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and T cell immune responses to
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conventional sow model
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Rotavirus A (RVA) causes ~200,000 diarrheal deaths annually in children <5yrs,

mostly in low- and middle-income countries. Risk factors include nutritional

status, social factors, breastfeeding status, and immunodeficiency. We evaluated

the effects of vitamin A (VA) deficiency/VA supplementation and RVA exposure

(anamnestic) on innate and T cell immune responses in RVA seropositive

pregnant and lactating sows and passive protection of their piglets post-RVA

challenge. Sows were fed VA deficient (VAD) or sufficient (VAS) diets starting at

gestation day (GD)30. A subset of VAD sows received VA supplementation from

GD|76 (30,000IU/day, VAD+VA). Sows (6 groups) were inoculated with porcine

RVA G5P[7] (OSU strain) or Minimal Essential Medium (mock) at GD~90: VAD

+RVA; VAS+RVA; VAD+VA+RVA; VAD-mock; VAS-mock; and VAD+VA-mock.

Blood, milk, and gut-associated tissues were collected from sows at several time

points to examine innate [natural killer (NK), dendritic (DC) cells], T cell responses

and changes in genes involved in the gut-mammary gland (MG)-immunological

axis trafficking. Clinical signs of RVA were evaluated post inoculation of sows and

post-challenge of piglets. We observed decreased frequencies of NK cells, total

and MHCII+ plasmacytoid DCs, conventional DCs, CD103+ DCs and CD4+/CD8+

and T regulatory cells (Tregs) and NK cell activity in VAD+RVA sows. Polymeric Ig

receptor and retinoic acid receptor alpha (RARa) genes were downregulated in

mesenteric lymph nodes and ileum of VAD+RVA sows. Interestingly, RVA-

specific IFN-g producing CD4+/CD8+ T cells were increased in VAD-Mock

sows, coinciding with increased IL-22 suggesting inflammation in these sows.

VA supplementation to VAD+RVA sows restored frequencies of NK cells and

pDCs, and NK activity, but not tissue cDCs and blood Tregs. In conclusion, similar

to our recent observations of decreased B cell responses in VAD sows that led to
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decreased passive immune protection of their piglets, VAD impaired innate and T

cell responses in sows, while VA supplementation to VAD sows restored some,

but not all responses. Our data reiterate the importance of maintaining adequate

VA levels and RVA immunization in pregnant and lactating mothers to achieve

optimal immune responses, efficient function of the gut-MG-immune cell-axis

and to improve passive protection of their piglets.
KEYWORDS

Rotavirus A, innate immune responses, dendritic cells, natural killer cells, T cells, sow
model, maternal passive immunity
1 Introduction

Rotavirus (RV) is the major cause of severe, acute gastroenteritis in

young animals and children worldwide (1). RV diarrheal disease in

swine is associated with weight loss, morbidity and mortality causing

major losses to the pork industry. Specifically, RV species A (RVA)

causes severe diarrhea in weaned piglets (2–5). RVA infects children in

both developed and developing countries alike; however, children

<5years of age in developing countries experience severe clinical

symptoms (6). Development of human RVA vaccines and their

introduction into national vaccination programs more than two

decades ago led to a reduction in RVA burden in developed countries

(7). However, the World Health Organization (WHO) estimates that

~200,000 deaths annually in children <5yrs of age are related to RVA,

mainly in the developing countries (8). Coincidentally, vitamin A

deficiency (VAD) rates in children and pregnant women are high in

these countries (9, 10). WHO estimated that ~250 million school-aged

children are VAD, with ~5 million of these children showing clinical

signs such as night blindness (11). VAD is associated with increased

susceptibility to diseases such as measles, diarrheal diseases and higher

mortality rates in the affected populations (12, 13).

Vitamin A (VA) is not synthesized in the body de novo;

therefore, it must be acquired through diet as preformed VA

(retinol and retinyl ester from animal sources) or pro-VA (beta-

carotenoids from colorful fruits and vegetables). VA encompasses a

family of retinoids; retinal (retinaldehyde), retinol, and retinoic acid

(RA). These retinoids are important for various functions in the

body including: cell differentiation, erythrocyte production,

reproduction, epithelial surface integrity and normal immune

responses (14, 15). RA is the most important biologically active

VA metabolite that has been shown to directly modulate both

innate and adaptive immunity in the mucosal tissues of the body

leading to immune responses in presence of pathogens or

maintaining homeostasis in absence of pathogens (16–18).

Important cellular components of the innate immunity system

comprise natural killer (NK) cells, dendritic cells (DCs) and other

cells that aid in pathogen clearance and play a role in initiating

adaptive immune responses. NK cells are cytotoxic cells that

eliminate virus infected and tumor cells, limiting spread of

infections or malignancies (19). Radaeva and colleagues evaluated

the effects of RA on NK cells in murine stellate cells and discovered
02
that NK cell numbers and activity were upregulated by RA through

the RA early inducible (RAE) ligand upregulation (20), while

Dawson et al., found that in peripheral blood mononuclear cells

(PBMC) of rats, marginal VAD decreased NK frequency and

activity of these cells (21). Furthermore, Zhao and colleagues

showed that VAD decreased NK cell function in spleens of rats

(22). Previous studies of mice have demonstrated that VA

supplementation increased NK cell activity in different in vitro

and in vivo experiments (23, 24). Taken together, these studies

suggest that VA plays a key role in regulating NK cell numbers

and activity.

Intestinal DCs sample gut luminal contents, surveying for

invading pathogens and play a key role in bridging the innate and

the adaptive immune systems by processing and presenting

antigens to naïve T cells via major histocompatibility complex

(MHC) (25). This leads to the activation of B cell and cell-

mediated immune responses, eliciting specific pathogen

elimination and memory responses (26). Using a mouse model,

studies have shown that RA is necessary for differentiation of DCs

in the mucosa which could contribute to clinical abnormalities

observed in VAD mice (16). Apart from RA regulating DC

differentiation, intestinal CD103+ DCs express enzymes which

metabolize VA into RA, making it available in the gut mucosa for

imprinting gut-homing characteristics to effector T and B cells (27–

29). In addition, CD103+ DCs are important in induction of oral

tolerance and maintenance of homeostasis in the gut. For instance,

in the presence of RA and transforming growth factor b (TGF-b),
CD103+ DCs induce T regulatory cells (Tregs) differentiation in the

gut leading to oral tolerance. In addition, a study using a human

enteroid system showed that RA induced differentiation of human

intestinal microfold cells through lymphotoxin signaling

pathway (30).

Lopez-Guerrero and colleagues studied the role of DCs in mice

infected with wild-type murine RVA. They observed that 48h after

RVA infection, DCs from the Peyer’s patches migrated to the dome

area with increased surface activation markers on these DCs (31). In

another study, Rosales-Martinez and colleagues generated DCs

from human umbilical cord monocytes and adult peripheral

blood monocytes and infected these cells with RVA. They found

that DCs derived from neonates induced activation and strong

CD4+ T cell responses when treated with RVA just like adult DCs;
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however, adult DCs were capable of inducing anti-inflammatory

cytokines (Interleukin [IL]-10 and TGF-b) in contrast to the

neonatal DCs (32). Furthermore, Deal and colleagues determined

the effect of RA on plasmacytoid DCs (pDCs) isolated from human

blood and observed that RA treatment led to pDCs maturation and

activation resulting in production of type 1 IFN and other pro-

inflammatory cytokines (33). We have previously shown that DCs

play an important role during RVA infection in a gnotobiotic (Gn)

pig model and that pDCs are the main source of type 1 IFN (34).

Moreover, we have previously shown that prenatally-acquired VAD

in swine skewed innate immune responses indicated by increasing

numbers of total DCs and decreasing frequencies of CD103+ DCs in

both RVA- and mock-challenged Gn piglets (35). However, Gn pigs

lack gut microbiome which has been shown to interact with RA to

induce homeostasis in the gut (36). In addition, recent studies

suggest that microbiota produce retinaldehyde dehydrogenase that

converts retinal to RA and produces high concentration of the

active retinoids including RA, which primes host immune

responses (37–40). Recently, we have shown that VAD impairs B

cell responses in pregnant and lactating conventional sows and

passive protection of their piglets against RVA while oral VA

supplementation and RVA immunization of these sows improved

B cell responses and protection of their piglets against virulent RVA

(41). The role of VAD and VA supplementation on innate and T

cell immune responses necessary to initiate adequate B cell and

passive responses to infections is not well understood. Therefore,

the aim of our study was to determine the effects of VAD and VA

supplementation on innate and T cell immune responses in

conventional pregnant and lactating sow model of RVA infection.
2 Materials and methods

2.1 Virus

RVA OSU (G5P[7]) virus pool was obtained by inoculating 3-

day old Gn piglets with virulent RVA OSU. The small and large

intestinal contents obtained 3 days post inoculation were tested for

ster i l i ty and stored at -80°C unti l use . Cel l cul ture

immunofluorescence (CCIF) assay was used to determine the

virus titer. The virus was used to inoculate RVA seropositive sows
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(Mimic maternal immunization) at a dose of 1 × 109 fluorescent

focus units (FFU) per sow diluted in Minimum Essential Media

[MEM (Life Technologies, Carlsbad, CA, USA)]. Piglets were

inoculated with the same virus at a dose of 1 × 108 FFU per piglet.
2.2 Animals and experimental design

All animal experiments were approved by the Institutional

Animal Care and Use Committee at The Ohio State University.

All methods were carried out in accordance with our approved

protocol and optimized regulations were followed. Sample

collection and euthanasia were carried out humanely. Pregnant

RVA seropositive sows (Landrace × Yorkshire × Duroc cross-bred)

of parity 3-5 were obtained from The Ohio State University swine

center facility at gestation day (GD) 30 and housed individually in

pens. Sows were randomly assigned to one of the six treatment

groups (1): VAD+RVA (n = 4) (2); VAS+RVA (n = 3); (3) VAD

+VA+RVA (n = 4); (4) VAD-mock (n = 3) (5) VAS-mock (n = 4);

and (6) VAD+VA-mock (n = 3). Sows were fed either VAD or VAS

diet and a subset of VAD fed sows were supplemented with VA

(30,000 IU per day) orally starting at GD~76 to the end of

experiment (Figure 1). Sows were orally inoculated with RVA

OSU strain or MEM (mock) at GD~90 and allowed to farrow

naturally at GD114 (± 3). All piglets were orally challenged with

RVA OSU strain at day postpartum (DPP)~5 and sampled as

describe below (41).

Blood samples were collected from sows at GD~90, GD~109,

days postpartum (DPP)~5, DPP~12 and DPP~21 for peripheral

mononuclear cell (PMNC) isolation (41). Rectal swab samples were

collected every other day following RVA inoculation to examine RVA

RNA shedding and to record fecal consistency for diarrhea scores

(41). After farrowing, colostrum was collected within 24h of

parturition. Colostrum (at DPP0) and milk (at DPP ~5, ~12 and

~21) were collected after administration of 3 ml oxytocin

intramuscularly for milk letdown (41). Sow spleens, mesenteric

lymph nodes (MLNs), mammary glands (MG) and ileum were

collected at euthanasia (DPP~21) for MNCs isolation (41). Piglets

were challenged at DPP~5 and RVA RNA shedding, and fecal

consistency were determined from rectal swabs collected

after challenge.
FIGURE 1

Experimental design to evaluate the effects of vitamin A deficiency/vitamin A supplementation and RVA inoculation (anamnestic response) on innate
and T cell responses of RVA seropositive pregnant sows and passive protection of their piglets. (GD, Gestation Day; DPP, Day Post Partum;
VAS, Vitamin A sufficient diet; VAD, Vitamin A deficient diet; VA, Vitamin A; RVA, Rotavirus A).
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2.3 Fecal consistency scores and RVA RNA
quantification using RT-qPCR

Rectal swab samples were collected from sows from post

inoculation day (PID)0 to PID12 and from both sows and piglets

post-piglet challenge day (PCD0-PCD12) for examining RVA RNA

shedding titers and diarrhea (41). Fecal consistency was scored as

follows: 0, normal; 1, pasty/semi-liquid; 2, liquid; pigs with fecal

scores more than 2 were considered diarrheic. Rectal swabs were

suspended in 2 mL of MEM (Life Technologies, Waltham, MA,

USA) supplemented with antibiotics/antimycotic, and clarified by

centrifugation at 800× g for 10 min at 4°C. RNA was extracted using

50µL of the sample and MagMAX kit following the manufacturer’s

instructions (Applied Biosystems, Foster City, CA USA). RT-qPCR

was used to determine RVA RNA titers using primers; forward 5′-
GCT AGG GAY AAA ATT GTT GAA GGT A-3′, reverse 5′-ATT
GGC AAA TTT CCT ATT CCT CC-3′ and hydrolysis probe 5′-
FAM-ATG AAT GGA AAT GAY TTT CAA AC-MGB-3′ (42) and
Qiagen one step RT-PCR kit following manufacturers protocol

(Qiagen, Germantown, MD USA).
2.4 Isolation of mononuclear cells

Peripheral blood MNCs (PBMC) were isolated as described

previously (43). Briefly, sow peripheral blood was collected and

mixed with10% citrate dextrose solution (ACD). Ficoll-Paque

method was used to isolate PBMC that were then resuspended in

5ml modified Gibco Roswell Park Memorial institute 1640 medium

(E-RPMI) (41). Tryptophan blue (0.002%) and a cell counter was

used to determine the quantity and viability of the PBMCs (44).

Isolated MNCs were resuspended in freezing medium (10% FBS

and 10% DMSO) and placed in vials at 1x107 cells/ml and stored in

liquid nitrogen until use. Milk MNCs were processed following

procedures outlined in Chepngeno et al. (41). Selected tissues

[Spleen (200g), MLN (100g), MG (200g) and ileum (150g)] were

obtained from all the sows at euthanasia (DPP ~21) and washed 2x

in wash media [RPMI 1640 + 0.1% ampicillin +0.1%gentemicin+1%

N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid (HEPES)].

Tissues were cut into 1cm x 1cm pieces and pressed through

tissue collectors and the supernatant collected. MNC isolation

was performed following procedures detailed in Ward et al. (41,

45). All MNCs were resuspended in freezing medium (10% FBS and

10% DMSO) and placed in vials at 1x107 cells/ml and stored in

liquid nitrogen until use.
2.5 Flow cytometry

2.5.1 Staining and flow cytometry analysis to
measure frequencies of NK cells, DCs, and T cells

MNCs were retrieved from liquid nitrogen, thawed, washed in

20ml E-RPMI and centrifuged at 450 x g for 10 minutes at 4°C. The

supernatant was discarded and E-RPMI (2ml) was added to the cell

pellet and the cell suspension was transferred to a 24 well plate
Frontiers in Immunology 04
(Thermofisher, Waltham, MA USA). The cells were incubated at

37°C, 5% CO2 overnight (41). Antibody staining for NK cells

markers (SWC3a- CD16+), markers for different subsets of DCs

(pDCs- SWC3a+CD4+CD11b-, conventional DCs (cDCs) -

SWC3a+CD4-CD11b+, CD103+ DCs - SWC3a+CD4-CD103+) was

performed as previously described (35, 43, 46, 47) (Antibodies and

isotype controls are in Table S1). Antibody staining for Treg cells

(natural Tregs-CD4+/CD8+CD25+FOXP3+, inducible Tregs -

CD4+/CD8+CD25−FOXP3+ and activated Tregs- CD4+/

CD8+CD25+FOXP3−) were performed as described previously by

Chattha et al. (47, 48). To determine the frequencies of RVA-

specific IFN-g-producing CD4+ and CD8+ cells (CD3+, CD4+/CD8+

IFN-g), MNCs were restimulated in vitro with the semi purified

RVA virus (12 mg/ml) and porcine cross-reactive human CD49d

monoclonal antibody (0.5 mg/ml) (clone 9F10; BD Pharmingen) for

18 h and stained as previously described (48, 49). Analysis of

different cell populations was performed by acquiring 50,000

events using CFlow software on Accuri C6 plus cytometer

(Accuri cytometers; BD Biosciences). Sequential gating strategies

applied to determine frequencies of NK cells, pDCs, cDCs, CD103+

DCs, Tregs and RVA-specific IFN-g-producing CD4+/CD8+ cells

have been outlined in Figure S1.

2.5.2 Natural killer cell cytotoxicity assay
Briefly, K562 cells [50,000 cells/ml per well] were stained with

carboxyfluorescein succinimidyl ester (CFSE) using Abcam CFSE

kit (Waltham, MA). CFSE labeled K562 cells were washed and

incubated with isolated MNCs at the ration 1:10 (K562: MNCs)

overnight at 37°C, 5% CO2. 7-Amino-Actinomycin D (7-AAD)

(Thermofisher, Waltham, MA USA) was added to determine viable

cells. Acquisition and analysis of K562 dead cells (CFSE+7AAD+)

was performed by acquiring 50,000 events using CFlow software on

Accuri C6 plus cytometer and analyzing using the same software.

Gating strategy for NK cell cytotoxicity assay has been outlined in

Figure S1.
2.6 Total RNA isolation and RT-PCR for
gene expression

RNA isolation was conducted using Directzol total RNA kit

(Zymogen, Irvine, CA, Cat # R2052) following the manufacturers

protocol. Briefly thawed MNCs were washed twice in 1xPBS,

resuspended in 500 µl of Trizol reagent and thoroughly mixed.

An equal volume of ethanol (95-100%) was added, transferred into

a column, and centrifuged at 12,000 x g for 30 seconds. The

supernatant was discarded and 400 µl of RNA wash buffer was

added and centrifuged at 12,000 x g for 30 seconds. DNase 1 mix

was added into the column and incubated at RT for 15 minutes.

Pre-RNA wash buffer (400µl) was added into the column and

centrifuged at 12,000 x g for 30 seconds. RNA wash buffer

(700µl) was added into the column, centrifuged 12,000 x g for 30

seconds before total RNA was eluted using 50µl sterile H2O.

Quantitative RT-PCR was used to determine the expression of

selected genes using an equal amount of total RNA (50 ng) with
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SYBR Green RT-PCR Kit (Applied Biosystems, CA USA) using

gene specific primers (Table S2). GAPDH was used as a house

keeping gene. The Delta-delta method was used to analyze the

differences in gene expression among the different groups relative to

the VAS+RVA group.
2.7 Cytokine ELISA

Interleukin -10, IL-6, IFN-a, IL-22 cytokine ELISA kits were

obtained from R&D systems (Minneapolis, MN, USA -IL-10 and

IL-6) and Invitrogen (Waltham, MA, USA- IFN-a and IL-22).

Briefly, 96-well pre-coated plates were obtained and 100µL of assay

diluent was added to all wells. Standards, controls, and serum

(100µL) from sows were added to the wells and incubated in for

2.5h at room temperature in an orbital shaker. The plates were

washed, and the conjugate added and incubated for 2h at room

temperature on the shaker and then plates were washed. Substrate

solution was added and incubated at room temperature for 30 min

in the dark. Stop solution was added and the plates were analyzed by

measuring absorbance at 450nm on the spectra Max 340 PC

(Molecular Devices, Sunnyvale, CA).
2.8 Statistical analyses

The mean frequencies of NK cells, K562 dead cells %, DCs, Treg

cells, IFN-g secreting T cells, mRNA expression and cytokine levels

were calculated for each treatment group using GraphPad prism 9.0

version (GraphPad Software, Inc., San Diego, CA, USA) and one-

way or two-way analysis of variance (ANOVA) analysis followed by

Tukey-Kramer test to determine significant differences among the

groups. Statistical significance was assessed at P<0.05.
3 Results

3.1 Hepatic vitamin A levels were
decreased in VAD sows and significantly
decreased in their piglets

Overall serum VA levels were comparable in all treatment

groups indicative of VAD sows mobilizing hepatic VA storage

(Table 1). However, VAD sows had decreased hepatic levels
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compared to VAS and VA supplemented VAD sows. Piglets of

VAD sows had significantly decreased hepatic VA levels at DPP~21

compared with piglets of VAS sows. VA supplementation to VAD

sows significantly increased hepatic levels in their piglets (Table 1).
3.2 Piglets of VAD-Mock sows had the
highest RVA RNA shedding levels and
cumulative fecal scores

While all RVA (but not mock) inoculated sows shed the virus

post inoculation (Figure 2A), none of them developed diarrhea

following RVA inoculation. During lactation, all mock sows had

increased RVA RNA shedding after RVA challenge of their piglets

(DPP~5/PCD0) compared with the sows inoculated with RVA

during gestation (Figure 2A) (41). Overall, VAD-mock litters had

the highest RVA RNA shedding throughout the experiment with

highest titers at PCD6-7 (Figure 2B), coinciding with the highest

percentage of piglets that developed diarrhea (Figure 2C) (41).

Overall, all litters from RVA inoculated sows had decreased RVA

RNA shedding regardless of the VA diet.
3.3 Evaluation of NK cell frequencies
and function

3.3.1 Vitamin A deficiency decreased the
frequencies of NK cells in VAD+RVA sows

NK cell frequencies were decreased in blood of VAD+RVA

sows when compared with VAS+RVA sows prior to parturition

(GD~109) and throughout lactation until euthanasia (DPP~21),

with a significant decrease observed at GD~109 and DPP~21

(Figure 3A), suggesting that VAD decreased blood NK cell

frequencies during RVA infection. NK cell frequencies were also

decreased in ileum, MLN, and MG of VAD+RVA sows when

compared to VAS+RVA (Figure 3C). Notably, NK cell

frequencies were significantly lower in VAD+RVA, VAD-Mock

and VAD+VA-Mock in ileum (Figure 3C), indicating that VAD

decreased NK cell numbers recruited to the RVA infection site

(ileum). In milk, we observed a decrease in the frequencies of NK

cells in VAD+RVA sows and all mock sows throughout lactation,

while VAS+RVA and VAD+VA+RVA sows had comparable

elevated frequencies of NK cells in early lactation at DPP0 and

DPP~5 (Figure 3E), demonstrating that VAD decreased NK cell
TABLE 1 Mean serum and hepatic vitamin A levels in RVA-inoculated sows at different gestation and lactation time points and in piglets (hepatic) at
DPP 21.

Treatment Group GD~30 GD~76 GD~109 DPP~21 Piglets
DPP~21

Serum (PPM) Serum (PPM) Serum (PPM) Serum (PPM) Hepatic (PPM) Hepatic
(PPM)

VAD 0.185 0.224 0.225 0.263 64 6.92a

VAS 0.185 0.242 0.228 0.260 93.75 16.33b

VAD+VA 0.193 0.228 0.210 0.252 103.33 10.75c
fro
(GD, gestation day; DPP, day post-partum). Superscript letters (a, b, and c) indicate significant differences among the groups.
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frequencies in milk and VA supplementation to VAD sows

increased these cells in milk. Notably, NK cells in VAS-Mock and

VAD-Mock sows were lower in milk throughout the experiment,

suggesting that RVA inoculation during gestation resulted in

increased NK cell frequencies.

3.3.2 Vitamin A supplementation increased NK
cells activity in VAD+RVA sows

To further understand the effects of VAD on the NK cell

function, we performed NK cytotoxicity assays using isolated

MNCs as effector cells and K562 cells (expressing ligands for NK

cells required to induce NK cell death) as target cells (50). In blood

MNCs incubated with K562 cells, we observed that the mean

cytotoxicity (% dead K562 cells) was significantly decreased in

VAD+RVA, VAD+VA-Mock, and VAS-Mock sows compared

with VAS+RVA sows pre-parturition (GD~109) (Figure 3B),

which coincided with low NK cell numbers observed in blood

MNCs. However, VAD-Mock sows had significantly (GD~109) and

numerically higher (DPP~5 and DPP~12) NK cell activity in blood

when compared with VAD+VA-mock, VAD+RVA and VAS-mock

(Figure 3B), suggesting that VAD might have induced upregulation

of pro-inflammatory state through downregulation of MHC I

expression in cells. Evaluation of the NK cell activity in selected

tissues revealed that NK cell activity was decreased in VAD+RVA in

all tissues (Figure 3D), suggestive of a combined effect of VAD and

RVA infection. Further, we observed significantly (MLN) and

numerically (ileum, MG, and spleen) decreased NK cell activity in
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VAD+RVA, VAD-mock and VAS-mock when compared with VAS

+ RVA and VAD+VA+RVA (Figure 3D), revealing that VA

supplementation to VAD+RVA sows increased NK cell activity in

these tissues during RVA infection. Interestingly, splenic NK cell

activity of VAD-Mock was higher (but not significantly) than in any

other group. Similarly, we observed significantly increased NK cell

activity in the milk of VAD-Mock sows compared with VAS+RVA

(DPP~12) and VAD+RVA, VAS-Mock and VAD+VA-Mock

(DPP~21) sows (Figure 3F), further corroborating the fact that

VAD dysregulates NK cell normal activity.
3.4 Evaluation of frequencies of dendritic
cell subpopulations

3.4.1 VAD decreased the frequencies of MHCII+

cDCs and pDCs in tissues, blood and milk of VAD
( ± RVA) sows

We evaluated the frequencies of different subsets of DCs in the

gut mucosa-associated tissues (ileum and MLN), spleen (systemic)

andMG due to its role in lactogenic passive immunity. We observed

a decrease in the frequencies of total pDCs in VAD ( ± RVA) sows

compared with VAS+RVA sows in MLN, MG, spleen, and ileum

(only VAD+RVA) (Figure 4A). VA supplementation to VAD+RVA

sows (VAD+VA+RVA) increased total pDCs frequencies in all the

tissues except in MLN and spleen. Unexpectedly, VAD-mock sows

had significantly higher frequencies of total pDCs in ileum
A B C

FIGURE 2

Analysis of RVA RNA shedding titers and diarrhea in sows and piglets. RVA OSU strain was used to inoculate sows at gestation day (GD)~90 while
piglets were challenged at day post-partum (DDP)~5. RVA RNA titer was determined by RT-qPCR. (A) Heat map showing RVA RNA shedding in sows
post sow inoculation (PID0-16) and post-piglet challenge (PCD0-12) expressed as log10 GE/mL. (B) Heat map depicting RNA shedding in piglets
post-piglet challenge (PCD0-12) expressed as log10 GE/mL. (C) The number of piglets that developed diarrhea per group expressed as a percentage,
where fecal scores were scored as follows: 0, normal; 1, pasty; 2, semiliquid; 3, liquid, and diarrhea was considered as score of ≥2. Piglets were
considered diarrheic if they had a score of ≥2 on any day between PCD0 and 12.
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compared with VAD+RVA, VAD+VA-Mock and VAS-Mock;

however, further evaluation revealed low expression of MHCII in

these pDCs (Figure 4B), corroborating our earlier results that VAD

causes pDCs impairment. In addition, analysis of MHCII+ pDCs

showed significantly (Ileum, MLN) and numerically (MG and

spleen) higher frequencies of these cells in VAS+RVA than in

VAD+RVA (Figure 4B). Moreover, VA supplementation increased

MHCII+ pDCs frequencies in ileum, MG, and MLN of VAD+RVA

sows. Furthermore, we observed numerically (VAD+RVA) and

significantly (VAD-Mock) lower frequencies of total and MHCII+
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cDCs in ileum and MLN compared to VAS+RVA sows (Figures 4C,

D). Unexpectedly, supplementing VA to VAD sows (VAD+VA ±

RVA) did not increase MHCII+ cDCs frequencies in any of the

tissues analyzed (Figure 4D). Overall, these results reveal that VAD

decreased total and MHCII+ pDCs and cDCs frequencies in the

blood, ileum, MLN, MG and spleen and that VA supplementation

increased some but not all decreased frequencies of DCs.

The frequencies of total pDCs in blood were numerically

decreased in blood in VAD ( ± RVA) sows at all sampling points,

except at DPP~21 where VAD-Mock had numerically higher
A B

D

E F

C

FIGURE 3

Natural killer (NK) cell frequencies and cytotoxicity analysis by flow cytometry. Sows were fed VAD or VAS diet from GD~30. A subset of VAD sows
was given VA supplementation starting at GD~76 to the end of experiment. Blood, milk, and tissues were collected at GD~90 (blood), GD~109
(blood), DPP0 (milk), DPP~5 (milk &blood), DPP~12 (milk &blood) and DPP~21(milk, blood &tissues). Mononuclear cells were isolated and stained
with porcine Abs against NK cell markers. (A) Mean frequencies of NK cells in blood. (C) Mean frequencies of NK cells in tissues (E) Mean frequencies
of NK cells in milk. K562 cells were stained with CFSE and incubated with isolated mononuclear cells overnight. 7AAD was used to determine K562
cell death (CFSE+7AAD+) using flow cytometry. (B) NK cell activity (K562 cell death %) in blood (D) NK cell activity in tissues (F) NK cell activity in milk.
Letters a and b indicate significant differences among treatment groups (mean ± SEM) at each time point. Statistical analysis was performed using
two-way ANOVA with repeated measures and Tukey-Kramer test for multiple comparisons, P ≤ 0.05. (GD, gestation day; DPP, day post-partum;
VAD, vitamin A deficiency; VAS, Vitamin A sufficient; VA-vitamin A).
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frequencies of these cells than all other groups (Figure S2A). There

was a steady increase in the frequencies of pDCs and MHCII+pDCs

in blood of VAD+VA+RVA sows except at DPP~21 indicating that

VA supplementation increased pDC frequencies in blood over time

(Figure S2A, B). Similarly, we observed a decrease in total and

MHCII+cDC frequencies in VAD+RVA than VAS+RVA sows

throughout the experiment except at DPP~21 (total cDCs)

(Figure S2C, D). Interestingly, total and MHCII+cDC frequencies

were increased in VAD-Mock in mid to late lactation, suggesting

enhanced VA mobilization from the liver reserves by these sows or

dysregulation due to VAD. Further, total and MHCII+cDC

frequencies were gradually increased in VAD+VA+RVA sows

pre- and post-partum implying that VA supplementation restored

total cDC frequencies in blood (Figure S2D), further accentuating

the importance of VA in regulating DCs numbers.

Analysis of DC frequencies in milk revealed a significant

decrease in total cDCs frequencies in VAD ( ± RVA) and in

mock animals regardless of their diet when compared with VAS

+RVA and VAD+VA+RVA sows at DPP0 and DPP~5 (Figure

S3A). Further evaluation of MHCII+ cDCs revealed a significant

increase in colostrum (DPP0) of VAD+VA+RVA when compared

with VAD+RVA and VAS-Mock sows (Figure S3B), suggesting that

VA supplementation and RVA inoculation increased the expression

of MHCII+ in cDCs.
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3.4.2 Vitamin A deficiency decreased the
frequencies CD103+ DCs in blood, ileum, MLN,
and MG

We evaluated the effects of VAD on CD103+ DCs due to their

role in VA metabolism and tolerance induction to self, food

antigens and beneficial microbes in the gut. Overall, we observed

a gradual increase in CD103+ DCs frequencies in blood of VAS

+RVA during gestation to mid-lactation before sharply decreasing

in late lactation (DPP~21) (Figure 5A). The frequencies of CD103+

DCs in blood of VAD ( ± RVA) sows were decreased throughout

the experiment and VA supplementation did not increase the

frequency of these cells in blood (Figure 5A). In the tissues

evaluated, CD103+ DCs frequencies were significantly lower in

ileum, and numerically decreased in MG and MLN of VAD

+RVA sows compared with VAS+RVA and VAD+VA+RVA

(ileum) sows (Figure 5B), suggesting that VAD impacted CD103+

DC frequencies at the site of infection. In addition, CD103+ DCs

frequencies were significantly lower in the ileum of VAS-mock and

VAD -mock ( ± VA) compared with VAS+RVA and VAD+VA

+RVA respectively (Figure 5B), suggesting an effect of anamnestic

(secondary) immune responses in the RVA immunized animals.

Moreover, VA supplementation of VAD sows increased the

frequency of CD103+ DCs in both ileum and MLN. Taken

together, these results suggest that VAD causes an imbalance in
A B

DC

FIGURE 4

Analysis of different subsets of pDCs and cDCs in local and systemic tissues by flow cytometry. Ileum, MG, MLN, and spleen were collected at
~DPP21 (Euthanasia) and mononuclear cells were isolated. Mononuclear cells were analyzed by flowcytometry. (A) Mean frequencies of total
plasmacytoid DCs in tissue mononuclear cells. (B) Mean frequencies of MHCII+ plasmacytoid DCs in tissue mononuclear cells. (C) Mean frequencies
of total conventional DCs in tissue mononuclear cells. (D) Mean frequencies of MHCII+ conventional DCs in tissue mononuclear cells. Letters a, b
and c indicate significant differences among treatment groups (mean ± SEM) at each time point. Statistical analysis was performed using two-way
ANOVA with repeated measures and Tukey-Kramer test for multiple comparisons, P ≤ 0.05. (GD, gestation day; DPP, day post-partum; VAD, vitamin
A deficiency; VAS, Vitamin A sufficient; VA-vitamin A).
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CD103+ DCs frequencies in both systemic and the gut-

associated tissues.
3.5 Vitamin A deficiency decreased the
frequencies of CD4+ and CD8+ T-
regulatory and RVA-specific IFN-g
producing T cells

There were no clear trends in the frequencies of natural and

activated Tregs (data not shown); however, there were differences

in the frequencies of induced Treg cells (iTregs) among the

groups. We observed decreased frequency of CD4+ iTregs in

blood of VAD ( ± RVA) sows compared to VAS+RVA sows

throughout the experiment (Figure 6A). Interestingly, there were a

significantly (GD109, DPP~5 and DPP ~21) and numerically

(GD~90, DPP~12) lower CD4+ iTreg frequencies in VAD+VA

+RVA sows when compared with VAS+RVA sows (Figure 6A),

suggesting that VA supplementation to VAD+RVA sows did not

increase frequencies of CD4+ iTregs in blood. Moreover, we

observed similar trends in frequencies of CD8+ inducible Tregs

in blood (Figure 6B).

We also evaluated RVA-specific IFN-g secreting T cell

subpopulations in blood, milk, and tissues. IFN-g is a cytokine

produced by cells of the innate immune system and T cells and is

responsible for increasing MHCII expression and antigen

presentation in DCs. We observed an increase in RVA-specific

IFN-g producing CD4+ (GD~90, GD~109 and DPP~5) and CD8+

(GD~109 and DPP~5) T cell frequencies in blood of VAD-mock

sows, in which RVA specific IFN-g producing CD4+ and CD8+ T

cells steadily decreased from DPP~5 to DPP21 (Figures 7A, B).

Interestingly, RVA-specific IFN-g producing CD8+ T cell
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frequencies were significantly (VAD+VA+RVA) and numerically

(VAD+RVA, VAD-Mock, VAS-mock) decreased compared with

the VAS+RVA sows at DPP~21 (Figure 7B). Additionally, we

observed higher RVA-specific IFN-g producing CD4+ T cell

frequencies in all tissues evaluated of VAD-Mock sows (except

for MLNs where VAS-Mock sows had higher RVA-specific IFN-g
producing CD4+ T cell frequencies) than in all other groups

(Figure 7C). A similar trend was observed in ileum, MLN, and

spleen for RVA-specific IFN-g producing CD8+ T cell frequencies

(Figure 7D). Taken together, our results suggest that VAD

decreased RVA-specific IFN-g producing T cells while VAD alone

increased these cells.
3.6 Vitamin A sufficient and RVA inoculated
sows had decreased IL-10 and IL-22 in
sow serum

Cytokines play a key role in both innate and adaptive immune

responses and their role is critical in the timely clearing of infection.

Thus, we evaluated the effects of VA status and RVA inoculation on

production of selected innate, pro- and anti-inflammatory

cytokines (IL-6, IL-10, IL-22 and IFN- a). Our results showed

that both IL-10 (anti-inflammatory) and IL-22 (pro-/anti-

inflammatory) levels in serum were significantly (IL10 at

GD~109) and numerically decreased in VAS+RVA sows

compared with other groups pre- and post-partum (Figures 8A,

B). Moreover, IL-10 levels were decreased post-partum in VAD

+VA-Mock sows, while they were increased in VAD+VA+RVA

(Figure 8A). On the other hand, the levels of IFN-a (innate, pro-

-inflammatory) and IL-6 (pro-inflammatory) were similar pre- and

post-partum in all groups, although VAD+VA-Mock animals had
A B

FIGURE 5

Analysis of CD103+ DCs in blood and tissues using flow cytometry. Mean frequencies of CD103+ dendritic [CD103+ DCs] among blood MNCs (A)
and tissues (B). Letters a and b indicate significant differences among treatment groups (mean ± SEM) at each time point. Statistical analysis was
performed using two-way ANOVA with repeated measures and Tukey-Kramer test for multiple comparisons, P ≤ 0.05. (GD, gestation day; DPP, day
post-partum; VAD, vitamin A deficiency; VAS, Vitamin A sufficient; VA-vitamin A).
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FIGURE 7

Analysis of RVA-specific IFN-g secreting T cells by flow cytometry. Mononuclear cells were restimulated with RVA virus in vitro. (A) Mean frequencies
of RVA-specific IFN-g producing CD4+ T cells among CD3+CD4+ T cells in blood mononuclear cells. (B) Mean frequencies of RVA-specific IFN-g
producing CD8+ T cells among CD3+CD8+ T cells in blood mononuclear cells. (C) Mean frequencies of RVA-specific IFN-g producing CD4+ T cells
among CD3+CD4+ T cells in tissue mononuclear cells (D) Mean frequencies of RVA-specific IFN-g producing CD8+ T cells among CD3+CD8+ T cells
in tissue mononuclear cells. Letters a and b indicate significant differences among treatment groups (mean ± SEM) at each time point. Statistical
analysis was performed using two-way ANOVA with repeated measures and Tukey-Kramer test for multiple comparisons, P ≤ 0.05. (GD, gestation
day; DPP, day post-partum; VAD, vitamin A deficiency; VAS, Vitamin A sufficient; VA-vitamin A).
A B

FIGURE 6

Analysis of CD4+ and CD8+ inducible regulatory T cells in blood using flow cytometry. (A) Mean frequencies of CD4+ inducible among the CD4+ T
cells in blood mononuclear cells. (B) Mean frequencies of CD8+ inducible among the CD8+ T cells in blood mononuclear cells. Letters a and b
indicate significant differences among treatment groups (mean ± SEM) at each time point. Statistical analysis was performed using two-way ANOVA
with repeated measures and Tukey-Kramer test for multiple comparisons, P ≤ 0.05. (GD, gestation day; DPP, day post-partum; VAD, vitamin A
deficiency; VAS, Vitamin A sufficient; VA-vitamin A).
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increased IFN-a (significantly) and IL-6 (relatively) post-partum

and vice versa, IL-6 was decreased in VAS-mock post-partum

(Figures 8C, D).
3.7 Vitamin A deficiency decreased the
expression of pIgR and RARa in Ileum
and MLNs

We evaluated the gene expression of pIgR by RT-qPCR in

mucosal tissues due to its role in facilitating transcytosis of the

secreted dimeric IgA. We observed decreased expression of pIgR in

MLNs and ileum of VAD sows, with the largest decrease observed

in ileum (Table 2). VA supplementation to VAD sows increased

pIgR expression in both ileum and MLN of these animals.

To understand the association between VA status, and

transportation of VA in sows during and post RVA inoculation,

we evaluated the expression of retinol binding protein 4 (RBP4,

protein that transports retinal to the tissues) and RA receptor

(RARa, RA receptor in the cells) genes in ileum and MLN. All

groups had comparable expression levels of RBP4, while RARa
expression was low in both ileum and MLN of VAD+RVA sows

(Table 2). However, VA supplemented VAD sows (VAD+VA) had

increased RARa mRNA expression. Taken together, our results
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suggest that VAD impairs pIgR and RARa gene expression but not

RBP4 gene expression in the gut.

Additionally, we evaluated the expression of the cellular

adhesion molecules, VCAM-1 and MAdCAM-1 by RT-qPCR due

to their roles in mediating lymphocyte migration to certain systemic

and mucosal tissues, respectively. Surprisingly, MAdCAM-1

expression was increased in VAD and VAD+VA sows in Ileum

and MLN suggestive of a possible VA compensatory mechanism.

However, VCAM-1 expression was increased in ileum, but

decreased in MLN in VAD sows (Table 2). VA supplemented

VAD sows maintained low VCAM-1 expression (Table 2). Thus,

the effect of VAD on MadCAM-1 and VCAM-1 in sows is not clear

and requires further investigation.
4 Discussion

Vitamin A deficiency is one of the most serious global public

health concerns, especially in developing countries, leading to

different subclinical, clinical symptoms and even mortality in

children (51). Moreover, VAD contributes to the low efficacy of

vaccines against enteric diseases such as polio vaccine in infants and

pre- school children in LMIC (52). Overall, the efficacy of most

vaccines in the developing world is low and partially attributed to
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FIGURE 8

Pro-inflammatory and anti-inflammatory cytokine concentration in blood of sows. Blood was collected from sows at GD~109 (pre-partum) and
DPP~5 (pre-partum) for cytokine analysis. (A) Mean concentration of serum IL-10. (B) Mean concentration of serum IL-22. (C) Mean concentration
of serum INF-a. (D) Mean concentration of serum IL-6. Letters a and b indicate significant differences among treatment groups (mean ± SEM) at
each time point determined using Kruskal-Wallis test and Dunn’s multiple comparison test, P ≤ 0.05. (GD, gestation day; DPP, day post-partum; VAD,
vitamin A deficiency; VAS, Vitamin A sufficient; VA-vitamin A).
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the high prevalence of VAD in young children and pregnant/

lactating mothers in LMIC (12, 35, 53, 54). Many clinical and

animal studies on RVA have focused on immune responses of

neonates and young children; however, the role of VAD and

maternal RVA immunization during gestation on maternal

immune responses and passive protection of their offspring is not

well understood. We recently demonstrated that VAD impairs B

cell immune responses in pregnant and lactating sows, lowering

passive protection of their suckling piglets against RVA (41).

Therefore, there is a need to determine if VAD also impairs

innate and T cell immune responses largely responsible for

balanced immune responses against infection.

The contribution of VAD to immune impairment has been

evaluated (demonstrated) in different animal models. Bowman and

colleagues showed that NK cell activity was decreased in VAD rats

(55), similar to our observation in conventional sows. Zhao and

coauthors, using a rat model, revealed that VAD did not affect NK

cell activity in blood MNCs, but decreased NK frequency and

activity in the spleen (22). In this study we observed decreased

NK cell frequency and activity in blood, milk, ileum, MG, and MLN

MNCs but not spleen in VAD (± RVA) sows. The difference might

be due to RVA infection in our study affecting NK cells frequencies

and activity mainly in the local mucosal tissues and/or differences in

swine and rodent immune responses (56). Studies using a mouse

model revealed that dietary and pharmacologically induced VAD

depleted splenic RA-dependent DCs suggesting that VA played a

key role in DC maturation and maintenance (57). Similarly, we

observed that VAD( ± RVA) decreased both pDC and cDC

frequencies and expression of MHCII on these cells in pregnant

and lactating sows. In contrast, other studies of VAD animal models

have shown that VAD induces increased systemic and mucosal

DCs, indicative of skewed immune responses rather than increased

DC activity (35, 58). We observed increased total and MHCII+ cDC,

but not pDC frequencies in assessed tissues of VA supplemented

VAD+RVA sows, similar to our previous observations in Gn

piglets, where VA supplementation failed to restore all prenatally

induced VAD immune impairment (35).

Our lab has previously shown that VAD decreased CD103+

DCs in Gn piglets (35), which was further corroborated by our

current study. Furthermore, we have shown that expression of gut

homing receptors a4b7/CCR10 on blood B cells was decreased in

VAD+RVA sows (41), suggesting that the decreased CD103+ DCs
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affected expression of these markers on B cells. VA supplementation

of RVA infected VAD sows (VAD+VA+RVA) increased the

frequency of CD103+ DCs in blood prepartum (GD~109), MLN

and ileum, suggesting that VA is also required for maintaining

adequate levels of these cells in the gut. Overall, these results suggest

that VAD alters the numbers of both pDCs and cDCs and their

subsets in pregnant and lactating sows. Because DCs bridge innate

and adaptive immunity, this explains the impaired adaptive (B cell)

immune response that we observed in our prior study of the same

group of animals (41). Notably, the highest frequency of total cDCs

was observed in MLNs indicating that VA might play a greater role

in increasing these cell frequencies in the MLNs compared to other

assessed tissues, since MLN are the draining lymph nodes for the

gastrointestinal tract involved in lymphocyte activation during RVA

infection (59).

Soerens and colleagues, using a mouse model of herpes virus,

showed that Tregs are critical for homing of DCs from the vaginal

mucosa to the draining lymph nodes, leading to effective CD4+ T-

cell priming, activation, and trafficking to the infected tissues (60).

In accordance with the decreased frequencies of MHCII+ DCs, we

observed a decrease in CD4+ inducible Tregs in VAD+RVA sows.

There is a complex inter-relationship between DCs and T cells

regulated by VA levels; however, the precise mechanisms remain

unclear. Whether altered DC numbers and function in VAD led to

the altered T cell frequencies observed is an area for further

investigation. Unexpectedly, VA supplementation did not restore

the reduced numbers of inducible Tregs in the VAD+RVA

infected sows.

Plasmacytoid DCs activate T cells to produce IFN-g via antigen
presentation to naïve T cells enhancing their antiviral activity and

effector properties (61). We observed higher frequencies of RVA-

specific IFN-g producing CD4+ and CD8+ T cells in blood, spleen,

ileum, MLN and MG of VAD mock (RV seropositive, non-RVA

inoculated) sows after MNCs in vitro RVA stimulation, which is in

agreement with previous findings showing that VAD favors Th1

over Th2 responses in mice (62, 63). Interestingly, VAD+RVA sows

had lower RVA-specific IFN-g CD4+/CD8+ than VAD-mock sows

suggesting that RVA inoculation in VAD sows decreased Th1 bias

during restimulation. VAS+RVA sows had lower IL-10 and IL-22

compared to all other groups. Studies have shown that some

pathogens can harness the immunosuppressive capacity of IL-10

to limit host immune responses, leading to persistent infection and
TABLE 2 Analysis of sow ileal and MLN mRNA levels of different genes by RT-qPCR relative to VAS sows at DPP~21(mean ± SEM).

Ileum MLN

Gene VAD VAD+VA VAD VAD+VA

pIgR 0.18 ( ± 0.07) 0.97 ( ± 0.7) 0.84 ( ± 0.25) 0.82 ( ± 0.61)

RARa 0.59 ( ± 0.20) 0.93 ( ± 0.3) 0.74 ( ± 0.22) 1.30 ( ± 0.18)

RPB4 0.93 ( ± 0.1) 0.98 ( ± 0.07) 0.89 ( ± 0.1) 0.79 ( ± 0.3)

MAdCAM-1 1.73 ( ± 0.2) 1.36 ( ± 0.4) 1.42 ( ± 0.4) 1.57 ( ± 0.9)

VCAM-1 1.16 ( ± 0.25) 0.53 ( ± 0.17) 0.60 ( ± 0.1) 0.35 ( ± 0.1)
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increase in IFN-g producing T cells (64, 65). Moreover, our

observation is consistent with Yang et al. where VAD mice had

increased IL-10 levels compared to VAS mice (66). Downregulation

of Th2 responses might have contributed to decreased RVA specific

IgA and IgG ASCs, IgA+ B cells and CCR10+ B cells in VAD+RVA

sows observed in our recent study, leading to decreased RVA

specific IgA and IgG Abs in serum and intestinal contents of

VAD+RVA litters (41). Furthermore, the increased RVA RNA

shedding, and diarrhea frequency observed in VAD-mock litters

suggest a role of VA and RVA in induction/maintenance of

adequate passive protection. Moreover, we have previously shown

that pro-inflammatory IFN-a was increased in VAD Gn pigs (35);

likewise our current study of conventional pregnant and lactating

sows showed that IFN-a and IL-6 were slightly increased in VAD

+RVA sows compared with VAS+RVA sows, suggesting that VAD

might contribute to hyperinflammation. Our findings are in

agreement with Ahmed and colleagues who showed that RA

inhibits IL-6 production in human osteoblasts cells in a dose

dependent manner (67). Because our sows had subclinical VAD,

we hypothesize that IL-6 variation might be more pronounced with

further depletion of hepatic VA reserves in VAD sows.

Vitamin A deficiency affects pIgR and RARa expression levels in

vivo and in vitro (68–70). Takenouchi-ohkubo and coworkers

showed that RA treatment increased pIgR levels in HT-29 and

Caco-2 human intestinal cell lines (70), similar to our observation

in a conventional sow model, where VAD sows had decreased pIgR

mRNA levels in both ileum and MLN compared with VAS and VAD

+VA sows. Decreased pIgR in MLNs and ileum coincided with our

earlier observation where RVA specific-IgA Ab levels in large

intestinal contents were decreased (41), suggesting that VA is

important for pIgR expression and its role in transporting sIgA to

the apical side of the epithelial cells. RBP4 is highly expressed in liver

followed by adipose and other tissues (71, 72); thus, we observed

minimal differences in RBP4 expression levels in ileum and MLN of

all sow groups, consistent with observations by Soprano and

colleagues in VAD rats (73). However, expression of RARa was

decreased in ileum andMLN of VAD sows, suggesting that VA status

and infection plays a role in RARa expression and further explaining

the impaired innate and adaptive immune responses observed in this

study and our previous study (41). Previously, we observed a

significant decrease of a4b7 expressing blood B cell frequencies in

late gestation (GD~109) and early lactation (DPP~5) in VAD+RVA

sows (41). However, in this study, we observed a slight increase in

MAdCAM-1, an a4b7 ligand at late lactation (DPP~21), in ileum

and MLN of VAD+RVA sows suggesting VAD might not affect

expression MADCAM-1 but decreases its receptor a4b7 on

lymphocytes affecting early trafficking of these cells.

In conclusion, our study revealed that VAD impairs innate and

T cell immune responses, consequently compromising B cell

responses and passive protection to suckling piglets. VA

supplementation restored some but not all impaired immune

responses . Therefore, we conclude that maternal VA

supplementation might be necessary in VAD mothers during

pregnancy and lactation rather than waiting to supplement their

offspring after birth when detrimental damage to the mucosal
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immune system already occurred and is harder to restore. To our

knowledge, this is the first study to investigate the role of VAD and

RVA infection (representing anamnestic responses) on innate and

T cell immune responses in a conventional sow model. Our results

are applicable to the development of optimized RVA vaccines

(especially maternal) and VA maternal supplementation for swine

and people living in LMIC where VAD rates are high.
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