAE in conjunction

with an increase in IL-10+ CD4+ T cells (109). The amino acid

tryptophan, which is obtained through our diet, can induce

regulatory IL-10 producing T cells both in vitro and in vivo

during EAE (110, 111).

Short-chain fatty acids (SCFAs) including acetate, butyrate,

and proprionate are produced by the colon during the bacterial

fermentation of dietary fibers. Progressive MS patients have been

shown to have lower levels of SCFAs in the blood. Of note, oral

SCFA administration to mice increases the number of IL-10+ T

cells in the CNS during EAE (112). Furthermore, SCFA treated
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glial cells induce the production of IL-10 by T cells in vitro (112).

In the context of EAE, administration of the SCFA propionate

exands CNS-resident Tregs in an IL-10R dependent mechanism

that further leads to an increase in IL-10 production by Tregs

(113). In MS, increases in Enterobacteriaceae have been shown to

be accompanied by reduced SCFA levels, and these alterations

were more pronounced in patients with a higher burden of

disease (114).

Other dietary modulations have been shown to improve MS

and EAE, although a direct link to IL10R signaling was

not investigated. In a small cohort of MS patients, a high-

vegetable/low-protein diet increased the abundance of fecal

Lachnospiraceae that correlated with a decrease in IL-17+ CD4+

T cells and an increase in IL-10+CD14+ monocytes in the blood

as well as a reduction in relapse rate compared to “western

diet” MS patients (115). Administration of a nutritional

supplementation of non-fermentable fiber in early adult life,

which promotes increases in Helicobacter, Enterococcus,

Desulfovibrio, Parabacteroides, Pseudoflavonifractor and

Osillibacter and the production of cecal long chain fatty acids

was shown to reduce the incidence of spontaneous EAE. Authors

did not specifically report on IL-10 production but did observe

an increase in T cell-derived IL-4 and IL-5 (116). Moreover, an

isoflavone diet has also been shown to protect against EAE, and

the isoflavone-free diet promoted a microbiome that was more

reminiscent of an MS microbiome (117). Dietary guar gum has

also been shown to attenuate EAE, notably independent of SCFA,

and these beneficial effects are primarily due to reduced T cell

priming and migration to the CNS (118). Lastly, intermittent

fasting in the context of EAE increased the abundance of

Lactobacillaceae , Bacteroidaceae , and Prevotellaceae in

conjunction with a reduction in intestinal IL-17-producing T

cells and improved EAE outcomes (119). In these dietary

modulations, it will be of interest to examine their impact on

IL-10 production and IL-10R signaling.
3.3 Vitamin D

During the cooler months, latitude is the strongest determinant

for the amount of vitamin D produced by UVB radiation, thus the

amount of vitamin D absorbed by skin drastically decreases as

latitude increases (120). A meta-analysis published in 2011 found a

significant increase in MS prevalence at higher latitudes (121).

Similarly, individuals with a genetic predisposition to vitamin D

deficiency are at higher risk of developing MS (122, 123). The

expression of the MS risk gene HLA-DRB1*1501 is regulated by a

vitamin D responsive promoter (124), and the level of serum 1,25

(OH)2D3 in MS patients is inversely correlated with disease

progression (125, 126), new CNS lesion formation (127), and risk

of relapse (128, 129).

There are direct impacts of Vitamin D on the IL-10/IL-10R

axis in the context of MS and EAE. Vitamin D supplementation

trials in MS patient cohorts have shown that high dose vitamin D

elevates the proportion of IL-10 producing CD4+ T cells (130),

increases levels of cell proliferation (131), and leads to a global
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increase in IL-10 levels in the serum of relapsing remitting MS

patients (132–134). However, the effect of 1,25(OH)2D3 on T cells

may be indirectly linked to its influence on other immune cell

subsets as since 1,25(OH)2D3 was found to dampen the

differentiation and maturation of APCs resulting in increased

production of IL-10 concomitant with a reduced generation of

alloreactive T cells (135, 136). Although less studied in the context

of CNS autoimmunity, 1,25(OH)2D3 also influences B cells and

has been linked to enhanced IL-10 production by activated human

B cells (137).

In the context of EAE, continual administration of 1,25(OH)

2D3 inhibits clinical disease in both prophylactic and therapeutic

modalities (138–141). Similar to in vitro experiments, vitamin

D3 supplementation led to an increased production of IL-10 by

spleen and lymph node CD4+ T cells and a skew towards Treg

and Th2 phenotypes (140). Furthermore, adoptive transfer of

DCs cultured with 1,25(OH)2D3 into EAE mice dampened

disease severity, inhibited the infiltration of Th1/Th17 immune

cells into the CNS while increasing the representation of IL-10+

CD4+ T cells (142). A causal relationship between vitamin D

and the IL-10/IL-10R axis has been demonstrated: Specifically,

unlike IL-10 sufficient littermates, vitamin D supplementation

protects neither IL-10 nor IL-10Rb deficient mice from

developing severe EAE. Since reciprocal bone marrow chimera

experiments revealed that IL-10 derived from both the

radiosensitive and radioresistant cell compartments was

necessary for protection against EAE, the precise IL-10

producing cell type in this study remains unidentified, and the

nature of the IL-10 receiving cell type was not determined (141).

Further research into IL-10 sensing cells following vitamin D

supplementation will be an important next step in elucidating its

benefits for MS patients.

In summary, Vitamin D has a direct impact on the IL-10/IL-

10R axis in MS and EAE. Vitamin D may also have an indirect

impact on the IL-10/IL-10R axis via the microbiome (143), which in

turn can impact neuroinflammation, however this is not

well-studied.
3.4 EBV

Epstein-Barr Virus (EBV) is a common human gammaherpesvirus

that persists in more than 90% of the population worldwide (144).

Recently, a longitudinal analysis provided strong causal evidence that

EBV infection is a necessary co-factor for the development ofMS (145).

Previous and ongoing research has led to the development of several

hypotheses on how EBV confers a greater risk of MS susceptibility

including molecular mimicry and the generation of pro-

encephalitogenic B cells (146). Interestingly, EBV encodes a viral

homolog of IL-10 (vIL-10) (also known as BCRF1), which has

approximately 80% structural similarity to its human equivalent

(147). However, vIL-10 acts as a selective agonist that binds with

lower affinity to the IL-10R (148). Despite binding to the IL-10R, vIL-

10 does not influence DC functioning to the same extent as

endogenous IL-10 – it is a poor inducer of STAT3 phosphorylation

and is less effective at dampening the production of pro-inflammatory
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cytokines following LPS treatment (149). In agreement, Jog et al. found

that vIL-10 binding to IL-10R interfered with hIL-10 induced STAT3

phosphorylation, thus indirectly inhibiting the ability for IL-10 to

induce anti-inflammatory cytokine production (150). Although the

existing literature on vIL-10 andMS is limited, we do know that vIL-10

protects EBV infected B cells against detection and elimination by

dampening the secretion of antiviral cytokines and by preventing NK

cell mediated killing (151). This may allow for pro-inflammatory EBV+

B cells to persist and contribute to CNS autoimmunity. Exploring how

vIL-10 influences B cell populations during MSmay allow us to further

understand how EBV influences MS disease.
4 B cells as a bridge between the
environment and IL-10R signaling
in MS/EAE

Since the first description of IL-10+ B cells, a heterogenous

collection of Bregs have been described in various disease contexts,

and the specific signals controlling their development- several

which can be influenced by the environment, are now of

significant interest (152). For example, in rheumatoid arthritis

products from the gut microbiota drive the production of IL-1b
and IL-6 which in turn promotes the differentiation of IL-10+ Bregs

(153). Butyrate supplementation, a metabolite produced by the

microbiota, promotes an increased frequency of IL-10+ Bregs in

rheumatoid arthritis patients, and mice lacking IL-10 producing B

cells do not experience the same disease suppression following

butyrate treatment (154). Other studies have shown similar

expansions of IL-10+ B cells in response to other microbiota-

derived metabolites including acetate and pentanoate (155, 156),

indicating the role of microbial communities in shaping IL-10 levels

by modulating the B cell population.

Following B cell receptor engagement, B cells develop into

plasma cells whose “day job” is to produce antibodies to protect

the host against re-infection. However, plasma cells can also provide

important regulatory functions, even at distal locations, through

production of anti-inflammatory molecules such as IL-10. In the

context of the CNS, complementary mouse and human studies have

verified that gut-derived IgA+ plasma cells can migrate to the brain

meninges at homeostasis (157). Studies in MS (158) and EAE (38)

also detected microbiota-reactive IgA+ plasma cells originating

from the gut in the inflamed CNS, and adoptive transfer of IgA+

plasma cells isolated from the small intestine can reduce EAE

severity in an IL-10 dependent manner.

Of note, deletion of IL-10 production specifically in plasma cells

results in exacerbated EAE, and adoptive transfer of IL-10

competent plasma cells into IL-10-/- EAE mice is sufficient to

attenuate disease (38). This means that plasma cell derived IL-10

is both necessary and sufficient to dampen EAE, although it is

highly likely that other IL-10 producing cells amplify these initial

regulatory steps. With these data in mind, we propose a model

whereby environmental factors operate through the gut microbiota

promote IL-10+ B cell populations with the capacity to directly or

indirectly regulate CNS autoimmunity during MS and EAE
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(Figure 2). It is likely that the recipients of IL-10 in this model are

IL-10Ra expressing regulatory immune cell populations such as

microglia, DCs, and regulatory T cell subsets. In support of this,

there is evidence that IL-10+ Bregs are important for the

differentiation of Tregs during EAE (75, 159, 160).
5 Conclusions

While it has been shown that lower IL-10 levels have a

negative impact on MS/EAE, and that environmental exposures

impact IL-10 levels, our understanding of what IL-10R expressing

cell types(s) respond to IL-10 to alter neuroinflammation, and

the environmental factors that impact IL-10R signals, is less

comprehensive. In this vein, it is critical to not only understand

the specific environmental contexts that influence IL-10

production, but also what cell types receive IL-10. The conflicting

evidence between IL-10 knockout studies and cell specific IL-10R

knockout studies in EAE indicate that there is more to be

understood about IL-10R signaling during CNS autoimmunity.

Exploring how these IL-10R-expressing cell types respond to

environmental stimuli reframes the focus from the IL-10

producing cell type(s) to the cell-specific downstream effects of

IL-10R signaling, and how environmental factors impacts these

signals. Furthermore, we propose that B cells are the critical link
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between environmental stimuli and IL-10R signaling during MS/

EAE. Identifying environmental factors that modulate the IL-10/IL-

10R axis has the potential to provide new insights into therapeutic

intervention for MS patients.
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FIGURE 2

Environmental influences on IL-10-producing B cells. (A) Dietary patterns influence gut microbiota composition. A healthy microbiota and/or its
associated diet-derived metabolites can promote the development of IL-10 producing commensal-reactive B cells and IgA+ plasma cells. (B) UV
exposure from sunlight, which is influenced by geographical location, changes Vitamin D availability that upon metabolism promotes IL-10
production by lymphocytes. (C) EBV latently infected B cells produce viral homologs of IL-10 that compete with endogenous IL-10 for IL10R
binding. Viral IL-10 homologues are less efficient than endogenous IL-10 at triggering downstream signaling.
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99. Ochoa-Repáraz J, Mielcarz DW, Wang Y, Begum-Haque S, Dasgupta S, Kasper
DL, et al. A polysaccharide from the human commensal Bacteroides fragilis protects
against CNS demyelinating disease. Mucosal Immunol (2010) 3(5):487–95. doi:
10.1038/mi.2010.29
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