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Interleukin-17 family (IL-17s) comprises six structurally related members (IL-17A

to IL-17F); sequence homology is highest between IL-17A and IL-17F, displaying

certain overlapping functions. In general, IL-17A and IL-17F play important roles

in chronic inflammation and autoimmunity, controlling bacterial and fungal

infections, and signaling mainly through activation of the nuclear factor-kappa

B (NF-kB) pathway. The role of IL-17A and IL-17F has been established in chronic

immune-mediated inflammatory diseases (IMIDs), such as psoriasis (PsO),

psoriatic arthritis (PsA), axial spondylarthritis (axSpA), hidradenitis suppurativa

(HS), inflammatory bowel disease (IBD), multiple sclerosis (MS), and asthma.

CD4+ helper T cells (Th17) activated by IL-23 are well-studied sources of IL-17A

and IL-17F. However, other cellular subtypes can also produce IL-17A and IL-17F,

including gamma delta (gd) T cells, alpha beta (ab) T cells, type 3 innate lymphoid

cells (ILC3), natural killer T cells (NKT), or mucosal associated invariant T cells

(MAIT). Interestingly, the production of IL-17A and IL-17F by innate and innate-

like lymphocytes can take place in an IL-23 independent manner in addition to
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1191782/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1191782/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1191782/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1191782/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1191782&domain=pdf&date_stamp=2023-08-04
mailto:jcanete@clinic.cat
mailto:rubenque7@yahoo.es
https://doi.org/10.3389/fimmu.2023.1191782
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1191782
https://www.frontiersin.org/journals/immunology


Navarro-Compán et al. 10.3389/fimmu.2023.1191782

Frontiers in Immunology
IL-23 classical pathway. This would explain the limitations of the inhibition of IL-

23 in the treatment of patients with certain rheumatic immune-mediated

conditions such as axSpA. Despite their coincident functions, IL-17A and IL-17F

contribute independently to chronic tissue inflammation having somehow non-

redundant roles. Although IL-17A has been more widely studied, both IL-17A and

IL-17F are overexpressed in PsO, PsA, axSpA and HS. Therefore, dual inhibition of

IL-17A and IL-17F could provide better outcomes than IL-23 or IL-17A blockade.
KEYWORDS

IL-17A, IL-17F, IL-23, spondyloarthritis, Th17 cells, MAIT cells, gd T cells, psoriasis
1 Introduction

Interleukin (IL)-17A and IL-17F are a pair of rather newly

described pro-inflammatory cytokines capable of bridging the

adaptative and innate immune systems. Both cytokines have a role

in maintaining epithelial barrier function (skin, intestinal epithelium,

gingiva, vaginal mucosa, and conjunctiva) and providing protection

against pathogens (1). However, alterations in the regulation and

excess of these two cytokines have pathogenetic implications in

chronic immune-mediated inflammatory diseases (IMIDs),

including psoriasis (PsO), psoriatic arthritis (PsA), axial

spondyloarthritis (axSpA), hidradenitis suppurativa (HS), and

inflammatory bowel disease (IBD) (2).

IL-17A and IL-17F are produced by cells of the innate and

adaptative immune system and activate the production of

inflammatory mediators such as tumor necrosis factor a (TNFa),
IL-1b, IL-6, granulocyte colony-stimulating factor (G-CSF), and

granulocyte-macrophage colony-stimulating factor (GM-CSF).

They also induce the production of chemokines, including

CXCL1, CXCL5, CCL2, and CCL7, and the expression of

antimicrobial peptides (AMPs), which mediate the activation and

recruitment of inflammatory cells such as neutrophils (3).

IL-23 is a cytokine particularly important in maintaining the

differentiation state of Th17 cells, the best-known producer of IL-17A

and IL-17F. In this context, the discovery of the IL-23/IL-17 axis

prompted the development of several therapeutic strategies for

autoimmune disorders and chronic inflammation (4–6). To date,

both IL-23p19 and IL-12/23 inhibitors (guselkumab, risankizumab,

tildrakizumab, and ustekinumab), as well as IL-17RA and IL-17As

inhibitors (brodalumab, ixekizumab, and secukinumab) have been

tested in several IMIDs, including PsO, PsA, axSpA, IBD and HS

(Table 1). However, their blockade did not yield the same clinical

outcomes in all IMIDs (4, 6–10). A possible explanation is tissue

specificity of these cytokines (11, 12). One example is the lack of

efficacy of anti-IL-12/23 and anti-IL-23p19 monoclonal antibodies

(mAb) therapy in axSpA and HS, unlike IL-17A inhibitors (13–19).

Studies performed in animal models provided a plausible explanation

for this differential behavior as IL-23 was found to be required for the

initiation but not for the maintenance of the disease (20). Conversely,

the inhibition of the IL-23 provides good results in IBD (21), bringing
02
about the approval of biological treatments whereas neutralization of

IL-17A did not (22, 23). However, IL-17F suppression was effective in

a colitis mouse model, indicating that IL-17A and IL-17F could have

differential roles in the gut (24). Indeed, recent studies suggest that IL-

17A and IL-17F could have protective and pathogenic roles in the gut,

respectively (24–27). Moreover, beyond Th17 cells, innate cells and

innate-like lymphocytes also produce IL-17s in an IL-23-independent

manner. Several studies have stressed that in certain contexts innate

cells can be a major source of IL-17A and IL-17F and that they can

produce these cytokines regardless of IL-23 stimulus, playing

important roles in inflammation and autoimmunity (28, 29).

Clinical and pre-clinical studies in PsO and SpA suggested that

targeting IL-17F in addition to IL-17A could lead to increased

suppression of proinflammatory genes (30, 31), reduced migration

of both adaptive and innate immune cell types (31) and reduced

periosteal stem cell bone formation (32), compared with the

inhibition of IL-17A alone. Consequently, dual or bispecific

inhibitors, such as bimekizumab or sonelokimab, have been

developed with promising results in IMIDs (33). Altogether the

evidence suggests a non-linear relationship between IL-23 and the

IL-17s, as well as tissue-specific functions of IL-17A and IL-17F.

Thus, the role of IL-17A and IL-17F in IMIDs is complex,

involving the adaptative and innate immune system, and cytokine

signaling beyond the IL-23/IL-17 axis. The present narrative review

aims to examine the evidence about the involvement of IL-17A and

IL-17F in inflammatory diseases exploring alternative innate

sources and IL-23-independent signaling, which represent

alternative escape routes that perpetuate the inflammatory loop

and can influence treatment choice.

2 Biology of IL-17s and their receptors

IL-17A is considered the founding member of the IL-17 family

and thus is the most studied. However, the family includes five

additional members, as revealed by sequence homology studies: IL-

17B, IL-17C, IL-17D, IL-17E (also named IL-25), and IL-17F (34,

35). Among the IL-17 family members, the roles and functions of

IL-17A and IL-17F are intertwined partly due to their high amino

acid sequence homology (around 50%) and their shared common

evolution, since their corresponding genes can be found in close
frontiersin.org
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proximity on chromosome 6 (36). The rest of the members have

much lower homology (16-30%) and are located on different

chromosomes (Supplementary Table 1) (37, 38). IL-17s function

as dimeric cytokines, as revealed by structural analysis (39). In

particular, IL-17A and IL-17F can form homodimers (IL-17A/A or

IL-17F/F) or heterodimers (IL-17A/F) (40–42).

Regarding their function, IL-17A and IL-17F are modest

activators in terms of their pro-inflammatory potency when

working alone (43), but they can dramatically amplify their signal

by synergizing with other pro-inflammatory molecules, such as

TNF-a, IL-1b, and IL-22 (31). The synergistic effect of IL-17A and

IL-17F with TNFa has been shown in animal and human models in

many cell types (31). Interestingly, the synergistic effects of IL-17A

and IL-17F with TNFa or IL-1b are cell type-specific (31, 44).

Although IL-17A has a more potent pro-inflammatory effect, IL-

17F is found at higher levels (up to 30-fold) in lesional skin and

serum of patients with PsO (45). These higher serum levels of IL-

17F have also been observed in other IMIDs, such as PsA,

radiographic axSpA or HS (46–49). Furthermore, lower mRNA

levels of IL-17A have been found in PsA synovial tissue than in

paired PsO skin samples (50). Indeed, IL-17A mRNA levels were

2.7-fold lower than those of IL-17F in the skin and 17.3-fold higher

in synovial tissue, but IL-17A protein levels were 37.4-fold higher

than those of IL-17F in synovial fluid (50). In rheumatoid arthritis,

screening analysis of synovial fluid by multiplex ELISA showed

higher protein levels of interleukin IL-23 and IL-17F in ectopic

lymphoid neogenesis (ELN), an aggregation of T and B
Frontiers in Immunology 03
lymphocytes in nonlymphoid tissues, compared to ELN-negative

samples (51). Moreover, downstream of IL-23, expression of CD21L

(a marker selectively expressed in germinal center-containing

synovial tissues) was significantly associated with IL-17F, IL-21,

and IL-22, but not IL-17A in two independent sample sets of

synovial tissue, supporting differential expression, and maybe

function, of IL-17F and IL-17A in synovial tissue with different

T/B organization (51).

Signaling of IL-17s happens through a unique family of cell

membrane receptors composed of five members (IL-17RA to IL-

17RE, Supplementary Table 2, Figure 1). IL-17Rs can function either

as homodimeric or heterodimeric proteins and are characterized by the

presence of a conserved SEFIR (similar expression to fibroblast growth

factor genes) domain in their intracellular region (53). Dimeric IL-17R

complex induces binding of nuclear factor-kappa B (NF-kB) activator 1
(Act1) that functions as a linker with TRAF (TNF receptor-associated

factor) family proteins. Recruitment of TRAF6 and transforming

growth factor-b (TGF-b)-activated kinase 1 (TAK1) by Act1 leads to

the activation of the classical NF-kB pathway (34, 52). In addition, IL-

17s activate the CCAAT/enhancer-binding protein (C/EBP) family of

transcription factors C/EBPb and C/EBPd regulating the expression of

inflammation-related genes (IL-6, chemokines or IL-23R encoding

genes) (54). Thus, the binding of Act1 to the IL-17R along with the

binding of TRAF6 mediates the canonical pathway where C/EBP, AP-

1, and NF-kB activation results in the transcription of inflammatory

genes (1, 2, 55, 56). Also, Act1 interacts with the TRAF2/TRAF5

complex regulating the noncanonical pathway controlled by several
TABLE 1 Available therapies targeting IL-17 and IL-23 in IMIDs.

Mechanism
of action

Therapy Approved indications* PsO PsA axSpA HS IBD Uveitis

Anti-IL-17A

Ixekizumab
Plaque psoriasis, psoriatic arthritis, axial spondylarthritis

Secukinumab
Plaque psoriasis, psoriatic arthritis, axial spondylarthritis,

juvenile idiopathic arthritis

Anti-IL-
17RA

Brodalumab
Plaque psoriasis

Anti IL-17A
and IL-17F

Bimekizumab
Plaque psoriasis, psoriatic arthritis, and axial

spondyloarthritis. Phase 3 clinical development completed
for hidradenitis suppurativa, EMA approval pending

Anti-IL12/
23

Ustekinumab
Plaque psoriasis, psoriatic arthritis, Crohn’s disease,

ulcerative colitis

Anti-
IL23p19

Guselkumab
Plaque psoriasis, psoriatic arthritis. In phase 3 clinical
development for Crohn’s disease and ulcerative colitis

Risankizumab
Plaque psoriasis, psoriatic arthritis, Crohn’s disease. In

phase 3 clinical development for ulcerative colitis

Tildrakizumab
Plaque psoriasis. In phase 3 clinical development for

psoriatic arthritis
front
axSpA, axial spondyloarthritis; HS, hidradenitis suppurativa; IBD, inflammatory bowel disease; IL, interleukin; PsA, psoriasis arthritis; PsO, psoriasis.
*The table only includes therapies that have been approved by the European Medicines Agency (EMA) or that have published phase 3 clinical development.
Green: approved or shown efficacy in phase 3 clinical trials. Red: Lack of efficacy. Yellow: Insufficient or unclear evidence.
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RNA-binding proteins (such as HuR and Arid5a). TRAF3 can bind to

the IL-17R preventing the formation of the IL-17R-Act1-TRAF6

complex. Moreover, TRAF4 can compete with TRAF6 for the

binding site on Act1 blocking its signaling (56).

IL-17 receptors significantly differ in the composition of their

extracellular domains, as revealed in the latest structural studies. IL-

17RA is the only IL-17 chain known to contain a cytoplasmic

domain named CBAD (C/EBP-b activation domain). This CBAD

domain is part of a regulatory mechanism capable of coordinating

the inhibition of IL-17s signaling through binding of TRAF3 to the

ubiquitin-editing enzyme A20 (6). In addition to IL-17RA, both IL-

17 A and F can signal as well through an IL-17RC:IL17RC

homodimeric complex, debunking the long-standing concept that

IL-17RA is a mandatory shared receptor (52). Mouse models have

tested the functionality of the IL-17F/IL-17RC axis, showing that

signaling through this axis can lead to a dysregulated inflammatory

response (54, 57). This is mainly due to the inability of IL-17RC to

bind to inhibitory regulatory partners such as A20 since the

receptor lacks a CBAD domain (58, 59).

The functional patterns of IL-17RA and IL-17RC are not

entirely overlapping (60), which might help to explain the tissue-

specific roles observed of IL-17A and IL-17F. Blockade of IL-17RA

could be potentiating an escape route via IL-17F/IL-17RC axis

signaling (22, 57). Moreover, IL-17RA blockade leads to increase

levels of circulating IL-17A in PsO that once the drug is withdrawn
Frontiers in Immunology 04
can readily signal through the IL-17RA/IL-17RC heterodimer

inducing excessive IL-17A signaling (1).

Mechanistic studies have shown that immune cells, such as

Th17 cells, are endowed with an autocrine regulatory feedback loop

that tunes their pathogenicity (Figure 2) (61). IL-17A can bind in an

autocrine manner to the IL-17RA : IL-17RC heterodimeric receptor,

activates NF-kB and induces the secretion of IL-24. At the same

time, IL-24 can also function in an autocrine manner and repress

the expression of other Th17 signature cytokines including GM-

CSF and IL-17F (61). Thus, blockade of IL-17A alone disrupts these

autocrine pathways and unlocks the repressive role of IL-24,

allowing for the release of GM-CSF and IL-17F and unlocking an

unexpected pro-inflammatory escape route (Figure 2). This might

explain the limitations of targeting IL-17A alone in some

inflammatory conditions (62).
3 Cellular sources of IL-17A and IL-17F

Asmentioned above, IL-17A and IL-17F are secreted by cells of the

adaptative immune system such as Th17 cells and CD8+ cytotoxic T17

(Tc17) cells (63, 64), but also by innate immune cells such as group 3

innate lymphoid cells (ILC3s), and innate-like lymphocytes (ILLs) such

as gamma delta (gd) T, mucosal-associated invariant T (MAIT) cells,

and natural killer T (NKT) cells (Figure 3, Table 2) (26, 64).
FIGURE 1

IL-17 receptor family (IL-17Rs), their ligands and downstream signaling pathways. IL-17Rs are classified in “short” and “tall” according to their
extracellular domains (ECD). “Short” receptors (IL-17RA, IL-17RB, and IL-17RD) present a two-domains ECD and a disordered linker near the
cytoplasmic membrane with a proline-rich motif, and “tall” receptors (IL-17RC and IL-17RE) have a larger ECD with two additional domains (52). IL-
17A and IL-17F homodimers and IL-17A/IL-17F heterodimers bind to IL-17RA/C receptors leading to the recruitment of the nuclear factor-kappa B
(NF-kB) activator 1 (Act1) by homotypic interactions between both SEFIR (similar expression to fibroblast growth factor genes) domains. Once the
complex is formed other signaling molecules (TNF receptor-associated factor [TRAF]6, TRAF2, and TRAF5) are recruited to fully activate downstream
signaling pathways. Bold arrows represent a preferential binding.
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FIGURE 2

TH17 cell-intrinsic autocrine loop triggered by IL-17A [Figure adapted from Chong et al., 2020 (61)]. (A) IL-17A binds to IL-17RA/IL-17RC receptor and
activates NF-kB inducing the expression of IL-24, which in turn inhibits NF-kB leading to the repression of other TH17 signature cytokines (such as IL-17F
and GM-CSF). (B) Blockade of IL-17A breaks the autocrine loop allowing NF-kB signaling and therefore, favoring IL-17F and GM-CSF expression.
FIGURE 3

Major lymphocytes populations secreting IL-17A and IL-17F. [Figure adapted from Veldhoen, 2017 (60)]. Major transcription factor associated with
these cells are RORgt, and some shared surface receptors include CCR6 and IL-23R.
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TABLE 2 Main characteristics of the immune cell populations secreting IL-17A and IL-17F and their role in autoimmune diseases.

Adaptative cells Innate-like cells Innate cells

Th17 TC17 gd T (gd17) MAIT NKT ILC3 NK

Role in PsO Secretion of IL-
17s that
contribute to
keratinocytes
proliferation

Responsible of
increased
production of IL-
17s in lesional
skin

Contribute to IL-
17A production
In murine
models are the
primary source
of IL-17s

Identified in skin
and blood
Proportion of IL-
17A+ CD8+T cells
in psoriatic plaques

NKT17 cells
increased in PsO
patients
Decreased NKT2
vs. NKT17 ratio

Increased levels in
blood and lesional
and non-lesional
skin

Present in
inflammatory
skin lesions

Role in PsA Increased in
blood and
synovial fluid
Possible
contribution to
bone erosion
Increased
number of Th17
cells compared to
healthy controls

Increased
frequency of CD8
+ T cells
Levels in
peripheral blood
correlates with
the disease
activity
Enriched in
synovial fluid of
joints

Elevated levels
found in synovial
fluid of patients
with active
disease

Enriched in
synovial fluid
compared to
peripheral blood

IL-17+ NKT cells
in synovial fluid
samples

Increased levels in
blood and
synovial fluid
ILC2/ILC3 ratio
correlated with
disease activity
scores,
inflammation, and
structural damage

Lower expression
of NK cells in
PsA patients
than in
rheumatoid
arthritis patients

Role in SpA Th17 cells
dysregulation
critical in the
development of
SpA
Increased
number of Th17
cells compared to
healthy controls

Present hallmarks
of tissue-resident
memory cells in
synovial fluid
Present in gut,
peripheral blood,
and synovial fluid
of patients (gut-
joint migration
axis)

In peripheral
blood, a 3-fold
higher frequency
of circulating gd
T cells and 5-fold
higher frequency
of IL-23R-
expressing gd T
cells
Ex vivo
experiments
demonstrated are
major sources of
IL-17s in joints
although they are
not the most
abundant cells

Higher proportion
of IL-17+ MAIT
cells in blood
compared to
healthy controls
Increased MAIT
cells in the
synovial fluid of
patients with AS

Increased in
peripheral blood
(respond to IL-23
stimulation)
Possible protective
role reducing joint
inflammation
Reduced in blood
but increased in
synovial fluid
Ex vivo
experiments
demonstrated are
major sources of
IL-17s in joints
although they are
not the most
abundant cells

Increased in the
gut, peripheral
blood, synovial
fluid, and bone
marrow of AS
(migratory
properties)

Increased IL-17s
producing cells
in peripheral
blood (compared
to healthy
controls)
IL-17s producing
cells higher in
serum fluid
compared to
peripheral blood

Role in
enthesitis

Produce IL-17A
upon stimulation

Produce IL-17A
upon stimulation

Abundant in
normal
conditions in
entheses
Contribute to
local IL-17A
production
independently of
IL-23

Present in blood
and in normal,
unaffected entheses
that contribute to
IL-17A production

Normally
expressed in soft
tissue and bone
adjacent to
entheses. Local
production of IL-
17A

Role in uveitis Elevated levels in
human
peripheral blood
and aqueous
humor

Elevated
CD8+CD146+

TC17 cells in
Behçet’s disease
and birdshot
chorioretinopathy
Dysregulated
cytokine
expression in
acute anterior
uveitis (increased
GM-CSF, IL-17A
and IL-17F
secretion
compared to
healthy controls
or patients with
SpA)

Responsible of
the IL-17
increase in
peripheral blood
and in the
aqueous humour

Increased IL-17A
and IL-17F
production in
acute anterior
uveitis

Elevated levels in
peripheral blood
and aqueous
humour in
Behçet’s uveitis
In mice model of
autoimmune
uveitis, NKT
function seemed to
correlate with
susceptibility

Increased levels
in eyes and
spleen of
experimental
autoimmune
uveitis model
Behçet’s disease
patients have an
increased
number of
cytokine
secreting NK
cells

Role in IBD Increased IL-17A
expression

Enrichment of
Tc17 cells with
proinflammatory

Increased IL-17A
expression

In vitro IBD
models, MAIT
cells produced

Reduction in IBD
patients
Protective role

Increased IL-17A
expression

Express IL-17F
under

(Continued)
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3.1 Th17 and Tc17 cells, the conventional
IL-23-dependent producers of IL-17A
and IL-17F

Th17 cells are the main responders against extracellular

pathogens such as fungi and bacteria. They are a well-studied

source of IL-17A and IL-17F, but they can also secrete other

cytokines such as IL-21, IL-22, IL-24, and GM-CSF (114, 115).
Frontiers in Immunology 07
The differentiation of naïve CD4+ helper T cells (Th0) into effector

subsets (Th1, Th2, or Th17) or regulatory T cells (Treg) depends on

the local cytokine milieu (Figure 4) (117). T-bet (T-box expressed in

T cells), GATA3 (GATA binding protein 3) and Foxp3 (forkhead

box P3) are the main transcription factors expressed by Th1, Th2,

and Treg cells, respectively, and are responsible for the lineage-

specific cytokine profiles of each subset. Th1 are defined by their

preferential production of IL-2 and IFNg and respond mostly
TABLE 2 Continued

Adaptative cells Innate-like cells Innate cells

Th17 TC17 gd T (gd17) MAIT NKT ILC3 NK

features (CD6
expression) in
active Crohn’s
disease

Primary source
of IL-17A

more IL-17
Reduced
circulating MAIT
cell frequencies
and increased IL-
17 production in
ulcerative colitis
patients

(reducing gut
inflammation) in
IBD animal models

physiological
conditions

References (24, 65–71) (68–82) (29, 63, 68, 71,
79, 83–89)

(64, 80, 90–97) (64, 68, 86, 88, 98–
103)

(24, 68, 71, 86,
104–109)

(110–113)
AS, ankylosing spondylitis; GM-CSF, Granulocyte Macrophage Colony-Stimulating Factor; IBD, inflammatory bowel disease; IL-17, interleukin 17; ILC3, group 3 innate lymphoid cells; MAIT,
mucosal associated invariant T cells; NK, natural killer cells; NKT, natural killer T cells; PsA, psoriasis arthritis; PsO, psoriasis; SpA, spondyloarthritis; Th17, CD4+ helper T cells; Tc17, CD8+

cytotoxic T17.
FIGURE 4

CD4+ helper T cells differentiation routes. [Figure adapted from Ruiz de Morales et al., 2020 (5)]. CD4+ helper T cells (Th0) differentiate into effector
T cell subsets (Th1, Th2, or Th17) and regulatory T cells (TReg) with specific signal transduction mechanisms, transcription factors, and cytokine
profiles for each cell lineage. IL-12 and IFNg are critical cytokines initiating the downstream signaling cascade to develop Th1 cells, the T-box
transcription factor (T-bet) is the master regulator for its differentiation, and mainly secrete IFNg and IL-2 (116). For Th2 lineage development, IL-4
and IL-2 are crucial cytokines and GATA3 is the master regulator transcription factor. Among their key effector cytokines are IL-4, IL-5, and IL-13.
TReg cells are generated after antigen stimulation under TGF-b and IL-2 presence, express the Foxp3 transcription factor and have a role in
maintaining immune homeostasis through their main effector cytokines TGF-b and IL-10. IL-1b, IL-6, or IL-21 are required for the differentiation of
Th17 cells, which express RORgt and secrete IL-17s (115, 117). TGF-b and IL-6 exposure sustained the differentiation of non-pathogenic Th17 cells
(co-expression of T-Bet), whereas IL-23 induce a pathogenic profile (co-expression of Foxp3). Newly described Th17/Th2 cells express markers of
both CD4+ T cells (CD161 and RORgt, and GATA3) and produce IL-4 and IL-17. This phenotype is also considered pathogenic (118).
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against intracellular pathogens (bacteria, virus, etc.); Th2 for IL-4,

IL-5, and IL-13 and respond against parasites and allergens; and

Treg for TGF-b and IL-10 and are involved in immune tolerance and

lymphocyte homeostasis. Conversely, retinoid-related orphan

receptor gamma t (RORgt) is the hallmark transcription factor

that determines the differentiation of Th17 cells, inducing the

production of IL-17A and IL-17F, and surface molecules such as

the C-C chemokine receptor type 6 (CCR6) and IL-23R (119, 120).

In general, it has been established that IL-1b and IL-6 are required

for the differentiation of Th17 cells, whereas TGF-b and IL-23 favor

lineage expansion, maintenance, and survival (121, 122). However,

the balance between IL-23 and TGF-b prompts a different cytokine

profile of Th17 cells and their pathogenicity (Figure 4) (123, 124).

An increase in the TGF-b/IL-23 ratio can result in the generation of

non-pathogenic Th17 cells, whereas a reduction in this ratio

converts them to pathogenic Th17 cells (123, 125, 126). The lack

of IL-10 expression and enhanced GM-CSF in Th17 cells has been

also associated with a pathogenic phenotype (125). The pro-

inflammatory mediator prostaglandin E2 (PEG2) is another

potent activator of Th17 cells that induces a pathogenic

phenotype (increasing RORgt and IL-17A and reducing IL-10)

(127). Indeed, PEG2 and cyclooxygenase 2 (COX2) are increased

in RA synovial tissue and, in mice models, PGE2 modulates the

severity of the disease.

Activated Th17 cells also differ in terms of the subtype of IL-17s

that they preferentially express, differentiating between

subpopulations that express IL-17A, IL-17A/F, or IL-17F. Three

factors have been observed to control this differentiation, the

cytokine environment, the strength or concentration of antigenic

signaling through the T-cell receptor (TCR), and the duration of the

stimulus (47, 128). Low-strength T cell activation preferentially

promotes the induction of the IL-17A+ subpopulation of Th17 cells

whereas high-strength stimulation favors the IL-17F+

subpopulation. Furthermore, IL-17A+ and IL-17F+ Th17 cells also

differ in terms of the cytokine profiles that they produce. IL-17F+

cells have been associated with a more pathogenic phenotype in

inflammatory diseases since they express reduced levels of IL-10

and GM-CSF and a higher level of IFN-g compared to IL-17A+ cells

(47). Moreover, the expression of IL-17A and IL-17F is differentially

regulated over time. IL-17A is rapidly produced upon T-cells

stimulation, whereas IL-17F expression shows a gradual increase

with higher levels at later stages of activation. Conversely, unlike IL-

17F, IL-17A expression is not sustained by continuous activation of

T-cells (129). This might suggest that, whereas IL-17 A has an

important role upon inflammation onset, IL-17F would acquire

more relevance in its chronification. This would explain why in

certain cases targeting IL-17A alone might not be enough for a long-

term disease control (13–16, 61), but dual inhibition of IL-17 A and

F might be of choice.

CD8+ cytotoxic T cells (Tc17) are another subset of cells from

the adaptative immune system that produce IL-17A, IL-17F, IL-21,

IL-22 and express RORgt (130). Like Th17 cells, cytokines IL-6 or

IL-21 along with TGF-b determine the differentiation of Tc17 cells.

In addition, IL-23 stabilizes their phenotype. Tc17 cells produce

small amounts of IFNg, granzyme and perforin, exerting a low

cytotoxicity (131–133).
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3.2 Innate lymphoid cells and innate-like
lymphocytes: additional sources of IL-17A
and IL-17F

Innate lymphoid cells (ILCs) and innate-like lymphocytes (ILLs

such as ILC3, gd T cells, MAIT cells, and NKT cells) are additional

sources of IL-17A and IL-17F that have important roles in

controlling homeostasis and protecting against infections (134–

138). However, the dysregulation of these cells promotes

inflammatory responses contributing to the pathogenesis of

inflammatory diseases such as PsO, PsA, axSpA, and IBD

(Table 1) (90, 116, 139–141). The innate nature of these cells

allows them to be rapidly activated during early phases of

inflammatory responses and become major sources of IL-17s

through a restricted TCR engagement or in response to certain

cytokine environments (91, 135). Several studies have highlighted

the complexity and number of cytokines that can induce the

production of IL-17A and IL-17F by innate and innate-like

lymphocytes in response to other cytokines, different from the

canonical IL-23, such as IL-7 (45, 141, 142), IL-9 (143), IL-12, IL-

1b and IL-18 (28). This is consistent with data obtained in

inflammatory diseases (PsO, PsA, axSpA, and HS) where IL-17F

levels are higher than those of IL-17A (104, 144–146). Recent

evidence has shown a trend in ILC3s, gd T, and MAIT cells to

produce predominantly IL-17F in a mode independent of IL-23 (28,

116). Production of IL-17s in ILCs and ILLs is also dependent on

RORgt expression, and although these cells can present the cell

surface marker IL-23R, they can also follow an IL-23-independent

pathway (91, 142). One plausible explanation could be a molecular

disconnection: IL-23 binds to the receptor but cannot activate IL-

17s production due to a lower expression of tyrosine kinase 2

(TYK2) and signal transducer and activator of transcription 3

(STAT3), as some transcriptional studies seem to point out (91).

ILC3s, predominantly found in mucosal tissues and skin, are

characterized for presenting an invariant TCR, expressing RORgt and
therefore producing IL-17A, IL-17F and/or IL-22. Interestingly, in vitro

studies performed with human samples have shown that ILC3s cells can

be induced to produce IL-17A and IL-17F, in an IL-23 independent

manner, upon exposure to a combination of IL-1b and IL-2 (28).

gd T cells comprise 50% of the intraepithelial lymphocyte cells

in mucosal and epithelial tissues and 3-5% of all blood lymphoid

cells (135, 136). They are atypical T cells characterized by the

expression of a semi-invariant gd T cell receptor (TCR) that can

recognize a broad range of microbial antigens. Most of the antigens

and the recognition mechanism of gd T cells are still unknown,

binding to phosphorylated metabolites such as microbial (E)-4-

Hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) or

eukaryotic isoprenoid precursor (IPP), or even to lipid antigens

presented by cluster of differentiation 1 (CD1) molecules has been

reported (135, 136). The gd17 subset expresses RORgt and share

many common features with Th17 cells (cell surface expression of

IL-23R, CCR6, CCR2 and CXCR6) (147, 148). Secretion of IL-17A

and IL-17F by gd17 cells can take place upon IL-23 stimulation

(138, 149), or in an IL-23-independent manner in the presence of

other cytokines such as IL-7, or combined IL-12 and IL-18

stimulation (28, 83, 84, 135).
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MAIT cells are predominantly CD8+ T cells and display rapid

innate-like effector functions upon activation. These cells express an

invariant TCR that recognizes small metabolites derived from the

microbial vitamin B2 (riboflavin) biosynthesis and are restricted by

MHC-related molecule-1 (MR1) (85). Overall, MAIT cells are

abundant in humans and can be found in many tissues with

varying frequency such as blood (up to 10% of T cells), liver (up

to 20 to 50% of T cells), synovial tissue (~5%), intestine (1.5-4%

CD3+ T cells), lungs (3%) and skin (0.5-2%) (72, 90, 92, 93, 150–

152). Expression of RORgt polarises MAIT cells towards a Th17-

like phenotype including the production of IL-17A and IL-17F

cytokines, and receptors such as IL-1R, IL-7R, IL-12R, IL-18R and

IL-23R (90, 94). In vitro studies of MAIT cells isolated from human

blood samples have shown that exposure to a combination of IL-12

and IL-18 can induce the production of IL-17A and IL-17F

independently of IL-23. Interestingly, strong TCR stimulation in

the presence of IL-12 and IL-18 can influence the cytokine profile of

MAIT cells with a bias towards IL-17F (28).

NKT cells have features of both NK cells and T cells (153).

Three subpopulations can be distinguished based on the

transcription factors and cytokine profiles that they express,

namely analogous to Th1 (NKT1), Th2 (NKT2) and Th17 cells

(NKT17) (152). NKT17 cells are mainly present in lymph nodes,

skin, and lungs, and their survival and expression depend on IL-7

(98, 142, 154). NKT17 cells secrete Th17-related cytokines, such as

IL-17A, IL-17F, IL-21 and IL-22 (155, 156) and express distinctive

markers of Th17 cells such as IL-1R, IL-23R, CCR6, CD103, and

CD138 (157–159). Apart from secreting IL-17A and IL-17F in an

IL-23-dependent manner (160, 161), NKT can also produce IL-17s

after stimulation with TGF-b and IL-1b (162). CD161 (or NK1.1 in

murine models) is usually expressed on NK cells and associated

with the inhibition of their function (163). The expression of CD161

is regulated by RORgt; it is a marker of IL-17 producing T cell

subsets, including CD4+ and CD8+ T cells, and some populations of

Treg cells besides NKT cells.
4 Conclusion

IL-17A and IL-17F have relevant physiological roles and their

dysregulation can result in pathological conditions. Abnormal levels

of these cytokines have been found in IMIDs, making them

potential therapeutic targets. Adaptive Th17 cells are generally

considered the main producers of IL-17s, and IL-23 was assumed

to be indispensable to regulate their secretion. However, current

evidence proves that other innate and innate-like cells can secrete

IL-17A and IL-17F triggering different signaling pathways, which

can be IL-23-independent. The crosstalk between IL-17s and IL-23

in autoimmune and inflammatory diseases is widely recognized,

and the IL-23/IL-17 axis has been targeted in the development of

therapeutic agents. Inhibitors of IL-17A, IL-17F, or IL-23 have

promising results, although they do not yield the same clinical effect

in all IMIDs. The evidence of a non-linear relationship between IL-

23 and IL-17s can underly these tissue-specific functions of IL-17A

and IL-17F.
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Therefore, IL-23-independent signaling pathways and

additional sources of IL-17A and IL-17F, apart from the

adaptative immune cells, constitute alternative processes

underpinning pathological conditions. The present review

explores the recent literature regarding IL-17s’ alternative sources

and signaling pathways independent of IL-23. The types of IL-17R

are also important to modulate the response in different tissues. We

hope this review may contribute to highlight the importance of

considering all IL-17A and IL-17F cellular sources and alternative

signaling pathways in designing new therapies and improving

treatment selection for IMIDs.
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