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Immune therapies targeting the PD-1/PD-L1 pathway have been employed in the

treatment of breast cancer, which requires aerobic glycolysis to sustain breast

cancer cells growth. However, whether PD-L1 expression is regulated by

glycolysis in breast cancer cells remains to be further elucidated. Here, we

demonstrate that glycolytic enzyme hexokinase 2 (HK2) plays a crucial role in

upregulating PD-L1 expression. Under high glucose conditions, HK2 acts as a

protein kinase and phosphorylates IkBa at T291 in breast cancer cells, leading to

the rapid degradation of IkBa and activation of NF-kB, which enters the nucleus

and promotes PD-L1 expression. Immunohistochemistry staining of human

breast cancer specimens and bioinformatics analyses reveals a positive

correlation between HK2 and PD-L1 expression levels, which are inversely

correlated with immune cell infiltration and survival time of breast cancer

patients. These findings uncover the intrinsic and instrumental connection

between aerobic glycolysis and PD-L1 expression-mediated tumor cell

immune evasion and underscore the potential to target the protein kinase

activity of HK2 for breast cancer treatment.
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1 Introduction

Breast cancer is commonly diagnosed cancer and is a leading

cause of cancer-related deaths in females worldwide (1).

Accumulated evidence has indicated that the immune system

response is critical for the therapeutic efficacy and survival of

breast cancer patients. In addition, breast cancer cells exhibit

immune evasion capabilities (2, 3). Tumor cell membrane protein

programmed cell death ligand1 (PD-L1, also known as B7-H1)

binds to the receptor protein programmed cell death 1 (PD-1) on

the surface of T lymphocyte cells, resulting in the blockage of T cell

proliferation, cytokine production, and the inhibition of the

immune response (4–6). PD-L1 expression is often upregulated in

breast cancer cells and plays a role in immune evasion (7, 8). A

study on breast cancer patients showed that the abnormal

expression of PD-L1 was closely related to the reduction of

overall survival rate and poor prognosis (9). PD-1/PD-L1

immune checkpoint inhibitors have been used in various cancer

treatments, including clinical trials in breast carcinoma. However, a

portion of patients did not respond to the immunotherapy (2, 10).

Therefore, further research on the regulation of PD-L1 expression

in breast cancer cells will shed light on the mechanism underlying

breast cancer cell immune evasion and help increase immune

checkpoint therapy’s clinical effectiveness.

Nuclear factor kappa-light-chain-enhancer of activated B cells

(NF-kB) is a nuclear transcription factor highly expressed in breast

cancer tissues (11, 12). In unstimulated cells, NF-kB composed of Rel

A (p65)/p50 dimers is bound by IkBa protein and sequestrated in the

cytoplasm. In response to cytokine stimulation, IkBa undergoes

rapid ubiquitylation-mediated proteasome degradation that releases

the bound, cytoplasmic NF-kB dimers (13). Then, NF-kB enters the

nucleus and promotes PD-L1 transcription (14, 15). NF-kB can be

regulated by hexokinase (HK) in glioblastoma cells (16). HK is a rate-

limiting enzyme in aerobic glycolysis, which converts glucose to the

metabolic intermediate glucose-6-phosphate (G-6-P) (17). Four

isotypes of the HK family are founded in mammals: HK1, HK2,

HK3, and HK4 (18, 19). HK2 binds to mitochondrial outer

membrane voltage-dependent anion channel 1 (VDAC1) protein

(20, 21), which enables HK2 to utilize ATP produced by

mitochondria for glycolysis. High glycolysis-produced large amount

of G-6-P disassociates HK2 from the mitochondria by a feedback-

regulated mechanism (22). The expression of HK2, which can be

induced by erbB2/Neu (23), was significantly increased in breast

cancer specimens compared to normal tissue (24). HK2 deletion

inhibited breast cancer metastasis (25). HK2 not only has the

function of a glycolytic enzyme but also has non-metabolic

functions (16, 26, 27). A recent study demonstrated that HK2 in

glioblastoma cells acts as a protein kinase and phosphorylates IkBa,
resulting in IkBa degradation and NF-kB activation for PD-L1

transcription (16). However, the relationship between HK2 and

immunoregulation in breast cancer remains unclear.

In this study, we demonstrated that aerobic glycolysis induces

PD-L1 expression in an HK2-dependent manner. HK2

phosphorylates IkBa at T291, resulting in IkBa rapid degradation

and NF-kB activation, resulting in enhanced PD-L1 transcription

and breast cancer cell immune evasion.
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2 Materials and methods

2.1 Materials

Rabbit antibodies that recognize human HK2 (Cat#ab209847;

RRID: AB2904621) and p65 (Cat#ab32536; RRID: AB776751) were

obtained from Abcam (Shanghai, China). Rabbit antibodies against

PD-L1 (Cat#ab13684; RRID: AB2687655) and a-tubulin
(Cat#ab2125; RRID: AB2619646) and mouse antibody against

IkBa (Cat#ab4814; RRID: AB390781) were purchased from Cell

Signaling Technology. Rabbit antibodies against Flag (Cat#20543-1-

AP; RRID: AB11232216) and histone H3 (Cat#ab17168; RRID:

AB2716755) were purchased from Proteintech (Wuhan, China).

Rabbit polyclonal anti-IkBa pT291 from Signalway Biotechnology

(Pearland. TX). Goat anti-rabbit IgG (H+L) secondary antibody

(Cat#A-11008; RRID: AB-143165) was obtained from Invitrogen.

G-6-P (Cat#D9434) was purchased from Sigma (Shanghai, China).

Glucose (Cat#A501991) was obtained from Sangon Biotech

(Shanghai, China). CHX (HY-12320) was purchased from

MedChemExpress (Shanghai, China). Lipofectamine 2000

(L3000015) transfection reagents and Blasticidin (Cat#R21001)

were obtained from Thermo Fisher Scientific (Waltham, MA).
2.2 Cell culture and cell transfection

Human breast cancer MCF-7 (RRID: CVCL 0031), BT-549

(RRID: CVCL 1092), SK-BR-3 (RRID: CVCL 0033), and human

embryonic kidney 293T (RRID: CVCL LF52) cells were purchased

from ATCC and maintained in Dulbecco’s modified Eagle’s

medium (DMEM) or McCoy’s 5A medium supplemented with

10% fetal bovine serum (FBS) and 1% penicillin/streptomycin at 37°

C with 5% CO2. The transfection using Lipofectamine2000 reagent

(Invitrogen) was performed as previously described (28). For G-6-P

treatment, 1M G-6-P was mixed with 5 ml Lipofectamine2000 in

OPTI-MEM for 30 minutes at room temperature and supplemented

into the culture medium in a 6-well plate.
2.3 Subcellular fractionation

Nuclear and cytosolic fractions were prepared as previously

described (29). Briefly, Flag-HK2 or vector was transfected into

MCF-7 cells with Lipofectamine2000 reagent (Invitrogen). 48 h

later, cells were collected and suspended in 300 ml Buffer A (10 mM

HEPES, 10 mM KCL, 0.1 mM EDTA,0.1 mM EGTA, 0.15% NP-40,

protease inhibitors), shaken by hand, and placed on ice for 10 min,

13000 rpm at 4°C for 30 seconds, and the supernatant is the

cytoplasm. Then, the precipitate was suspended with 700 ml
Buffer A, left for 3min, 13000 rpm for 30 seconds at 4°C to clean

the nuclear components. Repeat the above steps 2 times to wash the

remaining pulp components from the core. Discard the supernatant

and add 70 ml CST lysis, 25% ultrasonic for 6 times, centrifuged at

13000 rpm for 20 min at 4°C. The supernatant is the

nuclear component.
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2.4 Quantitative PCR

Quantitative PCR analyses were performed as described previously

(30). Total RNA was extracted from cells using TRIzol reagent and

reverse transcribed with Maxima Reverse Transcriptase according to

the manufacturer’s instructions. Quantitative PCR analysis was carried

out using a 7500 Real-Time PCR system (Applied Biosystems) with an

SYBR Premix ExTaq kit (Bimake). The relative expression was

determined using the DDCT method of normalization. The

following primers were used for quantitative PCR, Human CD274

forward: 5’-CTGCACTTTTAGGAGATTAGATC-3’; Human CD274

reverse: 5’-CTACACCAAGGCATAATAAGATG-3’; Human b-actin
forward: 5’-TGGCACCCAGCACAATGAA-3’; Human b-actin
reverse: 5’-CTAAGTCATAGTCCGCCTAGAAGCA-3’.
2.5 Western blot analysis

Total proteins were extracted with CST lysis buffer containing

protease and phosphatase inhibitors. The protein concentration was

determined using a Bradford reagent kit (Thermo Fisher Scientific),

and proteins were separated by SDS-PAGE and transferred to

PVDF membranes. Membranes were blocked with 5% milk for 1

hour and then incubated with primary antibody at 4°C overnight.

Membranes were washed with Tris-buffered saline containing

Tween-20, incubated with secondary antibodies, and developed

with an enhanced chemiluminescence kit.
2.6 Flow cytometry analysis

Flow cytometry analysis was performed as described previously

(31). Cells were fixed with 4% paraformaldehyde for 15 minutes at

room temperature and then were washed with PBS. An anti-PD-L1

antibody was added to the cells for 1 hour at room temperature. The

cells were washed with PBS three times. A fluorescence antibody

was added to the cells for 30 minutes at room temperature. After

incubation, the cells were washed with PBS and detected by a

Beckman cytometer.
2.7 Immunoprecipitation analysis

Immunoprecipitation analysis using antibodies as described

previously (32). Briefly, cells were collected and lysed in CST lysis

buffer (20 mM Tris-HCl [pH7.5], 150 mM NaCl, 1 mM

Na2EDTA.2H2O, 1 mM EGTA, 1% TritonX-100 and 2.5 mM

Na4P2O7) containing protease inhibitor cocktail (Bimake) and

phosphatase inhibitor cocktails (Bimake). For coimmunoprecipitation,

the cell lysate supernatant was mixed with indicated antibodies overnight

at 4°C and incubated with 30 ml protein A/G agarose beads for 3 hours at

4°C on a rocking platform and then washed the beads 3 times with

NETN buffer (20 mM Tris-HCl [pH8.0], 100 mM NaCl, 1 mM EDTA,
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0.5% NP-40) and boiled with 50 ml of 2×SDS loading buffer for 10 min.

Finally, the obtained proteins were subject to Western blotting.
2.8 Lentiviral generation and infection

Lentiviral constructs expression shControl and shHK2 were co-

transfected into HEK293T cells with package plasmids with PEI

(Invitrogen) as described previously (33). Lentivirus was collected

72 hours after transfection and was filtered by a 0.45 mm filter

membrane. The filter lentivirus was infected with MCF-7 using 10

mg/ml polybrene. Screening stable expression cells by Blasticidin.
2.9 Patients and tissue samples

We retrospectively collected 220 human breast carcinoma

specimens from Shandong Second Provincial General Hospital

(Jinan, China), and obtained clinical data by reviewing the

patients’ medical histories.
2.10 Ethics statement

The studies involving human breast cancer specimens and the

database were approved by the institutional research ethics

committee of the Oncology Department, Shandong Second

Provincial General Hospital. All patients involved in the study

were conducted strictly with the national ethical policy. Informed

consent was obtained from all the patients whose tissue samples

were allowed to be used for scientific research, and patient privacy

was protected.
2.11 Immunohistochemical analysis

IHC staining was performed using the VECTASTAIN ABC kit

(Vector Laboratories) according to the manufacturer’s instructions.

Human breast cancer tissues were stained with antibodies HK2

(dilution 1:500), PD-L1 (dilution 1:400), IkBa pT291 (dilution

1:50) or nonspecific IgG (as a negative control). We quantitatively

scored the sections based on the percentage of positive cells and the

intensity of staining of the sections (34). The staining intensity is

scored as follows: 0, no signal; 1, weak; 2, moderate; and 3, strong.

The IHC scores were assessed by independent pathologists. We

then multiply the intensity and percentage of positive cells to obtain

a total score.
2.12 TIMER database analysis

TIMER (http://timer.cistrome.org/) is an estimating immune

cell infiltration database and provides comprehensive analysis and
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visualization functions of tumor infiltrating immune cells which

uses data from TCGA (35–37). In the study, we examined the

correlation between HK2 mRNA levels and CD274 mRNA levels.

Then, we examined tumor-infiltrating CD4+ T cells through

TIMER algorithm and tumor-infiltrating CD8+ T cells through

CIBERSORT algorithm in TIMER2.0 database. Spearman’s rho

value was used to evaluate the degree of their correlation. HK2

expression and breast cancer patient survival analysis was tested

using the Kaplan-Meier Plotter (https://kmplot.com/analysis/) (38,

39), which searched for breast cancer cohorts in NCBI Gene

Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) and in

the Genomic Data Commons Data Por ta l (h t tps : / /

portal.gdc.cancer.gov/).
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3 Results

3.1 High glucose enhances PD-L1
expression in an HK2-dependent manner

To determine whether changes of glucose level modulate PD-L1

expression in breast cancer cells, we treated MCF-7 and BT-549

cells with different concentrations of glucose. We found that a high

glucose concentration increased PD-L1 expression (Figure 1A). In

addition, flow cytometry analyses revealed that high glucose

concentration enhanced PD-L1 expression on the surface of

MCF-7 cells (Figure 1B). This increase was decreased by

treatment with both protein synthesis inhibitor cycloheximide
B

C D E

F
G

A

FIGURE 1

High glucose enhances PD-L1 expression in an HK2-dependent manner. (A), MCF-7 and BT-549 cells were treated with the indicated glucose
concentrations for 24 h. Immunoblotting analyses were performed with the indicated antibodies. (B), MCF-7 cells were treated with low (5 mM) or high
glucose (50 mM) for 24 h. Flow cytometry analyses were performed. *p < 0.05. (C), MCF-7 and BT-549 cells were treated with the indicated glucose
concentrations for 24 h in the presence or absence of cycloheximide (CHX) (100 mg/ml). Immunoblotting analyses were performed with the indicated
antibodies. (D), MCF-7 cells were cultured with high glucose (50 mM) for 24 h with or without pretreatment with actinomycin D (1 mg/ml). (E), Real-time
PCR analyses of CD274 mRNA in MCF-7 cells and BT-549 cells cultured with the indicated glucose concentrations for 24 h. Data are the means ± SD of
3 independent experiments. ***p < 0.001. (F), MCF-7 and BT-549 cells stably expressing a control shRNA or HK2 shRNA were treated with or without G-
6-P for 12 h. Immunoblotting was performed with the indicated antibodies. (G), MCF-7 cells stably expressing a control shRNA or HK2 shRNA were
cultured in medium containing high glucose (50 mM). Immunoblotting analyses were performed with the indicated antibodies. *p<0.05.
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(CHX) (Figure 1C) and transcription inhibitor actinomycin D

(Figure 1D), suggesting extracellular glucose levels regulate PD-L1

at both transcriptional and posttranslational levels. Consistent with

this finding, quantitative PCR analyses showed that high glucose

treatment increased mRNA expression of the CD274 gene

(encoding PD-L1) in MCF-7 and BT-549 cells (Figure 1E).

Notably, depletion of HK2 by expression of its shRNA in MCF-7

and BT-549 cells reduced PD-L1 expression, and this reduction was

not rescued by supplementation with HK2 product G-6-P

(Figure 1F), suggesting that glycolytic reactions downstream of

HK2 are not involved in the regulation of PD-L1 expression.

Consistently, HK2 depletion decreased PD-L1 expression in

MCF-7 cells under high glucose conditions (Figure 1G). These
Frontiers in Immunology 05
results indicated that high glucose upregulates PD-L1 expression in

an HK2-dependent manner.
3.2 HK2-mediated IkBa phosphorylation
reduces IkBa expression

HK2 phosphorylates IkBa T291 and promotes IkBa
degradation in glioblastoma cells (16). To define the mechanism

underlying HK2-upregulated PD-L1 expression in breast cancer

cells, we performed co-immunoprecipitation analyses and showed

that endogenous HK2 interacted with endogenous IkBa in MCF-7

and BT-549 cells (Figure 2A). In addition, high glucose-induced
B

C D

E F

A

FIGURE 2

HK2-mediated IkBa phosphorylation reduces IkBa expression. (A), MCF-7 and BT-549 cells were analyzed by immunoprecipitation and immunoblotting
analyses with the indicated antibodies. (B), MCF-7 cells stably expressing a control shRNA or HK2 shRNA were cultured in medium containing the indicated
concentrations of glucose for 24 h. Immunoblotting analyses were performed with the indicated antibodies. (C), MCF-7 cells with or without HK2 shRNA
were treated with cycloheximide (CHX) (100 mg/ml) and harvested at the indicated periods of time. Immunoblotting analyses were performed with the
indicated antibodies. (D), A control vector or a vector expression Flag-HK2 was transfected into MCF-7 cells. Immunoblotting analyses were performed with
the indicated antibodies. (E), MCF-7 cells expressing Flag-HK2, WT Flag-IkBa or Flag-IkBa T291A were treated with CHX (100 mg/ml) for the indicated
periods of time. Immunoblotting analyses were performed with the indicated antibodies. (F), WT Flag-IkBa or Flag-IkBa T291A was expressed in MCF-7 and
BT-549 cells. The cells were cultured with the indicated concentrations of glucose for 24 h.
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IkBa T291 phosphorylation and decreased IkBa expression.

Notably, this change was abrogated by HK2 depletion

(Figure 2B), which prolonged the half-life of IkBa (Figure 2C).

Consistently, Flag-HK2 overexpression considerably enhanced

IkBa T291 phosphorylation and reduced IkBa expression

(Figure 2D) and decreased the half-life of wild-type (WT) IkBa
compared to that of IkBa T291A (Figure 2E). In contrast to WT

Flag-IkBa, Flag-IkBa T291A displayed resistance to degradation in

MCF-7 and BT-549 cells upon high glucose treatment (Figure 2F).

These results indicated that HK2 phosphorylates IkBa T291
Frontiers in Immunology 06
phosphorylation and decreases IkBa expression under high

glucose conditions.
3.3 Overexpression of HK2 induces nuclear
translocation of p65 and CD274
transcription

To determine whether aerobic glycolysis regulates the NF-kB in

breast cancer cells, we overexpressed Flag-HK2 in MCF-7 cells. We
B

C D

A

FIGURE 3

Overexpression of HK2 induces nuclear translocation of p65 and CD274 transcription. (A), Cytoplasmic and nuclear fractions of MCF-7 cells with or without
expressing Flag-HK2 were analyzed by immunoblotting analyses with the indicated antibodies. (B), MCF-7 and BT-549 cells were transfected with a control
vector or Flag-HK2 for 48 hours. A real-time PCR analysis was performed. Data are the means ± SD of 3 independent experiments. **p < 0.01, *p < 0.05.
(C), Flag-HK2, WT Flag-IkBa or Flag-IkBa T291A was expressed in MCF-7 cells. Immunoblotting analyses were performed with the indicated antibodies.
(D), SK-BR-3 cells were cultured in medium containing low (5 mM) or high glucose (50 mM) for 24 h. Immunoblotting analyses were performed with the
indicated antibodies.
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found that Flag-HK2 expression promoted the nuclear

translocation of p65 with a corresponding decrease of IkBa
expression in the cytosol (Figure 3A). In addition, HK2

overexpression considerably elevated the mRNA level of CD274

in both MCF-7 and BT-549 cells (Figure 3B) and increased

expression of WT Flag-IkBa to a higher level than that of IkBa
T291A (Figure 3C). Notably, high glucose conditions also enhanced

IkBa T291 phosphorylation and PD-L1 expression in HER2-

positive SK-BR-3 breast cancer cells (Figure 3D), suggesting that

HK2-regulated PD-L1 expression is independent of HER2

expression. These results suggested that HK2-mediated IkBa
T291 phosphorylation promotes nuclear translocation of p65 and

PD-L1 expression.
Frontiers in Immunology 07
3.4 HK2 expression is positively correlated
with CD274 expression and negatively
associated with CD8+ T cell infiltration and
survival time of breast cancer patients

To determine whether HK2 expression is correlated with PD-L1

expression in human breast cancer specimens, we analyzed 1100 breast

cancer cases in The Cancer Genome Atlas (TCGA) database. We

revealed that HK2mRNA levels were positively associated with CD274

mRNA levels (correlation: 0.169, p=1.63e-08) (Figure 4A). Analyses of

the associations between HK2 expression and immune cells infiltration

using the TIMER2.0 database (40), which showed that HK2 mRNA

levels in breast cancer specimens were inversely correlated with the
D

A B

C

FIGURE 4

HK2 expression is positively correlated with CD274 expression and negatively associated with CD8+ T cell infiltration and survival time of breast cancer
patients.(A), Correlative expression of CD274 mRNA with HK2 mRNA expression in the TCGA cohort of BRCA samples (n = 1100) was analyzed. Spearman’s
rho value is presented for correlations. (B), The correlation between HK2 mRNA expression levels and the infiltrating levels of CD4+ T cells was analyzed by
TIMER algorithm in the TIMER2.0 database in breast cancer patients specimens (n=1100). Spearman’s rho value is presented for correlations. (C), The
correlation between HK2 mRNA expression levels and the infiltrating levels of CD8+ T cells was analyzed through CIBERSORT algorithm in TIMER2.0
database in breast cancer patients specimens (n=1100). Spearman’s rho value is presented for correlations. (D), The association between HK2 mRNA
expression levels and breast cancer patient survival was analyzed using the Kaplan Meier plotter database.
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infiltration of CD4+ T cells (correlation: 0.184, p=4.91e-08) (Figure 4B)

and CD8+ T cells (correlation: 0.166, p=1.42e-07) (Figure 4C) through

TIMER algorithm and CIBERSORT algorithm analyses, respectively.

In addition, analyses of the association between HK2 expression and

breast cancer patient survival using the Kaplan Meier plotter database

(https://kmplot.com) revealed that HK2 expression levels were

inversely correlated with the survival time of breast cancer patients

(Figure 4D). These results indicated that HK2 expression is positively

correlated with CD274 expression and negatively associated with CD8+

T cell infiltration and survival time of breast cancer patients.
3.5 HK2 expression is positively correlated
with IkBa T291 phosphorylation and PD-L1
expression in human breast cancer
specimens

To further determine the clinical significance of HK2-mediated

IkBa T291 phosphorylation, thereby promoting the expression of PD-

L1 in breast cancer patients, we performed immunohistochemistry

(IHC) analyses of 220 breast cancer specimens with a specificity-

validated anti-IkBa T291antibody and antibodies against HK2 and
Frontiers in Immunology 08
PD-L1 (16). We analyzed the correlation between HK2 expression and

clinicopathological characteristics. We found a positive correlation of

HK2 expression levels with larger tumor sizes, progesterone receptor

(PR)-negative expression, and higher Ki67 levels (Table 1). In addition,

IHC staining showed that HK2 expression levels were positively

correlated with levels of IkBa T291 phosphorylation and PD-L1

expression (Figure 5A). Statistical analysis showed that these

correlations were significant (Figure 5B). These results support the

role of HK2-mediated IkBa T291 phosphorylation in upregulated PD-

L1 expression in breast cancer specimens.
4 Discussion

Metabolic reprogramming and immune evasion are

characteristic of many cancers (41). PD-L1 is overexpressed in

various tumors, including breast cancer, leading to immune evasion

(42). PD-L1 can be regulated by different mechanisms. A recent

study showed that energy deprivation activates AMPK kinase,

which phosphorylates and promotes PD-L1 degradation (7, 43).

Our study showed that high glucose regulates the transcription of

PD-L1 in a NF-kB-dependent manner. In breast cancer cells, HK2
TABLE 1 The Correlation between HK2 Expression and Clinicopathological Characteristics in Breast Cancer Patients (n=220 cases).

Characteristic Number (%) HK2 expression p value

Total 220 Positive
(103, 46.82%)

Negative
(117, 53.18%)

Age, years

<50 64 (29.09%) 24 (10.91%) 40 (18.18%) 0.076

≥50 156 (70.91%) 79 (35.91%) 77 (35.00%)

Tumor size, cm

≤2 62 (28.18%) 20 (9.09%) 42 (19.09%) 0.021

2~5 123 (55.91%) 63 (28.64%) 60 (27.27%)

≥5 35 (15.91%) 20 (9.09%) 15 (6.82%)

Histological grades

I 23(10.45%) 7 (3.18%) 16 (7.27%) 0.151

II 127 (57.73%) 70 (31.82%) 67 (30.45%)

III 70 (31.82%) 26(11.82%) 34 (15.45%)

Lymph node status

0 138 (62.73%) 60 (27.27%) 78 (35.45%) 0.436

1-3 42 (19.09%) 22 (10.00%) 20 (9.09%)

≥4 40 (18.18%) 21 (9.55%) 19 (8.64%)

ER

Positive 156 (70.91%) 68 (30.91%) 88 (40.00%) 0.134

Negative 64 (29.09%) 35 (15.91%) 29 (13.18%)

PR

(Continued)
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TABLE 1 Continued

Characteristic Number (%) HK2 expression p value

Total 220 Positive
(103, 46.82%)

Negative
(117, 53.18%)

Positive 144 (65.45%) 60 (27.27%) 84 (38.18%) 0.035

Negative 76 (34.55%) 43 (19.55%) 33 (15.00%)

HER2

Positive 46 (20.91%) 26 (11.82%) 20 (9.09%) 0.138

Negative 174 (79.09%) 77 (35.00%) 97(44.09%)

Ki67

≥30% 110 (50.00%) 62 (28.18%) 48 (21.82%) 0.006

<30% 110 (50.00%) 42 (18.64%) 69 (31.36%)
F
rontiers in Immunology
 fron09
ER, estrogen receptor; PR, progesterone receptor; HER-2, human epidermal growth factor receptor 2. Two-sides Chi-Square tests.
B

A

FIGURE 5

HK2 expression is positively correlated with IkBa T291 phosphorylation and PD-L1 expression in human breast cancer specimens. (A), IHC analyses
220 human breast cancer specimens with HK2, PD-L1 and IkBa T291 antibodies. Two representative tumor IHC staining images were shown. Scale
bars, 100mM. (B), IHC staining was scored, and the correlations between the expression levels of HK2, PD-L1, and IkBa T291 phosphorylation were
analyzed by Pearson correlation test. Note that some of the dots on the graphs are overlapped.
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is highly expressed and is associated with the occurrence and

progression of breast cancer (3, 44, 45). We demonstrated that

HK2 plays a key role in regulating PD-L1 in breast cancer cells in

response to high glucose (Figure 6).

Cell metabolism and gene expression are two fundamental

biological processes that can be mutually regulated (27). Recent

research demonstrated that metabolic enzymes could possess

protein kinase activity to phosphorylate protein substrates (46). For

instance, phosphoenolpyruvate carboxykinase1 (PCK1) (29),

phosphoglycerate kinase 1 (PGK1) (47–49), ketohexokinase

(KHK)-A (50, 51), pyruvate kinase M2 isoform (PKM2) (52–54),

choline kinase a (CHKa) (55, 56) phosphorylate a variety of protein
substrates thereby regulating instrumental cellular activities, such as

gene expression. Intriguingly, it was shown that fructose-1,6-

bisphosphatase 1 (FBP1) functions as a protein phosphatase to

dephosphorylate histone H3, highlighting the critical control of

protein phosphorylation and dephosphorylation by metabolic

enzymes (57, 58). We showed here that HK2, acting as a protein

kinase, phosphorylates IkBa at T291 in breast cancer cells, leading to

IkBa degradation and subsequent activation of NF-kB for

upregulation of PD-L1 transcription. Bioinformatic analysis showed

that HK2 expression is associated with upregulated CD274 mRNA

expression, reduced infiltration of CD4+ and CD8+ T cells in breast

cancer specimens, and decreased survival time of breast cancer

patients. In addition, the clinical significance of HK2-upregulated

PD-L1 expression is evidenced by the positive correlation of HK2

with IkBa T291 phosphorylation and PD-L1 expression in human

breast cancer samples. Our findings highlight the interplay between

metabolic enzymes and tumor immunity, suggesting that HK2 serves

as an effective molecular biomarker for PD-L1 antibody therapy.
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