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Background: Sepsis stands as a dire medical condition, arising when the body’s

immune response to infection spirals into overdrive, paving the way for potential

organ damage and potential mortality. With intestinal flora’s known impact on

sepsis but a dearth of comprehensive data, our study embarked on a two-sample

Mendelian randomization analysis to probe the causal link between gut

microbiota and their metabolites with severe sepsis patients who succumbed

within a 28-day span.

Methods: Leveraging data from Genome-wide association study (GWAS) and

combining it with data from 2,076 European descendants in the Framingham

Heart Study, single-nucleotide polymorphisms (SNPs) were employed as

Instrumental Variables (IVs) to discern gene loci affiliated with metabolites.

GWAS summary statistics for sepsis were extracted from the UK Biobank

consortium.

Results: In this extensive exploration, 93 distinct genome-wide significant SNPs

correlated with gut microbial metabolites and specific bacterial traits were

identified for IVs construction. Notably, a substantial link between

Coprococcus2 and both the incidence (OR of 0.80, 95% CI: 0.68-0.94,

P=0.007) and the 28-day mortality rate (OR 0.48, 95% CI: 0.27-0.85, P=0.013)

of sepsis was observed. The metabolite a-hydroxybutyrate displayed a marked

association with sepsis onset (OR=1.08, 95% CI: 1.02-1.15, P=0.006) and its 28-

day mortality rate (OR=1.17, 95% CI: 1.01-1.36, P=0.029).

Conclusion: This research unveils the intricate interplay between the gut

microbial consortium, especially the genus Coprococcus, and the metabolite

a-hydroxybutyrate in the milieu of sepsis. The findings illuminate the pivotal role

of intestinal microbiota and their metabolites in sepsis’ pathogenesis, offering

fresh insights for future research and hinting at novel strategies for sepsis’

diagnosis, therapeutic interventions, and prognostic assessments.
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Introduction

Sepsis is a critical medical condition arising when the body’s

immune response to an infection becomes overactive, leading to

potential organ damage and even death (1). This condition is a

pressing public health issue, impacting approximately 1.7 million

individuals annually in the USA alone, with a fatality rate reaching

nearly 50% (2, 3). Although its prevalence and severe consequences are

alarming, treatment options for sepsis remain limited, primarily

revolving around antibiotics and supportive therapies for many years.

In the annals of medicine, the intestines were once considered

the primary nexus for sepsis and multi-organ dysfunction

syndromes (4, 5). However, as our comprehension of the

intestine’s role in sepsis has deepened, this perspective has

unfurled its intricate nuances.Utilizing cutting-edge technologies

such as 16S rRNA and whole-genome sequencing, the pivotal role

of the microbial community in the pathogenesis of sepsis has been

illuminated (6). Sepsis can profoundly disrupt the microbial

equilibrium of the gut (4, 5). For instance, in critically ill patients,

beneficial bacteria like Faecalibacterium spp and Prevotella spp,

known producers of short chain fatty acids(SCFAs), are notably

diminished (7). In contrast, certain pathogenic and antibiotic-

resistant bacteria such as Clostridia spp and Enterococcae spp

proliferate significantly within septic patients (8).This microbial

imbalance not only reshapes the bacterial community but also

impinges on immune responses. For example, segmented

fi lamentous bacteria can stimulate B cells to produce

Immunoglobulin A, while concurrently increasing the count of

inflammatory Th17 cells (9). Additionally, commensal bacteria, by

breaking down polysaccharides into SCFAs, not only fortify the

intestinal protective barrier but also activate regulatory T cells, thus

influencing the overarching immune milieu (9).

However, due to methodological disparities and varied outcome

metrics, research in this domain is replete with challenges.
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Moreover, scant data from studies with limited samples

substantiate the nexus between sepsis, intestinal flora, and

associated metabolites. To bridge these lacunae, we embarked on

a two-sample Mendelian randomization analysis to elucidate the

causal linkage between gut microbiota and those severe sepsis

patients who succumbed within a 28-day window. Mendelian

randomization (MR) harnesses genetic variants as Instrumental

Variables (IVs), simulating a randomized controlled trial and

thereby attenuating biases and inaccuracies, fortifying the causal

inference between exposure and aftermath (10, 11). Our endeavor

aspires to enrich our grasp of the processes whereby the gut biome

catalyzes ailments and foster the genesis of bespoke therapies

anchored in microbiome modulations.

To the best of our discernment, ours stands as the inaugural

exploration delving into the causal nexus between gut microbiota,

metabolites, and sepsis in the departed. Our revelations intimate a

plausible causative interconnection between gut microbiota, their

metabolites, and severe sepsis, underscoring the imperative for

continued scrutiny and bespoke microbiome stratagems to

enhance the prognosis of sepsis.
Materials and methods

Study design

The MR study was predicated on three cardinal postulations,

delineated in Figure 1. The first assumption is that genetic

instrumental variants exhibit a robust association with the

exposure. The second assumption is that these genetic

instrumental variants remain unaffiliated with any conceivable

confounders. The third assumption is that such genetic

instrumental variants correlate with the outcome solely through

the conduit of exposure (12, 13).
FIGURE 1

Directed acyclic graphs for the classical Mendelian randomization designs. The arrows denote causal relations between two variables, pointing from
the cause to the effect. The causal pathway is blocked if”X”is placed in the arrowed line. MR, Mendelian randomization.
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Data sources

The study gathered data on gut microbial metabolites, including

a-hydroxybutyrate,b-aminoisobutyric acid, Thyroxine,

Phosphodiesterase,Xanthosine through summary data from

Genome-wide association study (GWAS). The data was collected

from 2,076 participants of European descent in the Framingham

Heart Study. To identify gene loci associated with these metabolites,

the study used single-nucleotide polymorphisms(SNPs) that met

suggestive genome-wide significance thresholds, with a P value of

less than 5 × 10-5 as IVs (14).

The gut microbiota summary statistics was extracted from an

extensive genetic survey encompassing 18,340 participants

spanning 24 diverse cohorts. This investigation catalogued

211taxa, subdivided into 131genera, 35 families, 20orders,

16classes, and 9phyla. Organisms such as Coprococcus2,

Ruminococcaceae UCG011, and Lachnospiraceae FCS020 group

were scrutinized, with SNPs brandishing P values beneath 5 × 10-5

earmarked as IVs (15).

The GWAS summary statistics for sepsis were sourced from the

data released by the UK Biobank consortium. Additionally, these

statistics can be accessed through the IEU Open GWAS website,

under the identifiers ieu-b-4982 (for sepsis) and ieu-b-4981 (for 28-

day mortality). The dataset comprises a sample size of 431,365, of

which 1,380 individuals were diagnosed with sepsis and 347

experienced mortality within a 28-day period.
Instrumental variable selection

The following selection criteria were used to choose the

Instrumental Variables (1): single nucleotide polymorphisms

associated with each genus at the locus-wide significance

threshold (P < 1× 10-5) were selected as potential IVs; (2) 1000

Genomes project European samples data were used as the reference

panel to calculate the linkage disequilibrium between the SNPs, and

among those SNPs that had r2 < 0.001 (clumping window

size=10,000 kb), only the SNPs with the lowest P values were

retained; (3) SNPs with minor allele frequency ≤ 0.01 were

removed; and (4) when palindromic SNPs existed, the forward

strand alleles were inferred using allele frequency information (16).

The strength of IVs was assessed by calculating the F-statistic using

the formula F = R2× (N−1−K) (1−R2) × K, where R2 represents the

proportion of variance in the exposure explained by the genetic

variants, N represents sample size, and K represents the number of

instruments the corresponding F-statistic was >10, it was considered

that there was no significant weak instrumental bias (17).
Mendelian randomization analysis

We used five methods for performing MR analysis, including

the inverse variance weighted (IVW), multiplicative random effects

(MR-Egger), weighted median, simple mode, and weighted mode.

IVW, the most commonly used and efficient method, was selected
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as the primary analysis for this study, as it provides an estimate with

the highest power, relying on the assumption that all SNPs are valid

instrumental variables. When the assumption of no pleiotropy is

violated, MR-Egger provides a more robust alternative. The

weighted median, simple mode, and weighted mode each have

their respective advantages and limitations and can be useful

depending on the specific research question and available data.

To validate the stability of our results, we also performed

supplementary analyses using these three methods (18–20).

We conducted sensitivity analyses to assess the robustness of

our findings, including two methods for detecting and addressing

horizontal pleiotropy: MR-Egger regression and MR-PRESSO (21).

Additionally, we used Cochran’s Q test to evaluate heterogeneity

between SNPs associated with each microbial taxon (22). Lastly, we

conducted a leave-one-out sensitivity analysis to evaluate the

influence of individual SNPs on the overall estimates.

All MR analyses were performed in R (version 4.1.2) using R

package TwoSampleMR and MRPRESSO (23).
Result

Participants and genetic instrumental
variables in relation to gut microbiota
and metabolites

In this comprehensive study, we identified 93 distinct genome-

wide significant SNPs intricately linked with gut microbial

metabolites and distinct bacterial attributes, which were harnessed

for IVs construction. This includes 8 associated with Coprococcus2,

11 with Dialister, 8 with Ruminococcaceae UCG011, 11 with

Coprococcus1, 12 with Lachnospiraceae FCS020 group, 8 with

Ruminococcus torques group, 9 with Sellimonas, 5 with

Terrisporobacter, 9 with Victivallis, 5 with a-hydroxybutyrate, 4
with cystine, 19 with b-aminoisobutyric acid, 6 with Thyroxine, 8

with phosphodiesterase, and 8 with Xanthosine. A robust F-statistic

exceeding 20 suggests that this study is resistant to weak IVs bias.
Mendelian randomization analysis of gut
microbiota and sepsis

Upon thorough evaluation of multiple MR techniques, a

notable correlation emerges between Coprococcus2 and both the

incidence and 28-day mortality rate of sepsis, Figure 2. Specifically,

IVW results delineate a significant inverse relation between

Coprococcus2 and sepsis onset, with an OR of 0.80 (95% CI:

0.68-0.94, P=0.007), while for the 28-day mortality rate, the OR is

0.48 (95% CI: 0.27-0.85, P=0.013). Beyond Coprococcus2, there are

conspicuous links with Dialister (OR=0.84, 95% CI: 0.74-0.96,

P=0.016) and Ruminococcaceae UCG011 (OR=1.10, 95% CI:

1.01-1.20, P=0.024). For 28-day mortality, entities like

Lachnospiraceae FCS020 group (OR=0.70, 95% CI: 0.51-0.95,

P=0.023) and Ruminococcus torques group (OR=1.53, 95% CI:

1.00-2.34, P=0.049) manifest significant influence. Techniques

including MR-egger, Weighted median, Simple mode, and
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Weighted mode align in direction with the IVW method,

reinforcing the robustness of our findings. P values for Pleiotropy

and Heterogeneity predominantly exceed 0.05, indicating the

absence of significant heterogeneity or pleiotropy issues.
Mendelian randomization analysis of gut
metabolites and sepsis

a-hydroxybutyrate exhibits a pronounced relationship with

both sepsis onset (OR=1.08, 95% CI: 1.02-1.15, P=0.006) and its

28-day mortality rate (OR=1.17, 95% CI: 1.01-1.36, P=0.029),

Figure 3. Regarding sepsis onset, significant associations are

evident with Cystine (OR=0.92, 95% CI: 0.85-0.99, P=0.029), b-
aminoisobutyric acid (OR=1.03, 95% CI: 1.00-1.06, P=0.031), and

Thyroxine (OR=0.95, 95% CI: 0.91-0.99, P=0.046). In terms of the

28-day mortality rate, Phosphodiesterase (OR=1.13, 95% CI: 1.02-
Frontiers in Immunology 04
1.26, P=0.016) and Xanthosine (OR=1.16, 95% CI: 1.02-1.32,

P=0.021) both convey significant relationships. The outcomes

from the MR-egger, Weighted median, Simple mode, and

Weighted mode techniques are congruent with the direction of

the IVWmethod, further corroborating the integrity of the primary

findings. The P values for Pleiotropy and Heterogeneity mostly

surpass 0.05, suggesting that the analytical results are steadfast and

free from substantial heterogeneity or pleiotropy concerns.
Discussion

This study utilized the Mendelian Randomization approach to

delve deeply into the association between gut microbiota, their

metabolites, and sepsis. We successfully identified 93 SNPs

significantly associated with gut microbial metabolites and

specific bacterial attributes, providing a robust instrumental
Outcome

Sepsis

28 day mortality

Exposure

Coprococcus2

Dialister

Ruminococcaceae UCG011

Coprococcus1

Coprococcus2

Lachnospiraceae FCS020 group

Ruminococcus torques group

Sellimonas

Terrisporobacter

Victivallis

SNPs

8

11

11

11

8

12

8

9

5

9

OR(95%CI)

0.80(0.68 0.94)

0.84(0.74 0.96)

1.10(1.01 1.20)

0.67(0.48 0.93)

0.48(0.27 0.85)

0.70(0.51 0.95)

1.53(1.00 2.34)

1.24(1.03 1.50)

1.43(1.01 2.02)

0.82(0.67 0.99)

P value

0.007 

0.016 

0.024 

0.020 

0.013 

0.023 

0.049 

0.019 

0.040 

0.042 

F statistic

20.967 

20.740 

22.980 

22.382 

20.967 

21.950 

21.706 

22.420 

21.247 

22.071 

Pleiotropy

0.645 

0.658 

0.909 

0.450 

0.944 

0.202 

0.117 

0.850 

0.513 

0.997 

Heterogeneity

0.763 

0.909 

0.520 

0.724 

0.026 

0.632 

0.543 

0.612 

0.600 

0.970 

0.5 1 1.5 2 2.5
Effect(95%CI)

FIGURE 2

Forest plot to visualize the causal effect of Gut microbiota on the risk of Sepsis by inverse variance weighted method.
Outcome

Sepsis

28 day mortality

Exposure

a hydroxybutyrate

Cystine

 aminoisobutyric acid

Thyroxine

a hydroxybutyrate

Phosphodiesterase

Xanthosine

Taurine

Carnitine

SNPs

5

4

19

6

5

8

8

7

11

OR(95%CI)

1.08(1.02 1.15)

0.92(0.85 0.99)

1.03(1.00 1.06)

0.95(0.91 0.99)

1.17(1.01 1.36)

1.13(1.02 1.26)

1.16(1.02 1.32)

0.91(0.85 0.98)

1.23(1.11 1.37)

P value

0.006 

0.029 

0.031 

0.046 

0.029 

0.016 

0.021 

0.014 

0.000 

F statistic

26.674 

21.601 

75.617 

23.565 

26.674 

23.565 

22.793 

22.963 

24.159 

Pleiotropy

0.401 

0.770 

0.388 

0.784 

0.184 

0.799 

0.802 

0.430 

0.631 

Heterogeneity

0.781 

0.916 

0.073 

0.785 

0.506 

0.505 

0.876 

0.930 

0.927 

0.85 0.9511.05 1.15 1.25 1.35
Effect(95%CI)

FIGURE 3

Forest plot to visualize the causal effect of Gut Metabolites on the risk of Sepsis 28-day morality by inverse variance weighted method.
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variable for the Mendelian Randomization analysis. Among these

findings, the microbial communities notably associated with the

incidence and 28-day mortality rate of sepsis included

Coprococcus2, Dialister, and Ruminococcaceae UCG011. Notably,

Coprococcus2 demonstrated a significant inverse correlation with

both the onset of sepsis and the 28-day mortality rate. For microbial

metabolites, we observed that a-hydroxybutyrate had a pronounced
association with both the onset of sepsis and its 28-day mortality

rate. Additionally, cystine, b-aminoisobutyric acid, and Thyroxine

were closely associated with the incidence of sepsis. Furthermore,

various Mendelian Randomization techniques yielded results

consistent with our primary findings, reinforcing the robustness

of our conclusions.

For generations, the intestinal microbiome has orchestrated

myriad homeostatic functions in the hale host, encompassing both

immune modulation and fortification of the gut barrier.

Contemporary findings have illuminated an intricate nexus

between the gut microbiome and sepsis. Antecedent to the advent

of sepsis, perturbations within the gut microbiome exacerbate septic

susceptibilities through an array of avenues: fostering the

proliferation of deleterious intestinal flora, predisposing the

immune apparatus to heightened inflammatory cascades, and

curtailing the synthesis of salubrious microbial derivatives like

short-chain fatty acids. With the inception of sepsis, the ensuing

derangement of the intestinal microbiome augments end-organ

malaise and amplifies vulnerability. Our investigation has

discerned that Coprococcus2 bears a significant inverse

correlation with both the incidence of septicemia and the 28-day

mortality rate, corroborating Lufang Che’s observation in animal

trials where septic mice models exhibited a diminished abundance

of the Coprococcus genus, subsequently manifesting poorer

prognostic outcomes (24). Furthermore, Jieyang Yu’s research has

noted a waning abundance of Coprococcus in patients afflicted with

sepsis (25). The mechanisms through which Coprococcus

potentially influences sepsis could encompass several facets.

Historically, studies have posited that Coprococcus can modulate

the production of cytokines IL-1b and IL-6, thereby orchestrating

the inflammatory response during an infection (26). Concurrently,

Coprococcus is recognized as one of the principal bacteria

responsible for butyrate production; butyrate, deemed a

salubrious short-chain fatty acid, is pivotal for the health and

functionality of colonic epithelial cells (16). Additionally, our

research has identified a-hydroxybutyrate as closely intertwined

with sepsis, qualifying it as a risk determinant for sepsis and the

subsequent 28-day mortality rate. Historical studies have attested to

the association of a-hydroxybutyrate with a gamut of ailments

including diabetes, insulin resistance, obesity, and heart failure (27,

28). In certain contexts, it is perceived as a nascent biomarker for

hypoxia and/or mitochondrial dysfunction (29). Recent inquiries

indicate that elevated levels of a-hydroxybutyrate may portend

adverse outcomes in COVID-19 patients, seemingly underscoring

its distinctive role amidst infections (30, 31).

Our study illuminates the pivotal role of the gut microbiota,

notably the genus Coprococcus and its metabolite a-
hydroxybutyrate, within the trajectory of sepsis. Biologically
Frontiers in Immunology 05
construed, this suggests that the equilibrium of intestinal

microbial communities and their resultant metabolites can either

directly or tangentially shape the host’s immune responses and

escalate the peril of disease exacerbation. In practical applications,

this proffers a rejuvenated perspective where therapeutic strategies

might transcend mere targeting of the pathogens, potentially

venturing into modulating the intestinal microbial milieu.

Furthermore, our insights underscore the quintessence of

considering the gut microbiota and its metabolites when

diagnosing and prognosticating the course of sepsis.

We posit a potential mechanism centered on the regulatory role

of the Coprococcus genus over the host’s inflammatory dynamics. A

diminishing presence of this bacterial lineage might instigate an

amplified reactivity to inflammatory stimuli within the host,

potentially intensifying the severity of sepsis. Moreover, this

genus is heralded as a chief progenitor of butyrate, an entity

esteemed indispensable for the vitality and operationality of

colonic epithelial cells. A surge in a-hydroxybutyrate might be

inextricably linked to mitochondrial impairments and/or cellular

hypoxia, both cardinal players in the genesis and trajectory of sepsis.

The intricacies of our exploration merit attention. Firstly, the

array of SNPs amassed, predicated upon the genome-wide statistical

significance threshold (5 × 10-8), was too scant for exhaustive

scrutiny. As a consequence, we embraced the SNPs that met the

locus-wide significance criterion (5 × 10-5). Secondly, whilst the

lion’s share of the GWAS summary data was sourced from

European cohorts, a mere fraction of the gut microbiome

information hailed from other ethnic backgrounds, possibly

introducing a tint of bias into our observations. Thirdly, due to

the confines of the foundational dataset, our probe was delimited to

the genus tier, sidestepping finer subdivisions like species or strains.

Nonetheless, the application of advanced shotgun metagenomic

sequencing techniques might shed light with greater precision and

nuance. Lastly, while our analysis was predicated solely on publicly

available GWAS data, procuring raw clinical datasets for a thorough

clinical investigation might yield more compelling outcomes.
Conclusion

This investigation unveils the intimate interplay between the gut

microbial consortium, notably the genus Coprococcus, and the

metabolite a-hydroxybutyrate in the context of sepsis. Our

revelations underscore the pivotal role of intestinal microbiota and

their metabolites within the pathogenetic fabric of sepsis, charting fresh

avenues for ensuing research. Concurrently, our outcomes proffer

novel stratagems and methodologies for the diagnosis, therapeutic

intervention, and prognostic evaluation of sepsis.
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