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Subarachnoid hemorrhage (SAH) is a cerebrovascular accident with an acute

onset, severe disease characteristics, and poor prognosis. Within 72 hours after

the occurrence of SAH, a sequence of pathological changes occur in the body

including blood-brain barrier breakdown, cerebral edema, and reduced

cerebrovascular flow that are defined as early brain injury (EBI), and it has been

demonstrated that EBI exhibits an obvious correlation with poor prognosis.

Ferroptosis is a novel programmed cell death mode. Ferroptosis is induced by

the iron-dependent accumulation of lipid peroxides and reactive oxygen species

(ROS). Ferroptosis involves abnormal iron metabolism, glutathione depletion,

and lipid peroxidation. Recent study revealed that ferroptosis is involved in EBI

and is significantly correlated with poor prognosis. With the gradual realization of

the importance of ferroptosis, an increasing number of studies have been

conducted to examine this process. This review summarizes the latest work in

this field and tracks current research progress. We focused on iron metabolism,

lipid metabolism, reduction systems centered on the GSH/GPX4 system, other

newly discovered GSH/GPX4-independent antioxidant systems, and their related

targets in the context of early brain injury. Additionally, we examined certain

ferroptosis regulatory mechanisms that have been studied in other fields but not

in SAH. A link between death and oxidative stress has been described.

Additionally, we highlight the future research direction of ferroptosis in EBI of

SAH, and this provides new ideas for follow-up research.

KEYWORDS
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1 Introduction

In 2012, Dixon et al. observed that erastin-induced cell death

exhibits a distinct series of morphological, biochemical, and genetic

features. This form of death is highly dependent on Fe2+, and the

accumulation of reactive oxygen species (ROS) and lipid

peroxidation (LPO) products is one of the salient features. This

process was termed “ferroptosis” (1). Ferroptosis has received

widespread interest due to its involvement in development,

immunity, aging, and various pathological conditions. Numerous

studies have reported that ferroptosis is widely present in multiple

diseases such as renal failure, cardiomyopathy, liver cancer, cerebral

hemorrhage, stroke, and neurodegeneration (2). After rupture of

intracranial blood vessels, the blood enters the subarachnoid space,

and this is referred to as subarachnoid hemorrhage (SAH). Within

72 hours after SAH occurs, a sequence of pathological changes

occur in the body such as blood brain barrier (BBB) destruction (3,

4), cerebral edema, and neuronal damage that is defined as early

brain injury (EBI), and studies have demonstrated that EBI is

closely related to poor prognosis. In recent years, researchers and

medical professionals have questioned if ferroptosis is involved in

early brain injury after SAH. Cao et al. confirmed that ferroptosis is

involved in EBI following SAH (2). After SAH, a large number of

erythrocytes enter the subarachnoid space and rupture, and the

concentration of iron ions increases rapidly (5). Under the

mediation of the Fenton reaction using iron as a catalyst, a large

number of free radicals such as ROS are generated, and these are a

class of molecules that contain partially reduced oxygen such as O2
-,

H2O2, OH
-, O3, and

1O2 (6–8). Additionally, under the action of

lipoxygenase (LOX), membrane phospholipids containing

polyunsaturated fatty acids are directly oxidized to lipid

hydroperoxides, and excessive accumulation of reactive oxygen

species and lipid peroxides eventually results in cell ferroptosis (9).
2 Iron metabolism

After SAH, the blood flowing into the subarachnoid space

carries large amounts of hemoglobin and iron that provides the

basis for the formation of LPO (6). Ferroptosis is a form of iron-

dependent death. Iron acts as an indispensable inducer of lipid

peroxidation and ferroptosis that can result in ROS production via

the Fenton reaction. It is also used as a synthetic raw material for

lipoxygenase and cytochrome P450 oxidoreductase to produce lipid

peroxides (10) that ultimately lead to ferroptosis.

Iron homeostasis plays a critical role in the normal life activities

of the body, and the body maintains the stability of iron content

inside and outside of cells through various metabolic pathways

(Figure 1). Increasing iron intake or decreasing iron excretion

increases cellular susceptibility to ferroptosis. The active iron

content in cells is primarily adjusted via the following pathways: 1)

ferrotinophagy (11) that is a specific autophagic process that uses

ferritin as a substrate; 2) iron uptake mediated by transferrin (12, 13);

3) ferroportin (FPN) that can transfer intracellular iron from cells

(14); 4) iron regulatory proteins (IRP) that maintain iron homeostasis

by binding to iron response elements in different tissues (15, 16).
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Iron is primarily stored and transferred in the form of ferritin

complexes that are inert forms of iron that are inactive and cannot

promote lipid peroxidation. Ferrotinophagy is an autophagic cell

death pathway that uses ferritin as a substrate for its degradation

(11). Ferritin consists of a ferritin light chain (FTL) and ferritin

heavy chain (FTH). Both FTL and FTH are key indicators of cellular

iron homeostasis. The decrease in FTH1 levels marks a decrease in

ferritin in the inert form and an increase in active cell-free iron.

Abundant ferritin is a key factor controlling ferroptosis sensitivity,

and iron is released into unstable iron pools after ferrotinophagy,

ultimately resulting in cells that are more sensitive to ferroptosis

(17). Nuclear receptor coactivator 4 (NCOA4) is a ferrotinophagy-

specific receptor that induces ferritin transfer to autophagosomes

and ferrotinophagy (18). Autophagy-related gene 5 (ATG5) and

autophagy-related gene 7 (ATG7) mediate ferroptosis by promoting

ferrotinophagy, ultimately facilitating increased intracellular iron

content and lipid peroxidation (19–21). Ferrotinophagy participates

in the pathological process of EBI after SAH. In a study by Liang

et al. (11), it was reported that when SAH occurs, ferrotinophagy is

accompanied by decreased FTH1 and decreased ferritin in the inert

form, and active cell-free iron was increased, eventually leading to

iron death. After inhibiting the expression of ATG5, ferrotinophagy

was inhibited, the concentration of active iron decreased, and LPO

was decreased. Concurrently, ferroptosis-protecting protein content

was observed. For example, there is an increase in the expression of

glutathione peroxidase 4 (GPX4), and this in turn alleviates

ferroptosis induced by SAH and improves the prognostic

indicators of SAH. Additionally, studies examining hemorrhagic

stroke have demonstrated that the degradation of ferritin and the

increase in iron content for various reasons are key causes of brain

damage and that the iron chelator desoxamine can alleviate brain

damage, thus suggesting that iron overload is an important trigger

factor of ferroptosis and providing new insights into the

neuroprotective effect of iron chelators (22). These studies also

provide a basis for further research focused on ferroptosis in the

context of EBI. This is expected to improve the degree of ferroptosis

in SAH by regulating ferrotinophagy. These studies not only suggest

that SAH causes neuronal ferroptosis by activating ferrotinophagy

but also suggest that regulating ferrotinophagy and maintaining

iron homeostasis may provide clues for the prevention of EBI (11).

It is worth mentioning that autophagy can also mediate the

production of lysosomal ROS and can increase the susceptibility

of cells to ferroptosis (23, 24). Overall, ferrotinophagy mediates

ferroptosis and is anticipated to become a new breakthrough point

for the clinical treatment of EBI after SAH.

With the occurrence of SAH, many erythrocytes enter the

subarachnoid region and the concentration of extracellular iron

ions increases rapidly. Extracellular iron is primarily composed of

Fe3+ ions. First, Fe3+ must bind to transferrin (TRF) and then bind

to transferrin receptors (TFR) to form a ternary complex that

transports Fe3+ into cells across the membrane. Fe3+ entering cells

form endosomes. Six-Transmembrane Epithelial Antigen of

Prostate 3 (STEAP3) reduces Fe3+ to Fe2+ in endosomes. Fe2+ is

transported into cells through divalent metal transporter 1 (DMT1,

also called SLC11A2), whereas transferrin and transferrin receptors

are transported out of the cell. The change in the iron valence is also
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beneficial in regard to improving the absorption efficiency of iron

ions by cells. A portion of the Fe2+ entering the cells is oxidized by

ceruloplasmin to Fe3+ that combines with apoferritin to form

ferritin. It becomes inactive storage iron, and the remaining iron

enters the cells as Fe2+ (25–28). In a rat model of SAH, it has also

been reported that the TFR content is significantly upregulated at 24

h after SAH (29). Yuan et al. also observed that ferritin, TFR, and

DMT1 levels increased at 6 h in EBI (30). Zhang et al. reported that

the iron metabolism-related proteins hepcidin and DMT1 were

upregulated in EBI after SAH. After treatment with the DMT1

inhibitor ebselen, the intracellular iron ion concentration decreased,

and the degree of ferroptosis was alleviated. These results indicate

that ebselen can inhibit EBI by inhibiting DMT1 to decrease

intracellular iron content during this period, and this effectively

inhibits ferroptosis (31). Taken together, we speculated that SAH

induces the upregulation of iron absorption proteins, thus leading

to the accumulation of intracellular iron that in turn

promotes ferroptosis.

There are not only iron ion transfer pathways in cells but also

iron ion excretion channels. Intracellular iron could also be

transported out of the cell through transferrin (FPN) that is the

sole known iron exporter that regulates mammalian iron export

outside of the cell. Contrary to DMT1 playing a role in increasing

intracellular iron content, FPN is an important transporter for

reducing intracellular iron content (14). Previous studies have

revealed that hepcidin is a regulator of iron metabolism. It

induces FPN internalization and degradation by combining with

FPN (32) and can also increase the expression of DMT1. Therefore,
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intracellular iron ions become increased. Zhang et al. observed that

the iron metabolism-related proteins hepcidin and DMT1 are

upregulated and that FPN and GPX4 are reduced in EBI after

SAH, and this ultimately causes lipid peroxidation and ferroptosis

(31). A study by Li et al. revealed the content of TFR significantly

increased at 24 h after SAH, thus resulting in increased intracellular

iron concentration, and they also demonstrated that Ferrostatin-1

(Fer-1) treatment could up-regulate FPN expression, reduce iron

levels, reduce lipid peroxidation, inhibit the occurrence of

ferroptosis, and improve neurological function (29).

IRP is indispensable for maintaining iron homeostasis. It

regulates the gene expression of iron-metabolism-related proteins

by binding to RNA stem-loop structures that are known as iron-

response elements (IREs) that are present in target mRNAs. By

combining with IREs at different sites, IRP can regulate iron storage

and export, thereby regulating intracellular iron concentration and

maintaining intracellular iron homeostasis. If IRP combines with

IRE at the 3’UTR of target mRNAs, the expression of TFR and

DMTI increases and the intracellular iron concentration increases,

whereas if it binds to the 5’UTR of target mRNAs, it will reduce the

intracellular iron ion concentration (16, 33). The functions of IRP in

the context of ferroptosis have been confirmed in liver cancer

studies. a-enolase 1 (ENO1) is an important glycolytic enzyme.

Studies have demonstrated that ENO1 inhibits ferroptosis by

degrading the mRNA of IRP1 in cancer cells (34). In a study

examining melanoma, after treatment with RSL3 and erastin the

expression of RP1 was significantly increased, and this increased the

TFRC content and inhibited the expression of FPN and FTH1. It
FIGURE 1

Mechanisms of iron metabolism in ferroptosis. After extracellular Fe3+ binds to TRF, it combines with the TFR to constitute a ternary complex on the
surface of the cell membrane. AQP4 can inhibit TRF, and the ternary complex enters the cell and forms the endosome. In vivo, transmembrane
ferroreductase in endosome reduces Fe3+ to Fe2+, Fe2+ is then transported into cells through DMT1, and IRP regulates the expression of TFR and
DMTI by binding to iron response elements at different positions. Fe2+ in cells can exist in a free active form or it can be oxidized to Fe3+ by
ceruloplasmin to form ferritin. Conversely, ferrotinophagy can also increase intracellular iron content. NCOA4, ATG5, and ATG7 can promote
ferrotinophagy. The FPN in the body can transport intracellular iron out of the cell. Elevated intracellular iron levels cause cells to be more
susceptible to ferroptosis.: AQP4, aquaporin 4; ATG5, autophagy-related gene 5; ATG7, autophagy-related gene 7; DMT1, divalent metal transporter
1; FPN, ferroportin; Fer-1, ferrostatin-1; IREs, iron-response elements; NCOA4, Nuclear receptor coactivator 4; TFR, transferrin receptors; TRF,
transferrin.
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increases the level of intracellular iron and promotes ferroptosis.

When IRP1 is deficient, intracellular iron accumulation is inhibited

and cells are less sensitive to ferroptosis (35). Unfortunately, there

have been no studies examining the involvement of IRP in

ferroptosis after SAH. We believe that IRP may play a significant

role in ferroptosis after SAH; however, this requires further

verification through follow-up studies.

Along with the primary regulatory routes for iron metabolism

that were already mentioned, aquaporin 4 (AQP4) is among the

most abundantly expressed aquaporins in the brain. Under

physiological conditions, AQP4 is densely expressed in the form

of “polar expression” on the endfoot membrane of astrocytes at the

junction of the brain parenchyma and cerebrospinal fluid/blood,

and it participates in the formation of the glial limiting membrane

that exerts a significant impact on maintaining the dynamic water

balance in the brain (13, 36). Further research observed that AQP4

exists in the form of orthogonal arrays of particles (OAPs) on the

endfoot membrane of astrocytes and that OAPs are the structural

basis for AQP4 to perform its efficient water transport function.

Under physiological conditions, AQP4 is primarily located in the

membranes of astrocyte end-foot membranes. It is closely related to

water transport and is essential for preserving the balance of water

and electrolytes between the blood-brain/blood-cerebrospinal fluid;

however, under pathological conditions such as AQP4 polarity

expression disorder, the formation of OAPs is significantly

reduced, the efficient water transport function of AQP4 is

impaired, and the water balance between the blood brain/blood

cerebrospinal fluid is disturbed, ultimately disturbing the internal

environment (13, 36). The study observed that within minutes of

SAH, blood components quickly entered the subarachnoid area.

Destruction of AQP4 polarization in astrocyte foot processes has

been demonstrated to be associated with brain edema (37–39).

After SAH, the polarization of astrocyte AQP4 was destroyed, and

AQP4 was knocked out. This can aggravate brain damage in EBI by

causing brain edema, blood-brain barrier disruption, and neuronal

death (40–42). Liu et al. reported that AQP4 also participates in

ferroptosis. One potential reason for neuronal ferroptosis is the

infiltration of transferrin into the brain parenchyma in EBI after

SAH. Overexpression of AQP4 can effectively ameliorate AQP4

polarity loss caused by transferrin infiltration and SAH, thus

inhibiting ferroptosis and improving disease prognosis.
3 Lipid metabolism and
lipid peroxidation

Lipid peroxidation (LPO) is the oxidative deterioration of

polyunsaturated fatty acids and lipids. Cell membranes,

lipoproteins, and other lipid-containing structures would suffer

substantial harm as a result of LPO. LPO can alter the

permeability and fluidity of cell membranes, damage DNA and

proteins, and affect the normal function of cells, ultimately leading

to neuronal death. LPO and anti-oxidation have crucial functions in

the metabolic processes occurring within the body. Under normal

circumstances, both are in a dynamic balance and maintain the
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normal progress of many physiological, biochemical, and immune

responses in the body. Once this coordination and homeostasis is

disturbed and unbalanced, it causes a series of metabolic disorders

and decreases immune function, ultimately forming a chain

reaction of oxygen free radicals that results in ferroptosis (43).

As a member of the acyl-CoA synthetase long-chain family, acyl-

CoA synthetase long-chain family member 4 (ACSL4) is an essential

enzyme in fatty acid metabolism. ACSL4 is predominantly expressed in

steroid-producing tissues, particularly in the adrenal glands and

ovaries. Human ACSL includes ACSL1, ACSL3, ACSL4, ACSL5, and

ACSL6, all of which participate in the formation of acyl-CoA from fatty

acids (44–46). Although acyl-CoA synthetase long-chain family

member 3 (ACSL3) is thought to exert no obvious effect on

ferroptosis, in a tumor-related study it was demonstrated that

ACSL3-mediated production of monounsaturated fatty acids

(MUFAs) limits the oxidation of polyunsaturated fatty acids

(PUFAs) and thus inhibits ferroptosis (47), and this also suggests

that ACSL3 and ACSL4 may antagonize ferroptosis. Under the action

of ACSL4, acyl groups are inserted into PUFAs, and

Lysophosphatidylcholine Acyltransferase 3 (LPCAT3) inserts acylated

fatty acids into membrane phospholipids. It has been confirmed that

phosphatidylethanolamine (PE) containing arachidonic acid (AA) or

its derivative epinephrine is a crucial phospholipid that induces cellular

lipid peroxidation and ferroptosis (48). In a study by Qu et al., the SAH

rat model was used to explore the expression and function of ACSL4 in

EBI. This study confirmed that the expression of ACSL4 significantly

increased in the brain tissue after brain injury in the early period of

SAH. Additionally, they observed that ACSL4 exerted a significant

impact on the induction of ferroptosis. Small interfering RNA-

mediated inhibition of ACSL4 expression reduces inflammation, BBB

damage, oxidative stress, brain edema, and behavioral and cognitive

deficits after SAH and increases the number of surviving neurons. They

speculated that ACSL4 may cause ferroptosis by mediating lipid

metabolism and aggravating brain damage. Additionally, their results

revealed that ACSL4 may be utilized as a critical indicator for

predicting cell ferroptosis. Reducing the expression of ACSL4 and

LPCAT3 is expected to inhibit intracellular lipid peroxide

accumulation, and this in turn can inhibit the development

of ferroptosis.

The body primarily mediates lipid peroxidation through two

pathways after SAH. Additionally, it is worth mentioning that

compared to MUFAs, polyunsaturated fatty acid-containing

phospholipids (PUFA-PLs) may be a major substrate of lipid

peroxidation in ferroptosis in tissues that are thought to be more

prone to ferroptosis. The first pathway leading to lipid peroxidation

is the non-enzymatic pathway, and this is followed by the enzymatic

pathway. Non-enzymatic lipid peroxidation is a free radical-driven

chain reaction mediated by the Fenton reaction (49). The Fenton

reaction occurs between hydrogen peroxide and Fe2+. It is the

primary source of reactive oxygen species (ROS) such as the

hydroxyl radical (OH −). OH- is one of the most typical chemical

forms of ROS and is a highly flexible water-soluble form of ROS that

initiates the oxidation of PUFAs (50, 51). As the first step in a non-

enzymatic lipid peroxidation reaction, a diene is removed from the

acyl moiety of PUFAs in the PUFA-PLs of the lipid bilayers under

the action of OH-. This can result in the generation of a carbon-
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1191826
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Deng et al. 10.3389/fimmu.2023.1191826
centered phospholipid radical (PL•) that subsequently reacts with

an oxygen molecule to form a phospholipid peroxyl radical

(PLOO•). It can remove hydrogen from other PUFA to form

phospholipid hydroperoxides (PLOOHs) or lipid hydrogen

peroxides and new PL•. Without GPX4, they can be converted

into the corresponding alcohols (PLOHs). Lipid radicals,

specifically PLOO•, PLO•, and PLOOHs, react with PUFA-PLs by

removing hydrogen atoms and reacting with molecular oxygen, and

this leads to the generation of new PLOOHs and lipid peroxidation

(49, 50). As a second pathway mediating lipid peroxidation,

enzyme-catalyzed lipid peroxidation is regulated by the activity of

a family of lipoxygenases (LOXs). LOXs are a class of non-heme

iron-containing enzymes that catalyze the production of numerous

lipid hydroperoxides from PUFAs, and of these, arachidonic acid

lipoxygenase 15 (ALOX15) plays a major role. Gao et al. reported

that cepharanthine (CEP) could reduce EBI after SAH in mice by

inhibiting ALOX15-mediated ferroptosis of microglia and

endothelial cells (10). Tuo et al. observed that ALOX15 inhibitor

can minimize the infarct size following ischemic stroke in a mouse

middle cerebral artery occlusion (MCAO) model (52). In mouse

ischemic and hemorrhagic stroke treatment models, targeted

inhibition of ALOX15 has been observed to exhibit important

neuroprotective functions (53). In related studies examining

melanoma, it was reported that P53 can regulate ferroptosis

through the P53-SAT1-ALOX15 pathway. SAT1, a transcriptional

target of P53, is a crucial rate-limiting enzyme in polyamine

catabolism. ALOX15 induces lipid peroxidation and ferroptosis

following SAT1 activation (54). However, Angeli et al. observed

that the genetic removal of ALOX15 did not prevent ferroptosis in

mouse fibroblasts after GPX4 knockout and that it did not alleviate

acute ischemic kidney injury and related lethality in vivo (55). This

suggests that ALOX15 is the only pathway that leads to lipid

peroxidation. As an essential factor in lipid peroxidation, it has

been demonstrated that cytochrome P450 exerts a vital function in

both membrane phospholipid peroxidation and subsequent

ferroptosis, and targeted inhibition of POR exhibits therapeutic

potential in regard to protecting cells from ferroptosis (56).

However, the role of the POR in SAH requires further verification.

Large amounts of ROS were produced by enzymatic and non-

enzymatic reactions (Figure 2). Additionally, many reactive

aldehyde by-products are produced such as malondialdehyde

(MDA) and 4-hydroxynonenal (4-HNE). Reactive aldehydes such

as MDA and 4-HNE can covalently modify biomolecules, including

amino lipids and proteins, to produce compounds that can

aggravate membrane damage and cause ferroptosis (57). This is

precisely due to the toxic effects of lipid peroxides and by-products

that occur without converting PLOOH and lipid radicals (especially

PLOO• and PLO•) into PLOH by GPX4 that reacts to generate

PLOOHs by removing the hydrogen atoms and reacting with

oxygen molecules. Ultimately, this chain reaction may destroy the

integrity of the cell membrane, ultimately mediating cell death (58).

At the molecular level, lipid peroxides are further decomposed

into active substances such as MDA and 4-HNE. They can destroy

proteins, lipids, and nucleic acids, ultimately resulting in ferroptosis

(59). Structurally, extensive peroxidation of lipids causes biofilm

thinning and increased bending and results in further oxidation that
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ultimately leads to unstable membrane and micelle formation,

increased membrane density, s ignificantly constricted

mitochondria, shrinking mitochondrial cristae or disappearance,

and outer mitochondrial membrane rupture with associated

electron-dense characteristics. In contrast, the nuclei of the cells

remained structurally intact without condensation or chromatin

edges. Ferroptosis occurs under the combined influence of these

factors (60). Cao et al. observed the presence of ferroptosis by

electron lensing in SAH and observed mitochondrial atrophy,

membrane density compression, cristae reduction, and outer

membrane rupture (2, 29). Through further quantitative analysis,

Li et al. reported that the average mitochondrial area in the SAH

group was reduced. However, abnormal changes such as

mitochondrial contraction and increased membrane density in

the SAH + Fer-1 (ferroptosis inhibitor) group were improved.

These studies have further confirmed the existence of ferroptosis

in SAH, and the morphological changes in the mitochondria of

corresponding cells can be improved by treatment with Fer-1 and

other ferroptosis inhibitors (29).
4 Antioxidant system

4.1 GSH/GPX4 system

Although there are various pathways that cause lipid

peroxidation and ROS generation, diverse antioxidant systems

also exist (Figure 3). In the 1950s, Eagle H. et al. confirmed that

cysteine is an essential nutrient for many cells, and they observed

that cells deprived of cysteine undergo death. The morphology of

death differs from that induced by depletion of certain amino acids

but possesses a resemblance to the morphology of cell death caused

by certain viral infections (61). A study by Bannai et al. further

observed that cell death caused by a lack of GSH and cysteine was

inhibited by a lipid peroxidation inhibitor (alpha-tocopherol) (62).

In 1982, Ursini et al. successfully isolated the enzyme GPX4. As an

important antioxidant system, the GSH/GPX4 system is key to cell

survival and is the core regulatory protein of ferroptosis. The core

mechanism of GPX4 inhibition of lipid peroxidation is the

reduction of toxic phospholipid hydroperoxides (PUFAs-OOH)

to non-toxic lipid alcohols (PUFAs-OH) in the presence of two

molecules of glutathione (GSH) as electron donors, while GSH is

oxidized to glutathione disulfide (GSSG) to thereby reduce the

accumulation of lipid ROS (63, 64). Wu et al. reported that the

induction of ferroptosis by erastin can increase the content of

lysosome-associated membrane protein 2a that can promote

chaperone-mediated autophagy, thus resulting in the degradation

of GPX4 (60, 65). Experiments by Yang et al. demonstrated that

RSL3 and DPI7 can directly inhibit the activity of GPX4, thereby

causing ferroptosis (66). Liang et al. observed that FIN56 can

directly promote GPX4 degradation in tumor-related studies.

Additionally, FIN56 combines with squalene synthase, ultimately

leading to the exhaustion of endogenous COQ10 to thereby

promote ferroptosis (60, 67). Unfortunately, in the EBI after SAH

the specific regulation of GPX4 in the process of ferroptosis has not

been studied in depth, and it remains unclear if chaperone-
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mediated autophagy, RSL3, and DP17 participate in the adjustment

of GPX4. However, this mechanism requires further investigation.

Gao et al. reported that the content of GPX4 was significantly

reduced in rat models of EBI after SAH. Overexpression of GPX4

using adenovirus inhibits lipid peroxidation after SAH in vitro and

in vivo, inhibits ferroptosis, and significantly improves brain edema

and neurological dysfunction in rats within 24 h of SAH (68, 69). A

study by Li et al. reported that GSH concentration and GPX4

activity were significantly reduced in rat cortical brain tissue after

SAH. As expected, the ferroptosis inhibitor Fer-1 effectively

increased the content of GSH and GPX4. They also observed that

Fer-1 could significantly improve erythrocyte-induced

accumulation of ROS, thus suggesting that Fer-1 can prevent

ferroptosis in EBI by inhibiting neuronal lipid peroxidation.

Additionally, Li et al. used flow cytometry to detect the apoptosis

rate of neurons and the caspase-3 protein content. They confirmed

that Fer-1can significantly minimize the number of dying neurons,

while the number of apoptotic neurons is unaffected. Caspase-3 is

an important protein in the apoptotic pathway, and its content was

obviously elevated in the Hb and control groups. However, the level

of caspase-3 in the Fer-1 group was not reduced, and based on this

result, this study suggests that the protective mechanism of Fer-1 in

EBI is not related to apoptosis (29). Zhang et al. have demonstrated

that the content of GPX4 is significantly decreased in the acute

phase of intracerebral hemorrhage and that upregulating the
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expression of GPX4 could save rats. Additionally, GPX4 is a

selenium-containing protein, thus indicating that selenium may

be associated with ferroptosis. Actually, it is true that in a rat model

of cerebral hemorrhage, selenium supplementation to cells or

animals can effectively reduce ferroptosis (70–72). The role of N-

acetylcysteine (NAC) is as a precursor of cysteine. In the context of

hemorrhagic stroke, studies have demonstrated that NAC

treatment exerts an anti-ferroptosis effect through the GPX4-GSH

axis, and the toxic effect of heme on primary neurons is significantly

eliminated, thus indicating a neuroprotective effect for NAC in the

context of hemorrhagic stroke (73). Additionally, NAC can

effectively alleviate neuronal cell death and promote functional

recovery in rat ICH models by neutralizing lipid peroxidation

produced by ALOXs (74). Moreover, the multidrug-resistance

pump p-glycoprotein (Pgp) was observed on a genetic screen for

controllers of ferroptosis susceptibility. It can pump GSH out of

cells, thus resulting in increased sensitivity of MDR1/Pgp-

expressing cells to ferroptosis; however, this result has not been

confirmed in the SAH model (75). SIRT1 is an epigenetic regulator

of gene transcription and affects multiple biological functions such

as oxidative stress, inflammation, and mitochondrial biogenesis

(76). It has been demonstrated that SIRT1 exhibits strong

antioxidant ability and neuroprotective effects in EBI after SAH

(77). SIRT1 exerts a strong anti-oxidative ability by decreasing the

expression of P53 and NF-kappaB (NF-kB) that can mediate the
FIGURE 2

The role of lipid peroxidation in ferroptosis. Insertion of PUFAs into membrane phospholipids under the action of ACSL4 and LPCAT3 causes the
lipids to be more susceptible to oxidation. There are two primary pathways leading to lipid peroxidation. First, through a non-enzymatic pathway, the
Fe2+-mediated Fenton reaction generates a large amount of ROS. A bisallyl hydrogen atom is removed from the PUFA-PLs to form a PL•. It can then
react with a molecule of oxygen to constitute a PLOO•. It removes hydrogen from another PUFA to form PLOOH to ultimately lead to the
generation of LPO and a new PL•. This forms a vicious cycle that results in a large amount of ROS and LPO. Second, through an enzymatic pathway,
ALOX15 oxidizes membrane phospholipids containing PUFAs to generate ROS, and this pathway is also regulated by the P53-STA1 axis. Additionally,
metabolite products of ALOX15 and depletion of GSH lead to Ca2+ influx, and this in turn leads to the production of ROS. A large amount of ROS
and LPO are generated through the above two pathways, and this eventually leads to the occurrence of ferroptosis. ACSL4, acyl-CoA synthetase
long-chain family member 4; ALOX15, arachidonic acid lipoxygenase 15; cGMP, cyclic guanosine monophosphate; GC, guanylate cyclase; GPX4,
glutathione peroxidase 4; GSH, glutathione; IP3R, inositol triphosphate receptors; LPCAT3, Lysophosphatidylcholine Acyltransferase 3; LPO, lipid
peroxidation; ORAI1, calcium release-activated calcium modulator 1; PLOOHs, phospholipid hydroperoxides; ROS, reactive oxygen species; SOCE,
store-operated calcium entry.
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oxidative stress pathway and by upregulating nuclear factor-

erythroid 2 related factor 2 (Nrf2) that mediates the antioxidant

stress pathway. Studies have reported that SIRT1 activation can

inhibit ferroptosis by increasing the contents of GPX4 and

ferroptosis suppressor protein 1 (FSP1) after SAH (30).

Similar to GPX4, copper-zinc superoxide dismutase 1 (SOD1) is

an important endogenous enzyme that can eliminate superoxide

and is an indispensable peroxidase scavenger in the central nervous

system (78). SOD1 overexpression alleviates cell damage following

SAH (79). In cerebral ischemia, the neuroprotective effect of SOD1

is partially mediated by activation of serine-threonine kinase (AKT)

(80). AKT plays a crucial role in the cell death/survival process (81),

and it acts downstream of the phosphoinositide 3-kinase pathway

and can function under the action of serine phosphorylation (82).

AKT activation promotes cell survival and inhibits apoptosis by

phosphorylating and inhibiting downstream substrates, including

glycogen synthase kinase 3b (GSK3b). Thus, neurons become

resistant to apoptotic stimuli (83). Endo et al. demonstrated that

SOD1 overexpression could reduce oxidative stress by activating the

AKT/GSK3b survival signaling pathway to thereby attenuate acute

brain injury after SAH (84). A study reported that the anti-

ferroptosis function of polystyrene nanoparticles is partially

dependent upon SOD-mediated ROS scavenging (85).

Unfortunately, no studies have confirmed the involvement of

SOD in the process of ferroptosis in the context of SAH. This

aspect deserves further discussion in subsequent studies.
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4.2 Xc- system

The antioxidant effect of GPX4 is extremely dependent on GSH,

and therefore, the biosynthesis of GSH has also attracted extensive

interest. Due to the catalysis of glutamate-cysteine ligase (GCL) and

glutathione synthase (GSS), GSH is composed of cysteine,

glutamate, and glycine in two stages (86, 87). As raw materials for

GSH synthesis, cystine, cysteine, glutamate, and glycine can all

affect GSH biosynthesis. Nutrients, including sugars, fats, and

amino acids, cannot diffuse directly into cells, and their entry is

mediated by specific transporters. Therefore, the components of the

amino acids involved in the formation of GSH also require

transporters such as the Xc-transporter. The Xc system is a

heterodimer transporter formed by a disulfide bond junction that

consists of two subunits that include a regulatory subunit composed

of solute carrier family 3 member 2 (SLC3A2) and a catalytic

subunit composed of solute carrier family 7 member 11

(SLC7A11). The Xc- system promotes the exchange of cystine

and glutamate across the cell membrane, where cystine enters the

cell and glutamate exits the cell (88). Cystine is reduced to cysteine

when transported into the cell. Additionally, another source of

cysteine is the reverse transsulfation of methionine (Met) that enters

cells through the Xc- system or the ASC system (alanine, serine, and

cysteine-preferring) (89). Erastin is a ferroptosis inducer that

inhibits Xc expression. Erastin inhibits cystine uptake, thus

resulting in the synthesis of the antioxidant GSH that ultimately
FIGURE 3

The mechanism of the antioxidant system in ferroptosis. The primary antioxidant system is the GSH/GPX4 system that reduces PUFAs-OOH to non-
cytotoxic PUFAs-OH, while GSH is oxidized to GSSG. Under the mediation of the Xc- system, cystine enters cells to synthesize cysteine, and
glutamate, cysteine, and glycine synthesize GSH. P53, BAP1, and Erastin can inhibit the antioxidant system by inhibiting SLC7A11. Additionally,
pifithrin-a can attenuate the inhibition of SLC7A11 by P53. Under the condition of stress, Keap1 and Nrf2 are separated. Under the mediation of Nrf2,
ARE increases cellular resistance to ferroptosis by promoting the expression of SLC7A11, but ARF can attenuate the effect of ARE. Furthermore, RSL3
and DPI7 directly inhibit the antioxidant system by inhibiting GPX4. FSP1 can mediate the conversion of oxidized COQ10 to its reduced form
CoQ10H2 that can capture ROS, and it is also regulated by the GCH1/BH4 system. Any target that results in a weakened antioxidant system can
result in the overload of lipid peroxides, ultimately causing ferroptosis. ARE, antioxidant response elements; BAP1, BRCA1-associated protein 1; BH4,
tetrahydrobiopterin; CEP, cepharanthine; GCH1, GTP cyclohydrolase 1; GCL, glutamate-cysteine ligase; GSS, glutathione synthase; Keap1, Kelch ech-
associated protein 1; Nrf2, nuclear factor-erythroid 2 related factor 2.
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leads to cell death due to oxidation (90, 91). Furthermore, it has

been demonstrated that P53 can affect the expression of the Xc-

system by inhibiting the transcription processes required for this

system, thus inhibiting the entry of raw materials into cell and

resulting in inhibited GSH synthesis. The reduction of GSH in turn

results in a weakened antioxidant capacity of GPX4 and greater

susceptibility of cells to ferroptosis (92). Studies have reported that

intraperitoneal injection of the P53 inhibitor pifithrin-a can

increase the levels of SLC7A11 and GSH in rats, reduce lipid

peroxidation, reduce neuronal mitochondrial atrophy, and block

ferroptosis after cortical SAH, thus indicating that ferroptosis in EBI

after SAH depends at least in part on P53 and that P53 plays a role

by mediating the Xc- system (particularly SLC7A11). Inhibition of

P53 to reduce ferroptosis exhibits the potential to become a new

therapeutic target in EBI after SAH (93). It is worth mentioning that

not only is P53 a tumor suppressor that participates in the

regulation of ferroptosis, but the BRCA1-associated protein 1

(BAP1) tumor suppressor has also been reported to induce

ferroptosis by inhibiting SLC7A11 (94).

The concentration of glutamate inside and outside of the cell

also exerts an indispensable effect on the Xc- system, and the

difference in the concentrations of glutamate and cystine inside

and outside the cell drives its own transmembrane diffusion.

Glutamate can be continuously transported through its own

transporter (EAA) to maintain a high intracellular concentration

of glutamate and exported through the Xc- system, thereby

supporting the cellular uptake of cysteine (95). Hydrogen

peroxide (H2O2) reacts with Fe2+ through the Fenton reaction,

ultimately producing a large amount of ROS with the accumulation

of glutamate (96). Studies have revealed that a high extracellular

glutamate content can not only suppress the function of the Xc-

system to result in increased cell sensitivity to ferroptosis but can

also be mediated by ionotropic glutamate receptors to lead to Ca2+

influx that is cytotoxic (97). Glutamate-mediated oxidative stress

toxicity and excitotoxicity are important causes of nerve cell

damage in neurodegenerative diseases (1). It has been observed

that gastrodin can protect HT-22 cells from glutamate-induced

ferroptosis through the Nrf2/HO-1 signaling pathway (98). Clinical

studies have demonstrated that excitotoxicity is induced by elevated

glutamate concentrations and is associated with cerebral vasospasm

and ischemic neurological deficiencies after SAH (99). Sun et al.

observed that cerebrospinal fluid (CSF) glutamate levels were

significantly elevated within 48 hours after SAH, and ifenprodil

improved long-term neurological deficits by antagonizing

glutamate-induced excitotoxicity (99). However, further

investigation is required to determine if glutamate plays a role in

SAH by mediating ferroptosis.
4.3 NADPH-FSP1-CoQ10 pathway

CoQ10 is as a crucial component of the mitochondrial electron

transport chain that can inhibit lipid peroxidation by trapping free

radical intermediates (100). Thus, CoQ10 content plays an

indispensable role in the balance of the redox system. CoQ10

depletion renders cells more susceptible to ferroptosis (101).
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Studies have demonstrated that FSP1 can reduce CoQ10 to its

reduced form, CoQ10H2. With the help of NADPH, CoQ10H2

inhibits ferroptosis by trapping lipid peroxy radicals that mediate

lipid peroxidation without GPX4 or GSH, and this reveals a novel

NADPH-FSP1-CoQ10 pathway that inhibits ferroptosis in parallel

with the GPX4/GSH system. Thus, FSP1 is a glutathione-dependent

ferroptosis inhibitor (102, 103). Yuan et al. reported that the content

of FSP1 and CoQ10 was obviously reduced in both in vivo and in

vitro SAH models, thus suggesting that FSP1-mediated ferroptosis

may be involved in EBI after SAH. Additionally, Fer-1 has been

demonstrated to increase the content of FSP1, thereby attenuating

ferroptosis induced by ferroptosis (30).

Additionally, FSP1 can indirectly influence vitamin E. As a

natural antioxidant, vitamin E donates hydrogen atoms to PLOO to

form vitamin E radicals (TOC). Immediately thereafter, TOC · can

react with other PLOO · to produce a non-radical product, thereby

achieving the function of reducing lipid peroxidation products and

reducing the seriousness of ferroptosis (104, 105). In a study

examining Alzheimer’s disease, when GPX4 was knocked out in

specific cerebral cortex and hippocampal neurons, mice exhibited

significant cognitive disability in the water maze test and

hippocampal neuron degeneration. Ferroptosis has been

demonstrated to occur. When mice are fed a diet high in vitamin

E, the level of neurodegeneration is reduced, thus indicating that

vitamin E confers resistance to ferroptosis (105).

In lung cancer studies, plasma-activated medium induces

ferroptosis by depleting FSP1. iFSP1 is considered to be the first

FSP1 inhibitor discovered, and ferroptosis can be effectively

regulated by targeting FSP1. It has been demonstrated that iFSP1

is able to increase sensitivity to ferroptosis in GPX4-KO cancer cells

(102). Overall, these results suggest that the potential of FSP1 in

ferroptosis is comparable to that of GPX4. Similarly, in ferroptosis,

upregulating FSP1 or stabilizing FSP1 may represent a new

direction in regard to improving the poor prognosis of SAH, and

this also provides potential therapeutic targets for EBI. As a CoQ10

analog, idebenone stabilizes erythrocyte membranes and reduces

lipid peroxidation and the severity of cellular damage in a dose-

dependent manner. Idebenone has also exhibited a good therapeutic

effect in regard to the treatment of retinal ischemia-reperfusion

injury. However, a clinical study examining neuroprotective effects

in 57 post-stroke aphasia patients revealed that idebenone did not

improve the recovery of brain function compared to that of the

placebo group. Thus, treatment with idebenone may possess a

narrow therapeutic time window during which it can alleviate

damage induced by lipid peroxidation, but it does not inhibit

neuronal death after stroke. Therefore, the protective effect of

idebenone in the context of stroke must be confirmed by further

research, and its effect on the prognosis of SAH requires further

study (101, 106).

In addition to the NADPH-FSP1-CoQ10 pathway, new research

has identified the GCH1-BH4 pathway that can inhibit ferroptosis

without CPX4. This pathway involves the GTP cyclohydrolase 1

(GCH1) gene that is the rate-limiting step in tetrahydrobiopterin

(BH4) generation. BH4 inhibits ferroptosis by mediating the

production of CoQ10H2 and inhibiting lipid peroxidation. A

recent study demonstrated that dihydrofolate reductase (DHFR)
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can inhibit ferroptosis by regenerating BH4 (107, 108). Kraft et al.

observed that the activation of the GCH1/BH4 system can counter

lipid peroxidation and alleviate ferroptosis (107).
4.4 The ARF/Keap1/Nrf2 pathway

Nrf2 can be activated by dissociation from Kelch ech-associated

protein 1 (Keap1) under various stress conditions. Nrf2 recognizes

antioxidant response elements (ARE) and activates a series of

downstream antioxidant genes. 1) It can up-regulate the

expression of GPX4, SLC7A11, and NADPH (109). Gou et al.

confirmed that activation of the AKT/Nrf2/GPX4 pathway could

alleviate hypoxic-ischemic brain damage (110). Forsythoside A acts

against AD by targeting the Nrf2/GPX4 axis to regulate ferroptosis-

mediated neuroinflammation. Additionally, inhibition of the Nrf2/

GPX4 pathway can activate NF-kB, thus aggravating

neuroinflammation (111). 2) The activity of heme oxygenase-1

(HO-1), an inducible enzyme, is important, as HO-1 is

considered a measurable indicator of oxidative stress that oxidizes

intracellular heme to carbon monoxide (CO), biliverdin, and Fe2+

(112). HO-1 exhibits cytoprotective effects by converting pro-

oxidative hemoglobin and heme to the antioxidants bilirubin and

biliverdin and may also exacerbate oxidative stress by releasing Fe2+

and CO. Therefore, HO-1 may exert a dual effect on the regulation

of ferroptosis (113, 114). In a study examining retinal epithelial

deformation, HO-1 was observed to induce ferroptosis by

mediating the Nrf2/SLC7A11/HO-1 axis and the accumulation of

ferrous ions (115). Hu et al. reported that b-caryophyllene activated
the Nrf2/HO-1 axis to suppress ferroptosis in cerebral ischemia-

reperfusion in rats and improve the degree of brain injury (116).

Paradoxically, Wei et al. reported in a colorectal cancer study that

activating the PERK/Nrf2/HO-1 axis result in ferroptosis (117).

Unfortunately, the mechanism of Nrf2/HO-1 in the process of

ferroptosis after SAH is currently poorly understood and is worth

exploring. 3) NQO1 is a typical Nrf2 target enzyme (118) that exerts

a protective effect against ferroptosis (114). NQO1 possesses both

superoxide reductase and ubiquitin reductase activities and plays

the role of a-tocopherol quinone reductase to convert endogenous

a-tocopherol metabolites to the quinoline type, and this is a potent

inhibitor of endogenous lipid peroxidation and ferroptosis (119). 4)

Nrf2 plays a crucial role in the regulation of iron metabolism genes,

including FTH1, FTL, and FPN1 (120, 121). The iron storage

protein FTH1 may reduce active iron concentration and inhibit

ferroptosis by converting Fe2+ to Fe3+ (122).

In addition to the Keap1/Nrf2 pathway, recent studies have

revealed that the AMPK/PGC1a/Nrf2 pathway plays a role in

ferroptosis after SAH. Puerarin is a flavonoid glycoside extracted

from Pueraria roots (123). It has been demonstrated that puerarin

possesses neuroprotective functions in the context of various central

nervous system diseases. As an antioxidant, puerarin maintains the

activity of antioxidant enzymes and protects cells from oxidative

stress (124, 125) that can induce cell death. It regulates oxidative

stress and mitochondrial function via the AMPK/PGC1a/Nrf2

pathways. The activation of this pathway exerts a critical impact

on antioxidant activity in the adjustment of oxidative stress and
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ferroptosis (126). Previous research has demonstrated that in a rat

model of hypoxic-ischemic encephalopathy, promoting AMP-

activated protein kinase (AMPK) phosphorylation and

upregulating PGC1a expression can exert neuroprotective effects

by reducing oxidative stress and neuronal apoptosis. As a major

antioxidant regulator, Nrf2 is regulated by the AMPK/PGC1a
signaling pathway (127, 128). To explore the mechanism of

puerarin in SAH, Huang et al. observed that puerarin reduced

oxidative stress and ferroptosis after SAH through activating the

AMPK/PGC1a/Nrf2 axis and also improved neurobehavioral

disorders to a certain extent (129).

As one of the key regulators of antioxidant stress pathways

(130), Nrf2 is normally maintained at low levels through

ubiquitination mediated by the tumor suppressor Keap1.

Glycogen synthase kinase 3b (GSK3b) is the primary negative

regulator of Nrf2 activity, and hyperactivation of GSK3b leads to

phosphorylation of specific serine residues in the Neh6 domain of

Nrf2 to form a phosphorylated domain for degradation, ultimately

resulting in Nrf2 inhibition. Studies have demonstrated that the

antioxidant effect of Nrf2 is impaired by upregulation of Keap1 and

activation of GSK3b (131). Another negative regulator, BTB

domain and CNC homologue 1 (BACH1), inhibits the expression

of Nrf2 target genes (e.g., HO1, NQO1, and xCT) by competing

with Nrf2 to bind to ARE sequences (132). Namgaladze et al.

revealed that silencing of BACH1 reduces labile iron pools and lipid

peroxidation and enhances macrophage resistance to ferroptosis

(133). Nrf2 was also regulated by ARF. ARFdoes not regulate Nrf2

protein content by interfering with Keap1-mediated ubiquitination

but instead suppresses CBD-dependent Nrf2 acetylation that

inhibits the expression of NRF2. Conversely, ARFdeletion induces

Nrf2 activation and increases cellular resistance to ferroptosis.

Additionally, certain miRNAs can alter the susceptibility of cells

to ferroptosis by regulating the Nrf2 content. As an important

inhibitor of ferroptosis, the function of NRF2 also exhibits other

functions. It can also inhibit ROS generation to decrease the

susceptibility of cells to ferroptosis (130). In a rat model of

transient middle cerebral artery occlusion, Nrf2 concentration

increased after 2 h, peaked at 8 h, and decreased between 24 and

72 h (134). The Nrf2 concentration is obviously higher in the

penumbra than it is in the core (135), and this may be due to higher

oxidative stress in the penumbra (134). TBHQ that can activate

Nrf2 can improve Nrf2 activity and significantly reduce brain

cell death.
5 Hippo–YAP pathway

Hippo–YAP signaling participates in various biological

functions, including cell proliferation and organ size control (136)

and is an important pathway in tumorigenesis and development. In

a study examining breast tumors, Wu et al. reported that cells

grown at high densities tended to be less sensitive to ferroptosis

caused by cysteine depletion and GPX4 suppression. This also

provided an opportunity for the discovery of the Hippo-YAP

pathway in ferroptosis. Further studies have reported that

intercellular interactions lead to ferroptosis in tumor cells by
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mediating the NF2-YAP pathway and that YAP promotes the

transcription of key ferroptosis genes such as ACSL4 and TFRC.

They observed that inhibiting the expression of Hippo or

promoting the expression of YAP increased the susceptibility of

cells to ferroptosis (137). However, paradoxically, a study by Gao

et al. that focused on hepatocellular carcinoma reported that YAP/

TAZ, as a transcriptional coactivator, formed a complex with

TEADs that indirectly bound the TEAD sequence in the

SLC7A11 gene promoter, ultimately leading to upregulating the

content of SLC7A11 and inhibiting the development of ferroptosis

(138). The role of the Hippo-YAP pathway in SAH remains

poorly studied.
6 Energy stress AMPK pathway

Energy stress depletes ATP and leads to cell death. Additionally,

energy stress and glucose starvation increase ROS production (139,

140). Glucose starvation has been speculated to induce ferroptosis.

In contrast, glucose starvation was previously demonstrated to

effectively suppress ferroptosis (126). This study reported that this

protective effect under energy stress is mediated by the activation of

AMPK. When glucose starvation occurs, AMPK is activated, and

this inhibits the biosynthesis of PUFAs. The lipid peroxidation drive

of PUFAs is critical for ferroptosis (48, 141). Exhaustion of

intracellular ATP and corresponding improvement in intracellular

AMP concentration during energy stress activates AMPK by

binding to AMP. Acetyl-CoA carboxylase 1 (ACC1) and Acetyl-

CoA carboxylase 2 (ACC2) are two related enzymes that promote

the synthesis of malonyl-CoA from acetyl-CoA and possess the

functions of promoting fatty acid synthesis. Activated AMPK

inhibits ACC1 and ACC2 that mediate fatty acid synthesis under

energy stress, thereby leading to resistance to ferroptosis (126).
7 Relationship between oxidative
stress, lipid peroxidation,
and ferroptosis

After SAH occurs, the blood components enter the

subarachnoid space. Various pathways and oxidative and

antioxidant systems regulate the occurrence of ferroptosis

(Figure 4), and they also regulate neuronal ischemia and hypoxia,

mitochondrial dysfunction, and the production of a large amount of

ROS during electron transfer (142, 143). ROS induces a local

inflammatory response, thus triggering a downstream

inflammatory cascade that causes a near-exponential increase in

ROS that ultimately leads to the development of oxidative stress.

Additionally, the immune system is activated, and many peripheral

inflammatory cells enter the subarachnoid region under the

chemotaxis of inflammatory cytokines. The inflammatory cells

secrete a variety of inflammatory cytokines, thus forming a

vicious cycle that results in the generation of numerous ROS

(144). Antioxidant systems such as GSH/GPX4 scavenge ROS,

and the imbalance between the generation of ROS and the
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antioxidant system leads to the accumulation of lipid peroxides

and ROS (145, 146) that in turn leads to ferroptosis. Ferroptosis

exhibits features that include lipid peroxide accumulation and iron

dependence, and it is the most likely form of cell death in response

to oxidative stress. Superoxide produced by oxidative stress reacts

with H+ to produce H2O2. A large number of erythrocytes entering

the subarachnoid space after SAH lead to an increase in the

concentration of iron ions, and the Fenton reaction between

ferrous iron and H2O2 occurs (96), ultimately resulting in the

production of highly active OH- with the accumulation of

glutamate. The occurrence of lipid peroxidation mediated by ROS

species such as OH- causes the accumulation of more lipid

peroxidation, while the high extracellular concentration of

glutamate inhibits the Xc- system and results in exhaustion of

GSH and inhibition of GPX4. It activates ALOXs that use iron as a

cofactor and react with membrane phospholipids containing

unsaturated fatty acids to generate large amounts of lipid

peroxides that further attack and oxidize cell membrane lipids

and trigger ferroptosis (147). Concurrently, GSH is depleted by a

large amount of ROS, ultimately resulting in the activation of

inositol triphosphate receptors (IP3R) to thereby deplete calcium

stores in the endoplasmic reticulum and trigger the activation of

calcium release-activated calcium modulator 1 (ORAI1). Activation

of store-operated calcium entry (SOCE) then leads to a growth in

intracellular Ca2+ concentration, and this further leads to the

production of a large amount of ROS. It not only aggravates

oxidative stress, but also leads to ferroptosis due to excess ROS.

The change in Ca2+ is not only affected by GSH content, but in turn,

the changed Ca2+ also further depletes GSH by boosting the

generation of ROS. The depletion of GSH then leads to the

inactivation of GPX4, ultimately causing the accumulation of

lipid peroxides that induce ferroptosis (148). Moreover, ALOXs

can not only directly react with lipids to produce lipid

hydroperoxides, but the metabolites of 12-LOX can also activate

soluble guanylate cyclase (GC) to generate cGMP. Activation of

ORAI1 and SOCE by cGMP promotes the influx of Ca2+ into cells

(149, 150) and causes ROS production. Both oxidative stress and

ferroptosis are caused by massive accumulation of oxides. GSH

plays a major role in anti-oxidation (151). Therefore, both

ferroptosis and oxidative stress result in a decrease in GSH that

leads to damage to the related antioxidant system. Finally, the

production of ROS is greater than its elimination, and the redox

system is unbalanced, thus resulting in cytotoxicity. SIRT1 is a III

histone deacetylase that can regulate multiple cellular biological

processes such as inflammation, oxidative stress, energy

metabolism, DNA damage repair, and cell death (152, 153). There

is increasing evidence that neuroinflammation is firmly connected

to the pathogenesis of a number of neurological diseases (154).

Numerous studies have demonstrated that SIRT1 positively affects

neuroinflammation-associated disease. For example, Hernández-

Jiménez et al. reported that SIRT1 could reduce cerebral ischemia-

induced neuroinflammation and neuronal damage by suppressing

P53 and NF-kB acetylation (155). The neuroprotective effect of

SIRT1 in the context of cerebral ischemia is mediated by multiple

mechanisms. After ischemic stress, DNA damage and oxidative

stress activate P53 that in turn promotes mitochondrial apoptosis
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signaling and neuronal death (156–158). SIRT1 inhibition of P53

can suppress apoptosis, promote cell survival, and protect neurons

from ischemia-induced cell death (159, 160). SIRT1 gene deletion or

pharmacological inhibition increases peri-infarct area (155).

Increasing numbers of studies examining SAH have demonstrated

that SIRT1 is extensively expressed in the brain and possesses an

endogenous neuroprotective function in EBI through regulating

oxidative and inflammatory signaling (76, 161–163). SIRT1

activation improves EBI neural function by inhibiting the

inflammatory response to oxidative stress, whereas SIRT1

silencing aggravates SAH-induced brain damage. Yuan et al. up-

regulated the content of SIRT1 via RSV pretreatment and decreased

the content of SIRT1 via SEL pretreatment. The experimental

results demonstrated that the artificial overexpression of SIRT1

through RSV mediated the upregulation of GPX4 and FSP1

expression and significantly reduced the concentration of lipid

peroxidation, and this significantly alleviated ferroptosis.

Furthermore, inhibition of SIRT1 activation via SEL reduced

GPX4 and FSP1 concentrations and induced neuronal ferroptosis.

Specifically, this suggests that SIRT1 exerts a neuroprotective effect

in the context of ferroptosis when the intracellular antioxidant

system is activated (30). In conclusion, SIRT1 not only inhibits

oxidative stress to a certain extent but also confers resistance to

ferroptosis. In summary, it can be observed that ferroptosis and

oxidative stress are very similar in many aspects, and ferroptosis

cannot simply be considered as an independent cell death pathway
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and may even be a more particular form of oxidative

stress outcome.
8 Crosstalk between microglia,
astrocytes and neurons in ferroptosis

After SAH, different cells in the brain play different roles and

respond differently with the severity of the disease. Glial cells,

comprising astrocytes and microglia, act as vigilant protectors of

neurons, working to preserve the integrity of the blood-brain

barrier, regulate synaptic activity, and respond to injury within

the central nervous system (CNS) (164). Glial cells are known to

express a range of iron transporters and iron metabolizing proteins,

which are critical for maintaining iron homeostasis and ensuring

proper functioning of the brain (165, 166). In order to maintain a

balance of iron in the body, it is important for certain cells of the

immune system, such as microglia and astrocytes, to play a role.

Bind free iron via cytoplasmic and mitochondrial ferritin, thereby

reducing extracellular iron concentrations. Astrocyte-neuron

interactions protect neurons from iron-mediated cytotoxicity, and

circadian regulation of BDNF-mediated Nrf2 activation in

astrocytes protects dopaminergic neurons from ferroptosis (167).

Microglia are the most sensitive to ferroptosis (168), When

microglial iron homeostasis is unbalanced, excessive ROS and

inflammation will be produced, accompanied by increased free
FIGURE 4

Mechanism of ferroptosis in EBI after SAH. After SAH, a large amount of blood and ruptured erythrocyte flow into the subarachnoid space, and
ferroptosis, necrosis, apoptosis, necroptosis and pyroptosis can all lead to the death of neurons and other cells. This article focuses on ferroptosis,
an iron-independent cell death mechanism characterized by lipid peroxide accumulation that exacerbates EBI. The extracellular environment is
primarily Fe3+, and it is primarily combined with TRF and enters into cells through TFR. After entering cells, endosomes are formed, Fe3+ is reduced
to Fe2+ by STEAP3, and Fe2+ is diverted into cells via DMT1. Fe2+ mediates ROS production by the Fenton reaction. FPN can also reduce the
intracellular iron concentration by transporting iron ions out of the cell. Additionally, the GSH/GPX4 and FSP1/COQ10 systems act as the primary
antioxidant systems to suppress the production of lipid peroxides, and the imbalance between the oxidation system and the antioxidant system will
lead to the accumulation of lipid peroxides and finally lead to ferroptosis. Aquaporin 4 can also reduce iron ion concentration and the severity of
ferroptosis by inhibiting TFR. AMPK, AMP-activated protein kinase; DMT1/SLC11A2, divalent metal transporter 1; FSP1, ferroptosis suppressor protein
1; SLC7A11, solute carrier family 7 member 11.
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iron (169), which will cause cytotoxicity to other cells such as

neurons, leading to oxidative stress and ferroptosis (170). The

development of single-cell sequencing has significantly

contributed to our profound comprehension of the intercellular

communication during ferroptosis (171, 172). Through single-cell

RNA-sequencing, Chen et al. identified multiple SAH-specific

microglial cluster (SMG-C) in a mouse model of SAH, among

which the corresponding genes for SMG-C5, SMG-C6, and SMG-

C7 were only highly expressed in SAH microglia and not in normal

microglia. These SMG-C subgroups were closely associated with

neuroinflammation, oxidative phosphorylation, and apoptosis after

SAH (173, 174). Additionally, Dang et al. also found that ferroptosis

was activated in astrocytes and may be involved in the pathological

process of Alzheimer’s disease (175). Zhang et al’ study identified

ten cell types including cholinergic neurons, dopaminergic neurons,

glutaminergic neurons, neuronal precursors, microglia,

oligodendrocytes Cells and radial glial cells, etc., and revealed

ferroptosis as a new mechanism of manganese-induced

neurotoxicity (171). Overall, single-cell RNA sequencing can be

used to analyze different types of cells in brain tissue, identify cell

types and signaling pathways associated with ferroptosis, and

investigate the relationship between gene variations or genomic

variations in specific cells and ferroptosis, thereby providing clues

for potential therapeutic targets for SAH.
9 Detecting indicators of ferroptosis

As ferroptosis is inextricably linked to the EBI of SAH, timely

judgment and effective means to inhibit the occurrence of

ferroptosis are extremely important in regard to the prognosis of

EBI. Ferroptosis can be induced in iron metabolism by detecting

intracellular iron content. After a mild traumatic brain injury, iron

accumulation in certain regions of the thalamus can indicate the

likelihood and severity of future post-traumatic headaches.

Specifically, patients who have suffered an acute traumatic brain

injury have been found to have higher iron deposition in the left

lateral geniculate nucleus compared to healthy controls. This

increased iron deposition in the left lateral geniculate nucleus

may be indicative of the severity of the injury and could

potentially lead to a poorer recovery from post-traumatic

headaches (176). Furthermore, research has indicated that serum

iron levels at admission can serve as an independent risk factor for

delayed cerebral ischemia following SAH (177). The buildup of iron

in the brain may be connected to secondary brain injury in

individuals with SAH. In patients with poor grade SAH, iron

accumulation is often observed in the white matter. Higher levels

of intraventricular hemorrhage are correlated with higher levels of

iron deposition. Additionally, patients with vasospasm have been

found to have higher levels of iron compared to those without

vasospasm (176). TFR plays an important role in intracellular iron

metabolism. It has been demonstrated that the expression of TFR is

significantly positively correlated with the severity of ferroptosis and

that apoptosis is not related. Therefore, the TFR is considered as a

marker of ferroptosis (178). Ferritin also plays a crucial role in iron

homeostasis. FTH1, an important component of cellular ferritin, is
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a biomarker that reflects intracellular iron homeostasis. In general,

higher levels of FTH1 cause cells to be more resistant to ferroptosis

(11, 178). This is due to ferroptosis being a result of lipid

peroxidation. As an upstream molecule of lipid peroxidation, it

has been demonstrated that the expression of ACSL4 is up-

regulated, while the expression of other ACSL family members is

not upregulated. ACSL4 is a biomarker that predicts ferroptosis

sensitivity (179). Additionally, ROS, lipid peroxides, and other

oxidation products are significantly correlated with ferroptosis.

Metabolites of lipid peroxides such as malondialdehyde (MDA)

and 4-HNE are crucial markers of the severity of ferroptosis. Within

2 h after stroke induction, the levels of 4-HNE in the ischemic

cerebral cortex were increased (180). Lee et al. further demonstrated

that plasma 4-HNE concentration increased in ischemic stroke and

became a potential biochemical indicator of ischemic stroke (180,

181). The ability of GPX4 to convert toxic PUFAs-OOH to non-

toxic PUFAs-OH in the presence of GSH such as GPX4 and GSH is

often considered to be highly correlated with ferroptosis markers.

The higher the content of GPX4 and GSH, the less prone they are to

ferroptosis (63, 64). However, these indicators are non-specific and

can be influenced by many other diseases such as oxidative stress.
10 Outlook and conclusion

Compared to other types of stroke, SAH is a life-threatening

cerebrovascular disease that seriously affects the quality of life (182).

Although the morbidity and mortality of SAH have declined due to

emerging therapies and improvements in clinical management,

both remain high (183). As the focus of research has shifted from

cerebral vasospasm to EBI, it has been observed that the role of

ferroptosis in SAH is particularly important. Experimental and

clinical data have demonstrated that ferroptosis is effectively

inhibited by regulating iron metabolism, lipid peroxidation, and

the CPX4 and Xc systems, and the adverse EBI outcome is

improved (2, 10, 11, 29, 31, 68, 93, 184). It has been

demonstrated that there are multiple forms of cell death in the

context of EBI (185). For example, ferroptosis, necrosis, apoptosis,

necroptosis, and pyroptosis that ultimately lead to the poor

prognosis of SAH all occur. Therefore, there is crosstalk between

ferroptosis and other forms of death that can be synergistic or

antagonistic and occur as upstream or downstream reactions. This

series of questions is worthy of further investigation. After SAH, the

iron ion is one of the initiating factors of ferroptosis, and changes in

its concentration are closely related to ferroptosis. Previous studies

examining SAH have primarily focused on iron-related transporters

and ferrotinophagy. However, IRP is an important target for iron

concentration regulation (186, 187), and its role in ferroptosis after

SAH has rarely been studied. We speculate that IRP as an important

regulatory factor in iron metabolism may exert an indispensable

effect on ferroptosis in the context of EBI. Research has revealed

that the influx of Ca2+ also leads to the generation of ROS (149).

Therefore, other inorganic ions such as calcium ions are involved in

ferroptosis. An imbalance between the oxidative and antioxidant

systems that causes the collection of ROS is the primary cause of

ferroptosis. Studies have demonstrated that the GSH/GPX4 system
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is the primary antioxidant system, and thus, it is likely that the SOD

antioxidant and catalase systems are involved in SAH. Little

research has been conducted examining the role of SOD in

ferroptosis in EBI. It remains unclear if it can become a new

therapeutic target in SAH and improve the lethality and mortality

of clinical patients. Currently, in related research examining

ferroptosis after SAH, the primary research focuses on the GSH/

GPX4, NADPH/FSP1/COQ, and other pathways; however, the

Hippo/YAP pathway has exhibited good anti-ferroptosis in

tumor-related research (136, 137, 188). It has not yet been

verified if it is involved in ferroptosis after SAH. If it is involved,

it is worth exploring if the pathway depends upon the GSH/GPX4

pathway. This review provides a plausible conjecture regarding the

interrelationship between oxidative stress and ferroptosis in EBI

after SAH, but there is growing evidence that there are also

interactions between ferroptosis and other types of cell death. It is

necessary to fully explore the relationship between various forms of

death and ferroptosis and to determine if there is a common

pathway. Answering these questions may provide a new

therapeutic target for SAH, ultimately improving the poor

prognosis of the majority of SAH patients and reducing family

and social burden. However, research focused on ferroptosis still

faces challenges, as we do not fully understand the mechanisms

related to ferroptosis in the context of SAH.
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