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prognosis and immunotherapy
response prediction in lung
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bulk RNA-seq
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Background: Mast cells, comprising a crucial component of the tumor immune

milieu, modulate neoplastic progression by secreting an array of pro- and

antitumorigenic factors. Numerous extant studies have produced conflicting

conclusions regarding the impact of mast cells on the prognosis of patients

afflicted with lung adenocarcinoma (LUAD).

Methods: Employing single-cell RNA sequencing (scRNA-seq) analysis, mast

cell-specific marker genes in LUAD were ascertained. Subsequently, a mast cell-

related genes (MRGs) signature was devised to stratify LUAD patients into high-

and low-risk cohorts based on the median risk value. Further investigations were

conducted to assess the influence of distinct risk categories on the tumor

microenvironment. The prognostic import and capacity to prognosticate

immunotherapy benefits of the MRGs signature were corroborated using four

external cohorts. Ultimately, the functional roles of SYAP1 were validated through

in vitro experimentation.

Results: After scRNA-seq and bulk RNA-seq data analysis, we established a

prognostic signature consisting of nine MRGs. This profile effectively

distinguished favorable survival outcomes in both the training and validation

cohorts. In addition, we identified the low-risk group as a population more

effective for immunotherapy. In cellular experiments, we found that silencing

SYAP1 significantly reduced the proliferation, invasion and migratory capacity of

LUAD cells while increasing apoptosis.
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Conclusion: Our MRGs signature offers valuable insights into the involvement of

mast cells in determining the prognosis of LUAD andmay prove instrumental as a

navigational aid for immunotherapy selection, as well as a predictor of

immunotherapy response in LUAD patients.
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1 Introduction

Lung cancer ranks among the most pervasive malignancies and

constitutes the primary cause of cancer-related mortality, accounting

for nearly two million new cases and 1.76 million fatalities annually

(1). Lung cancer primarily bifurcates into small-cell lung cancer

(SCLC) and non-small-cell lung cancer (NSCLC) (1). NSCLC,

encompassing approximately 85% of all lung cancer incidents,

emerges as the predominant variant, while LUAD represents the

most ubiquitous histological subtype of NSCLC (2). LUAD is

characterized by marked heterogeneity and an intricate tumor

microenvironment (TME) (3). Conventional pathological staging

falls short of fully prognosticating the outcomes for NSCLC

patients, underscoring the need for devising novel and reliable

prognostic models. Such models could facilitate the assessment of

risk for LUAD patients, thereby informing the development of

tailored immunotherapy and chemotherapy regimens.

TME was sculpted through the intricate interplay of neoplastic

cells, immune cells, vasculature, extracellular matrix, stromal cells,

fibroblasts, adipocytes, pericytes, and a multitude of signaling

factors. Various cellular constituents within the TME engage in

communication with tumor cells. Tumor-infiltrating immune cells,

comprising the preponderance of the TME, interact with neoplastic

cells, either promoting or inhibiting tumor growth, invasion, and

metastasis (4). Mast cells, ubiquitously present across diverse

tissues, assume a considerable role in the immune milieu of

neoplastic tissues. These cells secrete pro- and anti-tumorigenic

factors, modulating tumor development and dissemination. In

recent years, tumor immunotherapy has emphasized the

importance of immune cells within the TME as crucial targets.

Mast cells are vital for altering the TME and facilitating tumor

angiogenesis. Reports indicate that intratumoral mast cells exhibit

enzyme profiles or subtypes distinctly different from their

extratumoral counterparts (5–7). Within the TME, mast cells

undergo activation and degranulation, adopting a highly

proinflammatory state and actively recruiting macrophages and

other innate immune cells to orchestrate the anti-tumor immune

response. The role of mast cells in tumors remains a subject of

debate, akin to macrophages, as inflammation-related mechanisms

associated with mast cells may either foster or impede tumor

formation (8). Due to the inflammatory mechanisms associated

with mast cells, their role in tumor formation remains controversial,

as is the case with macrophages (9). Research indicates that mast
02
cells can modify their phenotype to exert various effects, and this

transition can be regulated by macrophages and tumor cells (10). In

gastric cancer, IL-33 secreted by tumor cells has been shown to

activate mast cells and promote the expansion of tumor-associated

macrophages (TAM). Patients with gastric cancer have been found

to have poorer survival rates when TAMs accumulate (11).

Investigations of colon cancer have revealed that mast cells can

enhance the immunosuppressive properties of MDSCs through IFN

production, and M2-type TAMs are significant producers of

MDSCs (12). It has also been shown that tumor-associated mast

cells are associated with overall and progression-free survival in

lung cancer patients (13). In NSCLC, tumor-derived microvesicles

(TMV) may activate mast cells to release cytokines and chemokines,

affecting their migratory ability and potentially influencing

tumorigenesis. The internalization of PKH67-labelled TMV from

NSCLC cell lines by mast cells resulted in ERK phosphorylation,

enhanced migratory ability, and increased release of cytokines and

chemokines such as TNF-a and MCP-1 (14). Further research is

needed to determine the potential therapeutic utility of mast cells in

the treatment of LUAD.

By integrating single-cell and bulk RNA-seq data, we identified

a gene signature comprising of nine MRGs that could potentially

serve as therapeutic targets. Various analyses, such as survival

analysis, TME, immune cell infiltration, and mutation analysis,

were conducted to examine the underlying functions of the

modeled genes. Furthermore, several cellular studies validated the

role of SYAP1 in LUAD.
2 Methods

2.1 Dataset acquisition and processing

The scRNA-seq dataset GSE150938 contains 12 samples of lung

adenocarcinoma (LUAD) obtained from the Gene Expression

Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/).

Validation cohorts were obtained from the GSE31210 (n=226)

and GSE30219 (n=85) datasets, while the GSE135222 (n=27)

dataset was used for immunotherapy analysis validation. Clinical

information, mutation data, and bulk sequencing data (n=516) for

LUAD patients were acquired from The Cancer Genome Atlas

(TCGA) database. The IMvigor210 dataset includes expression

profiles and clinical data for patients with advanced uroepithelial
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carcinoma treated with immune checkpoint inhibitors (ICI). To

improve comparability across datasets, all expression data were

converted to transcripts per million (TPM) format and corrected

for batch effects using the “batch” function of the “sva” package.

Prior to analysis, all data were log-transformed.
2.2 Processing flow of scRNA-seq data

The scRNA-seq data underwent processing using the “Seurat” R

packag (15). Cells with “min.cells<3” and “min.features>200” were

excluded. After filtering out cells with nFeature RNA > 7000 and >

10% mitochondrial sequencing count, a total of 46286 cells were

retained for further analysis. The dataset was normalized using

Seurat’s NormalizeData and ScaleData routines, and batch effect

was eliminated using CCA. The top 2000 genes exhibiting the

highest degree of variabili ty were selected using the

“FindVariableFeatures” algorithm. Clusters were identified using

Seurat’s Stochastic Neighbor Embedding (tSNE) (16) and the

“FindClusters” function (resolution = 0.8). Marker genes were

identified using the “FindAllMarkers” function in Seurat, with

cluster-specific markers being retained when log2FC exceeded

0.25. Cells were classified using common cell markers, and for

further analysis, the differential genes in the mast cell cluster were

treated as mast cell marker genes. The “AUCell” R package was used

to determine the activity of a gene set in individual cells, with gene

expression rankings of each cell being based on the area under the

curve (AUC) value of the model genes to compute the fraction of

highly expressed gene sets in each cell. AUC values were higher in

cells with greater expression of the gene set, and the “AUCell

exploreThresholds” function was utilized to calculate the

threshold for identifying cells with active gene sets. The “ggplot2”

R program was then employed to visualize the active clusters by

translating each cell’s AUC score to a t-SNE embedding.
2.3 Building and evaluating
prognostic models

The TCGA cohort’s overall survival (OS) was evaluated using a

univariate Cox analysis (17), and MRGs with prognostic

significance were identified based on a P<0.05. The “glmnet”

package was employed to select alternative genes and construct

prognostic features using the least absolute shrinkage and selection

operator (LASSO) (18). The “caret” package segregated LUAD

patients into two groups based on a 7:3 ratio for training and

testing. The MRGs signature was generated using the following

equation: risk score =on
k=0Exp k ∗ coef k. where Expi

represents the expression level of each MRGs and coef k

represents the corresponding model gene coefficient. The risk

score for each patient in both the TCGA training and test groups

was determined using the aforementioned method, and patients

were classified as either high risk or low risk based on the median

risk score. The signature was validated in the GEO cohorts, with the

risk score calculated in a manner consistent with the TCGA dataset.

The accuracy of the model was assessed using the ROC curve, and
Frontiers in Immunology 03
external validation of this signature was performed using the risk

scores calculated using the aforementioned formula for survival

analysis in LUAD samples from the GEO database.
2.4 Correlations among model genes and
their impact on survival

The extraction of model genes’ expression was performed,

followed by a correlation analysis to investigate the correlation

and P value among the model genes and between the model genes

and risk scores. The obtained results were presented using the

“GGally” R package. To determine the contribution of each model

gene to the OS, the “survcutpoint” function was employed, which

computed optimal cutpoint values for each gene and produced

corresponding survival curves. In addition, a heatmap was

generated to examine the association between the risk model and

clinical features in greater detail by incorporating clinical data,

model genes, and immune checkpoint gene expression.
2.5 Nomogram construction

The clinical characteristics were integrated with the risk score

utilizing the R package ‘rms’ to construct a more precise nomogram

(19, 20), which enhanced the predictability of prognostication. The

accuracy of the nomogram was assessed by calibration and ROC

curves (21).
2.6 Enrichment analysis and
functional annotation

The “limma” package was utilized to determine DEGs between

high- and low-risk groups, with a threshold of FDR< 0.05 and log2

(FC) > 1. Gene set enrichment analyses (GSEA) and Gene Ontology

(GO) enrichment were conducted for differential genes between

different risk groups, with assistance from the R packages

“clusterProfiler” and “org.Hs.eg.db” (22). In addition, Gene Set

Variation Analysis (GSVA) was performed to investigate the

heterogeneity of various biological processes, using the “GSVA”

package. The Hallmark gene sets “h.all.v7.5.1.symbols.gmt” from

MSigDB were utilized for the GSVA. Functional annotation was

carried out using the R tool “clusterProfiler”. The enrichment scores

of LUAD samples were determined using single sample gene set

enrichment analysis (ssGSEA). It was observed that there were

differences in pathway activity between the high-risk and low-risk

groups, as indicated by the T values. To present the results of the

enrichment analysis, the R packages “ggplot2” and “GseaVis”

were employed.
2.7 Mutation analysis

The somatic mutations of LUAD in low- and high-risk groups

were analyzed using the R package “maftools” and the mutation
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annotation format (MAF) was generated using TCGA database data

(23). Tumor mutation burden (TMB) was estimated for each

LUAD patient.
2.8 Immunotherapy and evaluation of
immune microenvironment

In order to characterize the immune microenvironment, the

CIBERSORT method with 1,000 permutations was used to

determine the composition of 22 different types of immune cells

(24). We acquired the LUAD patient data from the Timer2.0

database and used seven immune infiltration assessment methods

to analyze all TCGA database patients. The differences in immune

cell infiltration between different risk groups were examined, and

the degree of immune cell infiltration was visualized using heat

maps. Boxplots and scatterplots were used to display differences and

correlations in immune checkpoint genes between high- and

low-risk groups. Using single sample gene set enrichment

analysis (ssGSEA), the enrichment scores of 29 immune

signatures were quantified. Additionally, the R package “estimate”

was utilized to determine the immunological scores, stromal

scores, and ESTIMATE scores of LUAD patients (25, 26). The

immunogenicity of LUAD was assessed using machine learning.

Immunophenoscores (IPS) were retrieved from the Cancer

Immunome Atlas (TCIA) database for LUAD (27). The IPS

scores between the high-risk and low-risk groups were compared

to predict immunotherapy sensitivity. To evaluate the likelihood of

response to ICI treatment, the Tumor Immune Dysfunction and

Exclusion (TIDE) algorithm was utilized online (http://

tide.dfci.harvard.edu/) (28). Lower TIDE scores indicated a

greater probability of responding to ICI treatment with greater

effects. Finally, two immunotherapy cohorts, IMvigor210 and

GSE135222, were used to assess the model’s ability to predict

immunotherapy outcomes.
2.9 Relationship between risk model
and six immune subtypes and
pathological stage

There exist six established immune subtypes, namely wound

healing, inflammatory, lymphocyte deficient, immunologically

quiet, and TGF-dominant (29). To assess these subtypes in

LUAD samples and compare them to the constructed risk model,

the “ImmuneSubtypeClassifier” software was employed. The

differences were analyzed using the Chi-square test. Similarly, the

association between the high- and low-risk groups and pathological

stage was assessed using the same method.
2.10 Cell lines culture

Normal human lung epithelial BEAS-2B cells and human

LUAD cell lines (A549, H1299) were procured from the Cell

Resource Center of Shanghai Life Sciences Institute and cultivated
Frontiers in Immunology 04
in F12K or RPMI-1640 (Gibco BRL, USA) supplemented with 10%

fetal bovine serum (FBS) and 1% streptomycin and penicillin

(Gibco, Invitrogen, Waltham, MA, USA) under 5% CO2, 95%

humidity, and 37°C conditions.
2.11 Cell transfection

Small interfering RNAs (siRNAs) constructs (GenePharma,

Suzhou, China) were utilized to generate SYAP1 knockdown (30).

Supplementary Table S1 lists the SYAP1 siRNA sequences. Cells

were seeded in a 6-well plate at 50% confluence and transfected with

negative control (NC) and knockdown (siSYAP1) using

Lipofectamine 3000 (Invitrogen, USA).
2.12 Extraction of RNA and Real-Time
PCR (RT-PCR)

Total RNA was extracted from cell lines using TRIzol

(15596018, Thermo) following the manufacturer’s instructions,

and cDNA was synthesized using the PrimeScriptT-MRT kit

(R232-01, Vazyme). Real-time polymerase chain reaction (RT-

PCR) was per-formed using SYBR Green Master Mix (Q111-02,

Vazyme), with mRNA expression lev-els being normalized to the

level of GAPDH mRNA. The expression levels were calcu-lated

using the 2−DDCt method, and all primers were obtained from

Tsingke Biotech (Beijing, China). Supplementary Table S1 contains

the full primer sequences.
2.13 Cell Counting Kit-8 experiment
(CCK-8)

1×103 cells were transfected into each well of a 6-well plate and

cultured for 14 days. The cells were washed twice with PBS and

fixed with 4% paraformaldehyde for 15 minutes before being

stained with Crystal Violet (Solarbio, China).
2.14 Colony formation

We transfected 1×103 cells into each well of a 6-well plate and

kept the cells alive for 14 days. Before Crystal violet (Solarbio,

China) staining, the cells were washed twice with PBS and fixed for

15 minutes in 4% paraformaldehyde.
2.15 EdU

For the EdU assay, a 96-well plate containing 2×104 treated cells

per well was uti-lized. The cells were allowed to attach to the well

before conducting the assay following the manufacturer’s

recommended protocol (Ribobio, China) for 5-Ethynyl-2’-

deoxyuridine (EdU) incorporation. The number of proliferating

cells was counted using an inverted microscope.
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2.16 Wound-healing assay

Transfected cells were plated in 6-well plates and incubated

until they reached 95% confluency. Using a sterile 20-L plastic

pipette tip, a single straight line was scraped in each cultured well,

and unattached cells and debris were washed away twice with PBS.

The width of the scratch wounds was measured using the Image J

software by taking photos of the wounds at 0 and 48 hours.
2.17 Transwell assay

For the cell invasion and migration assays, transwells were used.

Treated A549 and H1299 cells (2×105) were added to the top

chamber of 24-well transwells and incubated for 48 hours. The top

section of the plate was either precoated with matrigel solution (BD

Biosciences, USA) or left untreated to evaluate the cells’ invasion

and migration ability. The cells on the top surface were removed,

and the remaining cells on the bottom layer were fixed with 4%

paraformaldehyde and stained with 0.1% crystal violet (So-

larbio, China).
2.18 Analysis of apoptosis

To induce apoptosis, all cells were exposed to 0.5 mMH2O2 for

4 hours before apoptosis analysis. An Annexin V-APC/PI
Frontiers in Immunology 05
Apoptosis Detection Kit (KeyGEN, Jiangsu, China) was used

following the manufacturer’s instructions. The apoptotic rate was

then determined using the BD FACSCanto II (BD Biosciences, San

Jose, CA, USA).
3 Results

3.1 Identification of mast cell markers

Figure 1 illustrated the study’s schematic representation, while

Supplementary Figure 1 provided comprehensive quality control

information for scRNA-seq analysis. After data processing and

filtering, gene expression profiles for 46,286 cells derived from 12

LUAD samples were acquired and subjected to further

investigation. Marker genes exhibiting differential expression were

employed to distinguish each cellular group, as depicted in

Figure 2A, and representative marker genes for each group were

displayed in Figure 2B. Following dimensionality reduction and log-

normalization, 24 cell clusters were generated (Figure 2C).

Annotations for cell identification within each cluster were

determined by comparing DEGs to canonical marker genes. Cells

in cluster 8 were identified as mast cells (Figure 2D), resulting in the

detection of 306 LUAD mast cell gene markers. Upon mapping

these marker genes to TCGA and GEO databases, 294 genes were

preserved. Furthermore, Figure 2E demonstrated that AUCell

scores of model genes were notably elevated in mast cells.
FIGURE 1

The flowchart of this investigation. In total, we divided this study into four parts, construction of the prognostic model; assessment of model
stability; application of the model in predicting immunotherapy; cancer-promoting effect of SYAP1 in LUAD cells.
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3.2 Building a predictive signature

Initially, we employed a univariate Cox proportional regression

analysis on the TCGA training dataset to identify 50 mast cell

marker genes that exhibited statistically significant associations with

OS (P<0.05, Supplementary Figure 2). These genes were then

utilized to construct a prognostic signature. The most

advantageous prognostic genes were determined through a

LASSO Cox regression model, selecting one standard error above

the minimum criterion, which resulted in a 20-gene model

comprising RGS13, HDC, RAB27B, RGS2, BEX4, NFKBID,

BIRC3, ELL2, CNIH1, AP3S1, EIF3E, LAT, DDIT4, DNAJB4,

PPP3CA, SYAP1, AP2M1, EIF2S3, BANF1, and MYLIP. A

multivariate Cox regression analysis was employed to pinpoint a

final set of nine genes, which were subsequently used to refine the
Frontiers in Immunology 06
model to encompass only the most predictive genes. A risk score

was subsequently generated: risk score = (-0.28914 × HDC

expression) + (0.146946 × RGS2 expression) + (-0.249 × BEX4

expression) + (0.204576 × BIRC3 expression) + (0.391839 × EIF3E

expression) + (0.272907 × PPP3CA expression) + (0.402948 ×

SYAP1 expression) + (0.363513 × AP2M1 expression) + (-0.3329

× MYLIP expression). The same algorithm was applied to the

TCGA validation set, the TCGA all set, and two additional

independent GEO datasets. Patients were stratified into high- and

low-risk categories based on the median risk score. Kaplan-Meier

survival analysis indicated that high-risk patients experienced

significantly poorer OS compared to low-risk patients (P<0.01,

Figures 3A–E) . Principal component analys is (PCA)

demonstrated that the risk score could effectively segregate the

TCGA data into two distinct groups (Figure 3F). Utilizing ROC
A B

D EC

FIGURE 2

Annotation of single-cell data and extraction of Mast cell. (A) Differentially expressed marker genes were used to identify each cell group. (B) Typical
marker genes for each cell group. (C) The tSNE plot showed that all the cells in the 12 lung adenocarcinoma samples can be classified into 24
clusters. (D) The tSNE map indicates that lung adenocarcinoma samples can be annotated as 7 cell types in the tumor microenvironment (different
colors represent different cell types). (E) AUCell score of model genes in each cell.
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curves for OS at 1, 3, 5, and 10 years, we assessed the prognostic

accuracy of the prognostic signature. In the TCGA lung

adenocarcinoma (LUAD) training cohort, the area under the

curve (AUC) values at these time points were 0.76, 0.76, 0.68, and

0.69, respectively (Figure 3G). In the TCGA validation set and the

entire set, superior AUC values were also exhibited (Figures 3H, I).

Analogously, the AUC values of the two additional GEO cohorts

indicate that the model possesses a commendable degree of

accuracy. For the GSE30219 cohort, the AUC values at 1, 3, 5,

and 10 years are 0.712, 0.759, 0.779, and 0.768, respectively, while

for the GSE 31210 cohort, they are 0.733, 0.681, 0.723, and 1.000

(Figures 3J, K).
Frontiers in Immunology 07
3.3 Correlations between model genes and
impact on survival

The evaluation of the expression levels of model genes revealed

that the majority of genes exhibited positive correlations among

their expression levels, with BEX4 and PPP3CA demonstrating the

most positive correlations with MYLIP (R>0.3, P<0.001). The

marginally negative relationship between BEX4 and BIRC3 and

EIF3E was not statistically significant. We also observed that the

genes and model risk scores were closely associated, with HDC,

BEX4, and MYLIP displaying considerable negative correlations,

while the remaining genes exhibited significant positive correlations
A B

D E F

G IH

J K

C

FIGURE 3

Construction and validation of Mast cell-related prognostic model. (A–E) Kaplan-Meier prognostic analysis of signatures in the training, testing,
whole TCGA, GSE31210 dataset and GSE30219 dataset. (F) PCA analysis in TCGA cohort. It was found that the model could group LUAD patients
well. (G–K) Time-dependent ROC curves of signatures in the training, testing, whole TCGA, GSE31210 dataset and GSE30219 dataset.
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(Figure 4A). The impact of each gene on survival is depicted in

Figure 4B, which indicates that HDC, BEX4, and MYLIP serve as

protective genes, suggesting that reducing the expression of these

genes may enhance patients’ OS. Conversely, RGS2, BIRC3, EIF3E,

PPP3CA, SYAP1, and AP2M1 are high-risk genes, and their

elevated expression may diminish patient survival. Figure 4C

demonstrates that the high-risk group exhibits increased
Frontiers in Immunology 08
expression of RGS2, BIRC3, EIF3E, PPP3CA, SYAP1, and

AP2M1, whereas the low-risk group displays heightened

expression of other model genes. Additionally, the graph also

highlights significant differences between the high-risk and low-

risk groups in terms of the expression of certain immune

checkpoint genes, such as TNFRSF25, BTNL2, IDO2, and

TNFRSF4, among others.
A

B C

FIGURE 4

Correlations between model genes and their impact on survival. (A) Correlation analysis between model genes and risk scores. (B) The relationship
between model genes and survival. (C) A heat map incorporating clinical data, model genes, and immune checkpoint gene expression. *P < 0.05,
**P < 0.01, ***P < 0.001.
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3.4 Nomogram construction

By integrating clinical data and risk stratification, a nomogram

was devised to assess the risk of TCGA patients. Figure 5A

illustrates the patients’ gender, age, T, N, M stages, overall stage,

and risk classification. This nomogram may facilitate a more precise

determination of patient risk and guide subsequent therapeutic

strategies. To further appraise the accuracy of this nomogram,

prognostic ROC analysis was conducted, revealing that the

findings notably surpassed those of alternative clinical models and

risk scores. According to the results, the AUC values at 1, 3, 5, and

10 years were 0.731, 0.753, 0.733, and 0.763, respectively

(Figures 5C–F). Additionally, we generated calibration curves

(Figure 5B) and noted that this nomogram could reliably forecast

the prognosis of LUAD patients at one, three, and five years.
3.5 Analysis of enrichment

In both high- and low-risk cohorts, DEGs were identified and

their expression profiles were visualized using a volcano plot (FDR<

0.05 and log2 (FC) > 1; see Figure 6A). Gene Ontology (GO)

enrichment analysis was performed on the DEGs (Figure 6B) and

revealed that the biological processes (BP) mainly involved skin

development, humoral immune response, and epidermis formation.

In terms of cellular component (CC), the immunoglobulin

complex, presynapse, and external side of the plasma membrane

were the most represented. In molecular function (MF),
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endopeptidase activity, receptor ligand activity, and signaling

receptor activator activity were the predominant categories. It has

been reported that the activity of prolyl endopeptidase is associated

with the prognosis of colorectal cancer (31). GSEA was conducted

on high and low-risk LUAD groups (Figure 6C). GSEA enrichment

analysis revealed that cell cycle (NES = 1.87, p = 0.000), ribosome

(NES = 1.85, p = 0.000), spliceosome (NES = 1.69, p = 0.000), starch

and sucrose metabolism (NES = 1.72, p = 0.000), DNA replication

(NES = 1.65, p = 0.000), pyrimidine metabolism (NES = 1.53, p =

0.01), drug metabolism other enzymes (NES = 1.58, p = 0.02),

mismatch repair (NES = 1.5, p = 0.03), and others were enriched in

LUAD patients with high-risk scores. Analysis of hallmark pathway

gene signatures underscored that the high and low-risk groups

exhibited some distinctions. A direct comparison of Risk-High

versus Risk-Low revealed the top 5 enriched signatures in the

high-risk group included mTORC1 signaling, Glycolysis, G2M

checkpoint, C-MYC target, and E2F targets (Figure 6D). Prior

studies have demonstrated that, despite oxygen availability,

glycolysis is augmented in numerous malignancies; however,

therapeutic investigations using glycolysis inhibitors, such as the

glucose analog 2-deoxy-D-glucose (2DG), have proven ineffective.

MTORC1 signaling instigates metabolic reconfiguration, allowing

tumor cells to become glycolysis-independent, thus promoting the

initiation and progression of malignancies. Furthermore, c-Myc is

essential for tumorigenesis (32), Myc frequently enhances

transcription (33), indicating that LUAD cells may be susceptible

to Myc inhibition. The E2F family encodes crucial nuclear

transcription factors involved in regulating the cell cycle (34, 35).
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FIGURE 5

Building a more accurate nomogram. (A) Nomogram was constructed by combining Clinical features with risk groups. (B) Nomogram’s 1-, 3, and 5-
years calibration curve. (C–F) ROC curves for 1, 3, 5 and 10 years showed AUC values for various clinical factors, risk scores, and nomogram scores.
*P < 0.05, **P < 0.01, ***P < 0.001.
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Clinical research suggests that E2F family members are directly

associated with the incidence, progression, proliferation, and

apoptosis of various cancerous tumors such as gastric, lung, liver,

esophageal, prostate, bladder, and ovarian cancer (34, 36). The G2M

checkpoint also operates as a cell cycle regulatory pathway to
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control cell proliferation. Elevated G2M checkpoint pathway

activation has been linked to significantly poorer survival in

pancreatic cancer patients (37). Consequently, these pathways,

more prevalent in the high-risk group, may play a vital role in

regulating tumor growth in LUAD.
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FIGURE 6

Enrichment analysis and functional annotation. (A) Differentially expressed genes between high- and low-risk groups (FDR <0.05, log2 (FC) > 1). (B)
Bar graphs are used to show GO enrichment analysis. (C) GSEA enrichment method showed pathway differences between high and low risk groups.
(D) GSVA shows the enrichment of hallmark gene sets in different risk groups.
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3.6 Association between mutation
and prognosis

Figure 7A presents an overview of the mutations discovered in

LUAD specimens, with missense mutations being the most

common type. In comparison to other single nucleotide locus
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variation (SNV) classes, C>T exhibited the highest frequency. The

top 20 genes with the highest mutation frequency in the high and

low-risk groups are displayed. It is evident that the top five genes

(TP53, TTN, MUC16, CSMD3, RYR2) with the highest mutation

frequency in the high-risk group demonstrate distinct levels of

increased mutation samples compared to those in the low-risk
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FIGURE 7

Mutation analysis. (A) Mutation landscape of the top 20 genes with mutation frequency in the high-low risk group. (B) TMB differences between high
- and low-risk patients. (C) Relationship between risk score and tumor mutation burden. (D) Survival differences between patients with high and low
TMB. (E) Survival analysis between four different groups (H-TMB+high-risk, H-TMB+low-risk, L-TMB+high-risk, and L-TMB+low-risk). (F) Mutation
landscape of model genes. (G) Co-mutation or co-exclusion relationships among model genes. *P < 0.05.
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group. We subsequently examined the differences in TMB between

the high- and low-risk groups (Figure 7B) and conducted a

correlation analysis (Figure 7C). The results indicated a

significant positive association between TMB and risk score, as

well as notably different TMB levels between the two risk groups.

We then investigated how the two groups, in conjunction with

TMB, could influence OS prognosis. Survival analysis suggested

that higher TMB levels were associated with improved OS

(Figure 7D). Based on the median risk score and median TMB,

LUAD patients were classified into four groups: H-TMB+high-risk,

H-TMB+low-risk, L-TMB+high-risk, and L-TMB+low-risk, and a

survival curve was generated (Figure 7E), which illustrated that the

H-TMB+low-risk group has the best prognosis, while the L-TMB

+high-risk group has the worst prognosis. The model genes

mutation map was displayed in Figure 7F, which revealed that the

most prevalent type of variant classification in the TCGA-LUAD

cohort. Moreover, 14 LUAD patients exhibited mutations, with

HDC having the highest mutation frequency. Subsequently, we

further explored the co-mutation relationship of the model genes

(Figure 7G), and the findings indicated that there was no significant

co-mutation relationship between most genes, although a weak co-

mutation relationship existed between PPP3CA and RGS2, HDC

and MYLIP, but it was not statistically significant.
3.7 Assessment of immune
microenvironment

We analyzed LUAD samples for their immune cell composition

using the CIBERSORT method, comparing the high- and low-risk

groups and correlating them with model genes and risk scores. As

illustrated in Figures 8A, B memory cells, plasma cells, and

regulatory T cells were relatively low in the high-risk group

(P<0.05), while memory-activated CD4+T cells, M2 macrophages,

activated DC cells, neutrophils, and eosinophils were more

prevalent in the high-risk group (P<0.05). Figure 8C

demonstrated that the risk score was negatively associated with

the relative content of resting mast cells, plasma cells, memory B

cells, and regulatory T cells and positively associated with memory-

activated CD4+T cells, neutrophils, activated dendritic cells, M1

macrophages, and resting NK cells. Intriguingly, we discovered that

the expression of the HDC gene was significantly correlated with

the relative content of resting mast cells, which might suggest that

the HDC gene influences TME changes by regulating mast

cell proliferation.

To further emphasize the differences in immune infiltration

levels between high- and low-risk groups, we examined the results

of seven different immune infiltration algorithms. As depicted in

Figure 8D, the low-risk group exhibited greater immune cell

infiltration, including B cells and T cells. ICI therapy has made a

significant breakthrough in cancer treatment and is now considered

a highly promising immunotherapy approach. Consequently, we

assessed the expression levels of immunological checkpoints in

various risk groups (Figure 8E). In comparison to the high-risk
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group, the low-risk group exhibited higher expression of most

immune checkpoints, including TNFRSF25, BTNL2, IDO2,

TNFRSF4, BTLA, KIR3DL1, TNFRSF14, CD27, ADORA2A,

CD160, CD40LG, and LAG3. In contrast, TNFSF9, TNFSF4,

CD276, NRP1, TNFRSF9, and CD44 were more highly expressed

in the high-risk group. Correlations between risk scores, model

genes, and immune checkpoints are illustrated in Figure 8F. Further

analysis of the correlations between differentially expressed immune

checkpoint genes, risk scores, and model gene expression revealed a

significant positive correlation between risk scores and TNFSF9,

suggesting that high-risk patients may benefit from TNFSF9-related

immunotherapy. Interestingly, the HDC gene was negatively

correlated with most differentially expressed immune checkpoints,

indicating that HDC gene expression might predict the efficacy of

ICI treatment in lung cancer patients. Figure 9A displays the ssgsea

results for immune cell and immune-related function enrichment.

The distribution of immune cells underscores the distinct tumor

immune microenvironments (TIME) in the two LUAD risk groups.

Among all immune cell types, mast cells and B cells exhibited higher

enrichment in the low-risk group. The low-risk group likely

possessed a greater capacity for stimulating the adaptive immune

system due to their increased human leukocyte antigen (HLA)

activity, potentially explaining the higher OS in this group.

Emerging research suggests that mast cells might play a role in

modulating the timing and response to immunotherapy (38, 39). To

evaluate TIME patterns and immunotherapeutic responses across

different risk groups, we performed an analysis using the

ESTIMATE method to calculate the components of LUAD’s

TIME. Results revealed that risk scores were positively correlated

with immune scores, stromal scores, and estimate scores but

negatively correlated with tumor purity (Figure 9B). Additionally,

the Immune Prognostic Score (IPS) could help identify patients

who may benefit from immunotherapy. Tumor samples from these

patients were expected to demonstrate favorable immune responses

to PD-1/PD-L1 or CTLA4 inhibitors, or both (Figures 9C–F).

Patients in the low-risk group had significantly higher IPS scores

when treated with CTLA-4, suggesting that they would benefit the

most from this type of immunotherapy.

The TIDE algorithm was used to predict the immunotherapy

response of different risk groups. Our findings indicated a

significantly lower TIDE score in the high-risk group (P<0.001;

Figure 9G), suggesting that high-risk patients are more likely to

benefit from immunotherapy. In conclusion, although the low-risk

group displayed higher expression of immune checkpoint genes and

greater immune cell infiltration, it also exhibited increased Treg cells,

which could lead to an immunosuppressive microenvironment and

reduced benefit from immunotherapy. This finding was also

confirmed in the subsequent immunotherapy cohort.
3.8 Immunotherapy cohort analysis

The Imvigor210 cohort and GSE135222 independent

immunotherapy cohorts were employed to validate the advantage
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of patients in distinct risk groups from immunotherapy. The

outcomes revealed that, in accordance with our analysis, the

proportion of complete response (CR) and partial response (PR)

was elevated in the high-risk group (Figures 9H, I), suggesting that
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patients in the high-risk group weremore likely to derive benefit from

immunotherapy. Subsequently, the relationship between model

categorization and immune subtypes was examined, as depicted in

Figure 9J. Immune subtypes C1, C2, and C6 were predominantly
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FIGURE 8

Analysis of immune cell content and immune checkpoint. (A) Evaluating the differences in immune cell content between high and low risk groups.
(B, C) Correlations between immune cell content and model genes and risk scores. (D) Differences in immune cell content between risk groups
were assessed using seven different algorithms. (E) Differences in immune checkpoint gene expression between high and low risk groups. (F)
Relationships between immunological checkpoints, model genes, and risk scores. *P < 0.05, **P < 0.01, ***P < 0.001.
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observed in the high-risk group. Prior research has indicated that the

immune subtype C3 group exhibited the most favorable prognosis,

and C3 was primarily found in the low-risk category, in line with

previous findings. Furthermore, we explored the association between
Frontiers in Immunology 14
the risk model and the clinical stage of LUAD patients (Figure 9K)

and uncovered that as the pathological stage advanced, the

proportion of high-risk patients increased, thereby demonstrating

the reliability of the risk model we established.
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FIGURE 9

Analysis of immunotherapy and the immune microenvironment. (A) The ssgsea algorithm was used to evaluate the differences in immune cells and
immune-related functions between high and low risk groups. (B) Correlations between risk scores and immune scores, stromal scores, and estimate
scores. (C–G) Variations in IPS and TIDE between those at high-and low-risk. (H, I) The Imvigor210 cohort and GSE135222 independent
immunotherapy cohorts were used to verify the benefit of patients in different risk groups from immunotherapy. (J) Relationship between high - and
low-risk groups and six immune subtypes. (K) Correlation between tumor stages and different risk groups. *P < 0.05, **P < 0.01, ***P < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1189520
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1189520
3.9 Validation of SYAP1 expression and
biological function in LUAD

Further investigation was conducted on SYAP1, which exhibited

the highest hazard ratio (HR) value in the signature. Utilizing the

GEPIA database, SYAP1 was found to be significantly expressed in

tumor tissues in the majority of malignancies when examining the

relative expression of SYAP1 in pan-cancerous tumors and adjacent

tumors (Supplementary Figure 3) and LUAD patients with high

SYAP1 expression have poorer OS (Supplementary Figure 4). Prior

studies have disclosed that patients with elevated SYAP1 expression

in LUAD experienced unfavorable outcomes. To better comprehend

SYAP1’s role, we carried out in vitro research. Figure 10A displays

that SYAP1 is markedly elevated in two LUAD (A549, H1299) cell

lines compared to BEAS-2B cell lines from healthy human lung

epithelial tissue. For subsequent experiments, SYAP1 in LUAD cell

lines was silenced. Initially, we assessed SYAP1’s knockdown efficacy

in LUAD cells and discovered that, following SYAP1 gene silencing,

SYAP1 gene expression in A549 and H1299 cell lines was less than

half of the initial level (Figure 10B). CCK-8 and EdU assays were

employed to determine the potential proliferative effect of SYAP1 on

LUAD cells. The findings demonstrated that diminished expression

of SYAP1 reduced the proliferative capacity of A549 and H1299 cells

compared to the control group (Figures 10C–E), suggesting that

SYAP1 may exert a potentially vital influence on the proliferation of

LUAD cell lines. Moreover, the colony formation assay indicated that

the downregulation of SYAP1 led to a notable reduction in the

number of colonies compared to the control group (Figure 10F). The

outcome of the scratch-wound healing experiment was analogous.

Cells with attenuated SYAP1 gene expression exhibited a

considerably decelerated rate of wound healing (Figure 10G). The

cell apoptosis assay revealed that the apoptosis rate of LUAD cell lines

with SYAP1 knockdown was significantly increased (Figure 11A).

Consequently, it is plausible to hypothesize that overexpression of

AYAP1 can impede cell apoptosis and foster tumor progression.

Transwell experiments disclosed that SYAP1 downregulation

substantially curtailed the migration and invasion of A549 and

H1299 cells (Figure 11B). To corroborate the precision and

reproducibility of the results, all experiments were replicated in two

LUAD (A549, H1299) cell lines, and all data were presented as the

means ± SD of three independent experiments. *P< 0.05, **P< 0.01,

***P< 0.001.
4 Discussion

Previous inquiries delved into the association between immune

cell populations and cancer patients’ clinical outcomes (40).

Distinct cancer types possess diverse immune cell populations,

engendering a complex immunological network within the TME

that profoundly influences tumor development and progression.

Mast cells, a crucial constituent of the immunological milieu in

tumor tissues, may exhibit pro- or anti-tumorigenic functions by

releasing various mediators (5). For instance, mast cell-secreted

angiogenic and lymphangiogenic factors promote tumor

angiogenesis and lymphangiogenesis (41, 42). Numerous matrix
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metalloproteinases discharged by mast cells impact extracellular

matrix degradation in tumors, further facilitating cancer cell distant

metastasis (43). Tumor growth in pancreatic cancer is accelerated

by MYC activation owing to the swift recruitment of mast cells to

the tumor site. MYC governs and directs tissue remodeling,

angiogenesis, and inflammation by stimulating mast cells (44).

Tryptase AB1 and interleukin-1-beta released by mast cells

intensify pleural fluid production and tumor progression by

augmenting vascular permeability and activating NF-kB in pleural

tumor cells (45). Conversely, mast cells possess the capacity to

combat tumors directly via tumor cell cytotoxicity induced by TNF-

a and ROS or indirectly through the synthesis of interleukin-9 and

heparin and the initiation of dendritic cell maturation (5). Mast

cells’ multifaceted capabilities enable them to execute diverse

functions across various cancer subtypes and stages.

Several conflicting studies have reported the impact ofmast cells on

LUAD patient outcomes. One investigation posited that stage I LUAD

patients with mast cells experienced unfavorable outcomes due to

angiogenesis (43). Another study discerned that KIT-competent mast

cells contribute to LUAD development by producing interleukin-1b,

which propels the formation, proliferation, and metastasis of KRAS-

mutant LUAD (46). Conversely, one investigation demonstrated that

only mast cells were associated with a better prognosis in LUAD

according to univariate analysis (47). Mast cell infiltration is more

prevalent in low-grade histologic subtypes than in high-grade subtypes,

as per a prior study, although the findings of these investigations

exhibit considerable variability concerning mast cell prognostic

significance (48). Comprehending the diverse mechanisms and

activities of mast cells in LUAD may prove valuable in devising

immunotherapy. Employing single-cell analysis, specific mast cell

populations in LUAD were identified, and the differential genes were

appraised as mast cell marker genes for future investigation. A mast

cell-related risk score was computed based on the expression levels of

the mast cell-related gene signature using Cox and lasso regression.

LUAD patients were stratified into high- and low-risk groups

according to the median risk score, and differences in OS,

enrichment pathways, mutation information, immune infiltration,

the TME, and responsiveness to immunotherapy were examined.

Two independent GEO cohorts were utilized to validate the mast

cell-related signature. To substantiate our analytical findings, the gene

exhibiting the highest HR value among the model genes was selected

for the cell function experiment.

Patients in the high-risk category exhibited a diminished life

expectancy. To elucidate this phenomenon, we compared mutation

information between high- and low-risk groups, uncovering a

heightened TMB in high-risk patients. Intriguingly, our study

disclosed that patients with elevated TMB demonstrated superior

OS, counter to our initial findings. We further investigated the

pathway enrichment of high- and low-risk groups to comprehend

the reasoning. Remarkably, the GSVA revealed enrichments in

mTORC1 signaling and c-MYC-associated pathways within the

high-risk group. Prior research has established that mTORC1

signaling fosters cancer progression (49–51). Mast cells assume

pivotal roles in MYC activation and may promote tumor growth in

pancreatic cancer (44). We can surmise that in LUAD’s TME, mast

cells may activate MYC to facilitate tumorigenesis and advancement.
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According to recent studies, genetic alterations are directly

correlated with neoantigen formation and immunotherapeutic

responses (52). However, our findings indicate that low-risk

patients have reduced TMB, and high-frequency mutated genes

manifest more frequently in the high-risk group, suggesting that
Frontiers in Immunology 16
high-risk patients may be more receptive to immunotherapy.

Subsequent analysis supports this notion.

We meticulously evaluated patients’ responses to immunotherapy.

TIDE algorithms were employed to estimate lung cancer patients’

potential to benefit from immunotherapy. Patients in the low-risk
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FIGURE 10

The role of SYAP1 in LUAD. (A) SYAP1 was highly expressed in LUAD cell lines compared to healthy human lung epithelial BEAS-2B cell lines. (B) RT-
qPCR was performed to measure the relative expression of SYAP1 in LUAD cells transfected with si-RNAs or negative control (NC). (C) CCK8 assay.
After SYAP1 knockdown, the cells showed significant reduction in viability, and si-SYAP1-1 and si-SYAP1-2 had a better knockdown potency, which
were used in further in vitro experiments. (D, E) EdU staining assay indicated that downregulation of SYAP1 expression repressed cell proliferation in
LUAD cell lines. (F) Colony formation assay displayed that cell with reduced SYAP1 expression exhibited a significant reduction in the numbers of
colonies, compared with the NC group. (G) Scratch-wound healing assay. A significantly slower wound healing rate was observed in cells with a
decreased expression of the SYAP1 gene. *P < 0.05, **P < 0.01, ***P < 0.001.
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group exhibited higher TIDE scores, signifying enhanced sensitivity to

anti-PD1 treatment for those with high-risk scores, corroborating our

previous findings. Moreover, we examined two external

immunotherapy cohorts and computed risk scores for each patient,

determining that individuals in the high-risk category were more likely

to profit from immunotherapy. High-risk patients derive benefits from

both chemotherapy and immunotherapy. In the ensuing immune cell
Frontiers in Immunology 17
correlation analysis, we discerned a significant negative association

between the risk score and Treg cells, indicating the low-risk group’s

higher proportion of Treg cells, which engendered an

immunosuppressive TME, further explaining why the high-risk

group was more prone to benefit from immunotherapy.

To substantiate the efficacy of our prognostic model, we evaluated

its precision using ROC and tested it in two external independent
A

B

FIGURE 11

Cell apoptosis and Transwell assay. (A) In SYAP1 knockdown LUAD cell lines, apoptosis experiments revealed that the overall number of early and
late apoptotic cells was considerably higher than in the NC group. (B) Transwell assay showed that downregulation of SYAP1 expression inhibited the
migration and invasion capacity of LUAD cells. To demonstrate the accuracy and reproducibility of the results, all experiments were repeated in two
LUAD (A549, H1299) cell lines and all data were presented as the means ± SD of three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001.
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cohorts. The results confirmed the stability of our 9-gene model.

Additionally, we used two external immunotherapy cohorts to verify

that high-risk patients were more likely to benefit from

immunotherapy. Intriguingly, we found that SYAP1 had the highest

hazard ratio among the nine modeled genes, and further survival

analysis revealed that elevated SYAP1 expression was associated with

poor prognosis in LUAD patients. Subsequently, we conducted cell

function experiments on two LUAD cell lines, A549 and H1299, which

showed that silencing SYAP1 significantly attenuated cell proliferation,

invasion, migration, and promoted apoptosis.

In conclusion, we developed a reliable prognostic model for

predicting the prognosis and responsiveness to immunotherapy in

LUAD patients. Our findings suggest that SYAP1 may represent a

novel therapeutic target for individuals with LUAD.
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