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Speck assembly is the hallmark of NLRP3 inflammasome activation. The 1µm

structure comprising of NLRP3 and ASC is the first observable phenotype of

NLRP3 activation. While the common consensus is that the specks are the site of

inflammasome activity, no direct experimental evidence exists to support this

notion. In these 22 years, since the inflammasome discovery, several research

studies have been published which directly or indirectly support or refute the

idea of speck being the inflammasome. This review compiles the data from two

decades of research to answer a long-standing question: “What are NLRP3-

ASC specks?”
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Introduction

Nod-like receptor protein containing pyrin 3 (NLRP3) is a cytosolic pathogen

recognition receptor (PRR) predominantly expressed in myeloid cells (1, 2). It detects a

wide range of chemically and structurally diverse stimuli and initiates an inflammatory

response by forming multi-protein complexes called inflammasomes (1, 3, 4). Upon

stimulation, NLRP3 recruits an adaptor protein called apoptosis-associated speck-like

protein containing a caspase recruitment domain (ASC) and pro-caspase-1. Caspase-1

activation leads to the processing of IL-1b, IL-18, and Gasdermin-D (GSDMD), which

contribute to the inflammatory response against various threats (1, 3, 4). The

inflammasome complexes, consisting of NLRs, ASC, and pro-caspase-1, are present in

the high-molecular-weight (HMW) fraction of approximately 700 kDa (5–7). This suggests

that the inflammasome may consist of 5-7 NLRP3-ASC-Casp1 units, similar to the

apoptosome structure (8–10). Recent research by Xiao et al. revealed that NLRP3 forms

a disk-like structure with 10 units, measuring around 32 nm (11). This configuration

facilitates caspase-1 activation through proximity-induced interactions (10, 12–14).

Under normal conditions, NLRP3 and ASC are dispersed throughout the cytoplasm

(15–17). However, upon NLRP3 activation, they rapidly relocate to form a perinuclear
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punctate structure known as the “speck” (15, 18). The speck,

approximately 1 mm in diameter, can be visualized using

fluorescence microscopy (9, 16, 17, 19). Speck formation

concentrates the majority of inflammasome components and is

crucial for the inflammasome response (20–23). Disruption of

NLRP3:ASC interactions by mutations or small-molecule drugs

impairs speck formation and inflammasome function (24–28).

Colchicine, a drug that inhibits speck formation, is commonly

used to treat inflammasome-related conditions like gout (4).

Although the speck is considered the site of inflammasome

activity, its size is significantly larger than the observed size of an

inflammasome (10, 17, 26). Additionally, some studies have shown

caspase-1 activation in the absence of speck formation, challenging

the notion that specks are inflammasomes (9, 17, 25, 29).

Nonetheless, due to its rapid formation, recruitment of free

NLRP3 and ASC, and its nature as a multi-protein complex, the

speck is generally believed to represent the inflammasome.

This review aims to explore the research conducted in the field of

inflammasomes, focusing on the nature and relevance of

inflammasome-associated specks in the physiological functioning of

the inflammasome. Recent studies have suggested that ASC specks

exhibit prion-like polymerization and Supramolecular Organizing

Center (SMOC)-like threshold properties, which enhance optimal

inflammasome activation even with weaker stimuli. However, despite

22 years of inflammasome research, the direct experimental evidence

supporting the speck as the inflammasome remains elusive, making it

one of the biggest mysteries in inflammasome biology.
Inflammasome complex assembly

The relationship between speck assembly and NLRP3 activation

remains complex, with multiple proposed models adding to the
Frontiers in Immunology 02
confusion (10, 14, 17, 20, 25–27, 30, 31). The precise mechanism by

which NLRP3 and other inflammasome components assemble

to form a functional multi-protein complex is still unclear. A

comprehensive review by Elliot et al. has discussed the limitations

of these models (8). Broadly, the proposed ideas can be categorized

into two distinct models: the complex assembly model and the pre-

assembled complex activation model.

The complex assembly model suggests that upon activation,

NLRP3 recruits caspase-1 via ASC to form monomeric

inflammasome units. These units then oligomerize through the

Nucleotide Binding Domain (NBD) to create a functional

inflammasome complex (Figure 1A). This model is supported by

the observation that nearly all NLRP3 and ASC associate to form a

singular speck. Furthermore, active NLRP3 co-immunoprecipitates

with ASC and pro-caspase-1 (14, 27) and elutes with other

components in complexes larger than 700 kDa (5, 6). In vitro

studies have identified complexes smaller than a speck that contain

caspase-1 (5, 6). However, whether these monomeric units further

oligomerize to form a speck remains uncertain. Notably, these

complexes exhibit different stoichiometry of monomeric units (11,

32), with mouse NLRP3 inflammasomes displaying a double-caged

model of six units and human NLRP3 inflammasomes forming a

disk shape composed of ten units (11). These species-specific

differences raise questions about the unified activation of NLRP3

inflammasomes across different organisms and the function of

complexes with varying monomeric units.

The counter-model proposes that a resting pre-assembled

NLRP3 complex undergoes a conformational change upon

activation and recruits ASC and pro-caspase-1 to the complex

(Figure 1B). Under resting condition, NLRP1 and NLRP3

complexes elute in high-molecular-weight (HMW) complexes,

indicating their presence in non-stimulated cells (5, 6).

Bioluminescence Resonance Energy Transfer (BRET) experiments
A

B

FIGURE 1

Competing models of NLRP3 inflammasome assembly. (A) Upon NLRP3 activation, ASC binds to NLRP3 and facilitates recruitment of pro-Caspase-1
to the complex. These trimeric complexes then oligomerize to form an inflammasome. (B) NLRP3 is present in the cytosol as a pre-formed inactive
oligomeric complex where LRRs of NLRP3 are near the PYD. Activation induced structural changes in NLRP3 facilitate the recruitment of ASC and
pro-Caspase-1 to the complex.
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have shown that the leucine-rich repeats (LRRs) of NLRP3 are

closely associated with the PYD domain, suggesting an interaction

between them (33). This interaction maintains NLRP3 in an auto-

repressed state that is disrupted upon ASC co-expression, indicating

a basal level of NLRP3:ASC interaction (33). Furthermore, ASC

PYD self-oligomerizes and can participate in pre-activation self-

assembly (10, 18, 21, 26, 34).

The contrasting models highlight the complexity of the

relationship between inflammasome activation and assembly.

Importantly, these observations are made at different stages of

inflammasome activation and in various cell types. Therefore, it

is likely that both models hold some truth, and multiple

states of inflammasome assembly and NLRP3 activation can

coexist simultaneously.
Speck assembly

Speck assembly: structural dynamics
and kinetics

Specks are perinuclear structures formed upon NLRP3

activation (5, 15, 35) and have recently been classified as

supramolecular signaling complexes (SMOCs) (31, 36). SMOCs

are higher order complexes that promote cooperative assembly of

signaling components through weak allosteric interactions,

enabling high local concentrations of these components (31, 36–

38). SMOC assembly is tightly regulated and plays a role in

threshold behavior, temporal and spatial control of signal

transduction, and binary all-or-none responses (31, 36–38).

However, the specific regulatory mechanisms involved in SMOC-

mediated inflammasome activation remain poorly understood. The

assembly of SMOCs involves prion-like polymerization, which

lowers the Gibb’s free energy (DG) of a protein (21, 23, 26, 30),

potentially altering protein conformation and kinetics (31, 36–38).

Speck formation follows the SMOC assembly mechanism,

indicating that specks enable inflammasome proteins to adopt a

conformation that efficiently senses the activation signal (20, 22, 26,

39). This efficient signaling may contribute to the threshold and all-

or-none nature of inflammasome responses.

While NLRP3 and ASC are unequivocally present within the

speck, the presence of other components is still a subject of debate.

In THP1 cells, NLRP3 and ASC oligomerizes under three minutes

to form a speck making it an incredibly rapid process (35).

Similarly, in HeLa cells, the concentration of cytosolic ASC drops

from 20mM to around 0.1mM within 100 seconds (34). Similar

observations have been made in other cell types like BMDMs and

HEK293T cells (40, 41). Interestingly, the kinetics of speck

formation differ in vivo. In Zebrafish, speck size stabilizes after a

continuous growth period of 15 minutes (42). The advantages of

such rapid protein oligomerization are not yet clear. Additionally,

the morphology of the speck is a topic of discussion. Early studies

suggested a hollow to fibrillar structure composed of small protein

complexes (15, 18, 43), but recent studies using high-resolution

microscopy and simulation models propose that the speck assembly

consists of intertwined ASC filaments (37, 38).
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These discrepancies may arise from various factors, including

experimental conditions, cell types, and organisms. However, the

differences highlight our current limitations in understanding speck

formation, the regulation of speck assembly, the presence of a single

speck per cell, and the mechanisms governing these processes. Some

studies have reported the formation of multiple specks per cell (16,

44, 45), suggesting the existence of conditions and mechanisms that

promote the formation of more than one speck. Investigating these

conditions and mechanisms would be intriguing for further research.
Speck formation: the molecular view

Speck assembly is characterized traditionally as a microtubule-

driven process (31, 36–38, 44, 46, 47). During infection and injury,

PAMPs and DAMPs induce damage to the mitochondria which

binds to ASC. Damaged-mitochondria laden ASC is transported

towards the endoplasmic reticulum (ER) through microtubules,

where NLRP3 is located (44). NLRP3 and ASC being in proximity

interacts and colocalize to form one cytosolic perinuclear speck of 1

µm (35, 48). Microtubule depolymerization agents like colchicine and

nocodazole block speck assembly further supporting the idea that

microtubules facilitate speck assembly (35, 48). Consistent with

speck’s proximity to centrosome, movement and activation of

NLRP3 is dependent upon binding with two centrosomal proteins,

Microtubule-affinity regulating kinase 4 (MARK4) (47) and NEK7,

respectively (49–53). However, some studies suggest that NLRP3 is

not localized exclusively on the centrosome (54) but also interacts

with mitochondria (44, 55–62), Golgi apparatus (63, 64) and redox-

associated proteins like TXNIP (62, 65). Thus, whether NLRP3

interaction with the centrosome is essential is still unclear. These

differences can be the result of using different cell types and

stimulation of NLRP3 by different agonists. It is likely that NLRP3

shuttles between different organelles or a sub-population of NLRP3

binds to one organelle while another sub-population binds to other

organelle. However, it is still not clear what signals would determine

shuttling from or the preference to bind one organelle to another.

Recently few papers have shown the role of membrane association of

NLRP3 in inflammasome formation. Membrane-bound NLRP3

promotes ASC oligomerization and inflammasome activation (63).

Moreover, NLRP3 forms a double-ring cage structure facilitated by

LRR interaction. Such LRR interactions are also required to disperse

Trans-Golgi network (TGNs) into vesicles (63). In these studies, they

have also revealed that a fraction of membrane unbound NLRP3 is

also present in the cells which constitute the inactive form of NLRP3.
Specks as the site of
inflammasome activity

NLRP3 activation results in rapid relocation of NLRP3 and

ASC to form a speck, which is followed by caspase-1 activation

suggesting that speck formation is required for inflammasome

formation (1, 9, 16, 17, 20, 66). The idea that specks are needed

for the inflammasomes stems from several observations. Firstly,

speck formation is the first event which happens within 3 minutes
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of NLRP3 activation (19, 39, 40, 67, 68) and thus precedes

inflammasome formation. Since caspase-1 is activated through

proximity induced dimerization and only one speck is formed per

cell, it is likely that caspase-1 activation occurs inside the speck (10,

12, 14). Secondly, small molecule drug, like MCC950, that inhibit

specks also impair the NLRP3 inflammasome response (24, 28)

suggesting that speck formation is necessary for inflammasome

activation. MCC950 inhibit speck formation, specifically block

NLRP3 inflammasomes in human and mouse macrophages and

alleviate symptoms of Cryopyrin Associate Periodic Syndrome

(CAPS) in a mouse model. Further, colchicine is used to treat

gout (69) and apart from blocking speck formation (44), it also

impairs IL-1b maturation after MSU stimulation (70). This finding

suggests that speck assembly is required for inflammasome

formation and/or possibly can be the site of inflammasome

function, i.e., caspase-1 activation and subsequent IL-1b
maturation. Thirdly, mutations that disrupt speck assembly also

impair inflammasome function (25–27) further implicating that

speck assembly is required for inflammasome function. Although

indirect, but these observations strongly suggest that speck is the

inflammasome. Conversely, these observations also suggest that

preventing specks blocks the downstream events leading to

inflammasome formation. Lastly, few studies have noted that

active caspase-1 colocalizes with NLRP3 and ASC at the speck

structure (2, 71) providing direct evidence of presence of caspase-1

at the speck. Several other tangential evidence exists that can be

extrapolated to say that speck is the inflammasome, but none of

such evidence directly establishes any such relationship.
Disparity between speck structure
and inflammasomes

Contradictory to the idea that specks are inflammasomes, some

observations suggests that specks may have some different roles.

The reported size and stoichiometry of specks differ significantly

from known inflammasome structures (10, 11, 20, 23, 26, 35, 39, 72,

73). Specks are approximately 100-1000-fold larger and display

variations in the ratio of NLR, ASC, and Caspase-1 compared to

other inflammasome complexes (10, 15, 71, 74). Discrepancies in

stoichiometry (10, 26) can be attributed to the different proteins

used in the studies, where full-sized NLRPs and ASC were used

by Faustin et al. (10), while Lu et al. and Sborgi et al. used isolated

PYD and CARD domains of ASC (26, 74). The absence of the

CARD domain leads to uninterrupted filamentous PYD structures,

as observed in these studies (26, 74). These differences in size

and composition suggest that specks and inflammasomes are

structurally distinct.

Interestingly, caspase-1 activity has also been observed in

smaller death complexes that do not resemble specks (17, 25, 75).

Moreover, Martinon et al., in their initial paper describing

inflammasomes, passed cell lysates through a 0.45 µm filter,

excluding the 1 µm specks (6). However, the filtered lysates

still activated caspase-1 (6), suggesting that structures smaller
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than 0.45 µm can function as inflammasomes. Furthermore,

specks are 500-1000-fold larger than the cryoelectron micrograph

of inflammasomes (10, 26). Calculations based on size and mass

relationships suggest that specks, assumed to be toroidal structures,

would be approximately 150-15000 times larger than an

inflammasome (76). These assumptions may vary depending on

the torus’s major-to-minor radius ratio and the assumption of a

perfect toroidal structure. While smaller structures resembling

inflammasomes have been observed inside specks (26), their

similarity to cryoelectron micrograph structures is yet to be

established. Further investigations utilizing high-resolution

microscopy and advanced biophysical techniques are needed to

confirm the presence of these smaller structures in cells.

It is possible that specks are conglomerate structures composed of

smaller inflammasomes, which are the sites of caspase-1 activity.

Upon NLRP3 activation, these smaller structures may leave the speck,

resulting in reduced speck size (2, 17). Interestingly, the gross-

morphology of the specks is unaffected by the presence of caspase-

1 suggesting that caspase-1 is either not an integral part of the speck

or its recruitment is temporally regulated further complicating the

relationship between these two structures (2, 17). The presence of

caspase-1 within specks remains inconclusive, with some studies

demonstrating caspase-1 colocalization while others suggesting only a

fraction of active caspase-1 is localized within the speck (2, 71). Even

in studies using super-resolution microscopy (71), point-spread

function analysis suggests that the ring of the speck which is

mostly ASC is in focus, whereas the center which is comprised of

active caspase-1 is spread-out above and below the plane suggesting

that only a fraction of active caspase-1 may be colocalized.

Additionally, speck formation alone is not sufficient for

inflammasome function, as specks lacking NLRP3 fail to activate

caspase-1 or promote IL-1b maturation (9, 29). Studies have shown

that higher doses of stimuli, even in the presence of colchicine, can

still activate the inflammasome without inducing speck formation

(17, 77). These phenotypes have been observed in in-vitro conditions

and its physiological relevance are yet to be investigated. It is not clear

how such high stimuli conditions manifest in a more relevant

physiological condition. It is also possible that higher conditions

doses alter the expression levels of inflammasome components which

can account for different threshold behavior.

Abovementioned observations, in addition to the presence of

multiple caspase-1 activating complexes within cells (17, 25, 75),

highlight the complexity of inflammasome activation. Mutations

disrupting speck formation without impairing IL-1b production

(25), multiple smaller complexes instead of a single speck (44), and

multiple caspase-1 activation sites (17) beyond the speck have been

observed. Active caspase-1 was found to have low colocalization with

specks (16, 17, 45), and live imaging showed caspase-1 activation

throughout the cytoplasm rather than in a speck-like location (78).

These findings suggest the presence of smaller death-complexes and

non-speck locations for caspase-1 activation, challenging the notion

that specks are the exclusive site of inflammasome activity.

In summary, conflicting evidence challenges the idea that

specks are inflammasomes. The structural and functional
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distinctions between specks and inflammasomes, the presence

of smaller inflammasome-like structures within specks, and

the observation of caspase-1 activity outside the speck all

contribute to the complexity and ambiguity surrounding the

relationship between specks and inflammasome activation.

However, it is crucial to conduct these studies under more

physiological conditions to minimize potential variations resulting

from in vitro stimulation. Further research using advanced

techniques and physiological settings is required to unravel these

intricate mechanisms.
Discussion

The role of specks in inflammasome function remains a

subject of debate and requires further investigation. While some

researchers propose that specks are the site of caspase-1 activation

and inflammasome activity, others suggest that specks may serve as

a critical node in the inflammasome activation pathway (Reviewed

in Elliot et. al.) (8) (Figure 2). To answer the question of what

NLRP3-ASC specks truly are, additional experiments utilizing

advanced technologies such as imaging flow cytometry (16, 17,
Frontiers in Immunology 05
79–81), cryo-electron microscopy, super-resolution microscopy

(16, 17, 79–81), BRET and proximity ligation assays (33, 44)

are needed.

Studying specks is essential despite caspase-1 activation occurring

outside the speck and the presence of smaller death complexes.

Investigating specks helps unravel their molecular composition,

organization, and role in caspase-1 activation and regulation,

shedding light on inflammasome signaling dynamics. Simultaneously,

understanding alternative activation sites such as smaller death

complexes provide insights into their composition, formation

mechanisms, and regulatory roles. Examining the spatial and

temporal regulation of caspase-1 activity under different cellular

conditions enhances our comprehension of inflammasome signaling

complexity. Re-evaluating existing literature in light of current

knowledge can identify gaps in inflammasome assembly and ASC

speck understanding. In addition to investigating the inflammasome-

associated role of ASC specks, it is equally important to explore potential

non-inflammasome functions of these structures. To truly comprehend

NLRP3-ASC specks, advanced techniques are necessary to

evaluate colocalization, modulate activation thresholds, and

investigate non-inflammasome functions. These efforts will

advance our understanding of specks and their significance in

inflammasome biology.
FIGURE 2

The relationship between an ASC speck and inflammasome. A weaker stimulus or a lower concentration of stimuli induces speck formation, which lower the
threshold of NLRP3 activation possibly through prion-like folding of NLRP3, ASC and pro-caspase-1 and formation of smaller inflammasomes. These smaller
inflammasome complex are the major activation site of caspase-1. However, in the presence of stronger stimulus or higher concentration of the stimuli,
NLRP3 activation does not require prion-like folding and can assemble with ASC and caspase-1 to form inflammasomes. Conversely, if specks are the sole
site of caspase-1 activation then any stimuli leading to NLRP3 activation forms a speck where caspase-1 is activated. All figures are drawn using BioRender.
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