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Compelling evidence has shown that interferon (IFN)-g has dual effects in

multiple sclerosis and in its animal model of experimental autoimmune

encephalomyelitis (EAE), with results supporting both a pathogenic and

beneficial function. However, the mechanisms whereby IFN-g may promote

neuroprotection in EAE and its effects on central nervous system (CNS)-resident

cells have remained an enigma formore than 30 years. In this study, the impact of

IFN-g at the peak of EAE, its effects on CNS infiltrating myeloid cells (MC) and

microglia (MG), and the underlying cellular and molecular mechanisms were

investigated. IFN-g administration resulted in disease amelioration and

attenuation of neuroinflammation associated with significantly lower

frequencies of CNS CD11b+ myeloid cells and less infiltration of inflammatory

cells and demyelination. A significant reduction in activated MG and enhanced

resting MG was determined by flow cytometry and immunohistrochemistry.

Primary MC/MG cultures obtained from the spinal cord of IFN-g-treated EAE

mice that were ex vivo re-stimulated with a low dose (1 ng/ml) of IFN-g and

neuroantigen, promoted a significantly higher induction of CD4+ regulatory T

(Treg) cells associated with increased transforming growth factor (TGF)-b
secretion. Additionally, IFN-g-treated primary MC/MG cultures produced

significantly lower nitrite in response to LPS challenge than control MC/MG.

IFN-g-treated EAE mice had a significantly higher frequency of CX3CR1high MC/

MG and expressed lower levels of program death ligand 1 (PD-L1) than PBS-

treated mice. Most CX3CR1highPD-L1lowCD11b+Ly6G- cells expressed MG
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markers (Tmem119, Sall2, and P2ry12), indicating that they represented an

enriched MG subset (CX3CR1highPD-L1low MG). Amelioration of clinical

symptoms and induction of CX3CR1highPD-L1low MG by IFN-g were dependent

on STAT-1. RNA-seq analyses revealed that in vivo treatment with IFN-g
promoted the induction of homeostatic CX3CR1highPD-L1low MG, upregulating

the expression of genes associated with tolerogenic and anti-inflammatory roles

and down-regulating pro-inflammatory genes. These analyses highlight the

master role that IFN-g plays in regulating microglial activity and provide new

insights into the cellular and molecular mechanisms involved in the therapeutic

activity of IFN-g in EAE.
KEYWORDS

multiple sclerosis, experimental autoimmune encephalomyelitis, interferon-gamma,

microglia,myeloid cells, neuroinflammation, neurodegenerative disease, immune tolerance.
1 Introduction

Multiple Sclerosis (MS) is a disease of the central nervous

system (CNS) characterized by chronic inflammation and

demyelination. It is the most common autoimmune disease in the

brain and the leading cause of non-traumatic neurological disability

in young adults (1). Experimental autoimmune encephalomyelitis

(EAE) remains the animal model most widely used to study disease

mechanisms and therapeutic approaches for MS (2). EAE is actively

induced by immunization with myelin-derived antigens associated

with adjuvant and consists of an induction phase and an effector

phase (3). The induction phase involves the priming of myelin

epitope-specific CD4+ T cells in the periphery. The effector phase is

characterized by innate and adaptive immune cell migration from

the periphery into the CNS and their re-activation by CNS

resident cells such as microglia (MG) or immigrating antigen-

presenting cells (APC) (2, 3). Both MS and EAE are characterized

by inflammatory lesions in the CNS that mainly contain

cells expressing the CD11b cell marker (4). This CD11b+ cell

population includes peripheral myeloid cells (MC) such as

neutrophils, monocytes, dendritic cells, and macrophages as well

as CNS resident MG.

MG constitute about 5-20% of all cells in the CNS (5) and their

primary role is the support and maintenance of CNS as well as to

perform important surveillance functions (6). MG are characterized

by a prominent expression of the fractalkine receptor CX3CR1,

which is not expressed in astrocytes, oligodendrocytes, or neurons

(7, 8). Indeed, CX3CR1 promotor activity has been used for the

visualization, genetic manipulation, and the study of the function of

MG in the CNS (9). In addition, CX3CR1 is considered a microglial

homeostatic marker (10, 11) and lack of this receptor results in

exacerbation of inflammation and increased expression of MHC

class II molecules in MG (12–14). During early stages of

demyelination, active lesions present increased numbers of MG

expressing pro-inflammatory markers associated with phagocytosis,

antigen presentation and T cell co-stimulation. In later stages, MG

develop an intermediate phenotype between pro- and anti-
02
inflammatory activation. Interestingly, loss of homeostatic

microglial signature observed in active lesions of MS patients is

restored during disease inactivity (15, 16). Therefore, MG have the

capability of producing a wide variety of molecules that allow them

to exert both inflammatory/detrimental and anti-inflammatory/

protective functions in EAE and MS (16).

Interferon gamma (IFN-g), the only member of the type II IFN

family, is a cytokine that has been historically considered the

hallmark of Th1 cells driving inflammation in EAE and MS (17,

18). However, compelling evidence has challenged the notion that

IFN-g is strictly pathogenic and has been ascribed a protective role

as well [reviewed in (19–21)]. Several studies analyzing EAE

development in mice either deficient in the IFN-g gene, lacking

the IFN-g receptor, or treated with neutralizing antibodies against

IFN-g, demonstrate that endogenous IFN-g plays a disease-limiting

role in EAE (22–33). Likewise, EAE symptoms are ameliorated in

response to IFN-g administered systemically (i.p.) (29, 30) or

directly into the CNS (33). Therefore, IFN-g has opposite effects

in EAE, which can be explained, at least in part, through its dose-

dependent dual action on MG. Low doses of IFN-g enable MG to

perform neuroprotective functions, whereas high doses of IFN-g
polarize MG toward an inflammatory state [reviewed in (20)]. In

EAE, we and other investigators have found that IFN-g is

detrimental during the induction phase but protective during the

early effector phase (acute phase) (26, 32, 34, 35), indicating that

opposing effects of IFN-g depend on the stage of the disease.

However, the mechanisms whereby IFN-g is able to exert

protection in EAE and its role at the peak of EAE remain

unresolved. Moreover, most studies concerning the role of IFN-g
in the pathogenesis and progression of EAE and MS have primarily

focused on peripheral lymphoid cells while its action on CNS-

infiltrating myeloid cells and CNS-resident cells such as MG has

been largely ignored, despite their critical role in regulating

autoimmune neuroinflammation. This study aims to elucidate the

impact of systemic administration of IFN-g at the peak of EAE, its

effects on CNS infiltrating MC and MG, and the underlying cellular

and molecular mechanisms.
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2 Material and methods

2.1 Mice

C57BL/6 mice and the Signal Transducer and Activation

Transcription (Stat)-1-/- (B6.129S(Cg)-Stat1tm1Dlv/J, stock #012606)

mice were obtained from The Jackson Laboratory. C57BL/6J MOG35-

55-specific TCR transgenic (2D2) mouse strain was kindly provided by

Dr. R Pacheco (Fundación Ciencia & Vida, Chile). All mice were

maintained under specific pathogen-free (SPF) conditions. All

experimental procedures complied with the Helsinki Declaration of

animal experiments and were approved by the Institutional Animal

Care and Use Committee (IACUC) of the University of Chile and

Northwestern University.
2.2 Induction of EAE and treatment

EAE was induced in 8- to 12-week-old mice with a s.c. injection

of 150 µg myelin oligodendrocyte glycoprotein-derived 35-55

peptide (MOG35-55, MEVGWYRSPFSRVVHLYRNGK, CPC

Scientific, California, US), emulsified in Incomplete Freund’s

adjuvant containing 500 µg Mycobacterium tuberculosis (BD

Difco, Detroit, Michigan, US) followed by an i.p. injection with

500 ng Bordetella pertussis toxin (List Biological, Campbell,
Frontiers in Immunology 03
California, US) on the day of immunization and 48 h later. Body

weight and clinical symptoms were monitored daily using a

standard clinical score of 0-6 as previously described (36). For

treatment with IFN-g, 1 mg/mouse/day of recombinant murine IFN-

g (Biolegend, San Diego, California, US) was administered i.p. for 5

days starting at the peak of EAE. Non-immunized (NI) mice

(without EAE) and EAE mice injected with phosphate-buffered

saline (PBS) (Gibco, Grand Island, New York, US) were used as

control groups (Figure 1A).
2.3 Histological analysis

Mice were deeply anesthetized and intracardially perfused with

PBS (0.1 M) followed by 4% paraformaldehyde (pH=7.4). Thoracic

and lumbar spinal cord (SC) sections were removed, post-fixed in

4% paraformaldehyde, and embedded in paraffin. Serial sections

with 6 mm thickness were cut, followed by hematoxylin and eosin

(H&E) and luxol fast blue (LFB) staining. All reagents were

purchased from Sigma (Saint Louis, Missouri, USA). LFB images

were captured on an Olympus BX51 multichannel light/

epifluorescence microscope (Olympus, Tokyo, Japan). H&E

images were captured on a NanoZoomer XR slide scanner

(Hamamatsu Photonics, Japan) employing the NanoZoomer

Digital Pathology scan software v3.0 (Hamamatsu Photonics,
B

C

D

A

FIGURE 1

Experimental design. (A) Mice were immunized with myelin oligodendrocyte protein peptide (MOG35-55) to induce experimental autoimmune
encephalomyelitis (EAE). Mice were treated daily with 1 mg/mouse of mrIFN-g or PBS for 5 days at the peak of EAE. SC were collected for histological
analysis or to isolate mononuclear cells, which were used for analysis of fresh cells by multiparametric flow cytometry (FC), primary myeloid cells/microglia
(MC/MG) cultures, fluorescence activated cell sorting (FACS), and RNAseq analysis. (B) Fresh isolated cells were used to determine the cell phenotype by
FC analysis using the markers described in the figure. (C) Primary MC/MG cultures were established and then cells were pre-conditioned with low doses of
IFN-g (0.1, 1, and 10 ng/ml) for 24 h and then pulsed with MOG35-55 (5 mg/ml) for an additional 24 h. Cells were analyzed for tolerogenic phenotype by FC
or were co-cultured with 1x106 CD4+ T cells obtained by negative selection from spleens of 2D2 mice. After 4 days of co-culture, supernatants were
collected for further cytokine analysis by multiplex assay or ELISA and the cells were analyzed for Treg cell frequency (CD4+CD25highFoxp3+) by FC. In
other assays, pre-conditioned MC/MG cultures were challenged with 1 µg/ml LPS for 72 h. Cell culture supernatant was collected and nitrite was
determined by Griess reaction. (D) Fresh isolated cells were stained with antibodies against CD11b, LY6G, CD45, CX3CR1 and PD-L1, and immediately

sorted on a FACSAria™ III. RNA was isolated using RNAeasy Micro kit and used for RNAseq analysis.
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Japan). Density of infiltrating inflammatory cells was determined as

the number of cell nuclei per 10.000 µm2. The extent of

demyelination was evaluated by measuring the percentage of

demyelinated area over the total white matter area for each SC

section. Quantifications were performed using ImageJ software

(NIH, USA).
2.4 Immunohistochemistry

For immunostaining, thoracic SC sections were deparaffinized

and rehydrated. Heat-induced antigen retrieval was performed in

citrate buffer (pH=6.0) for 30 min. Sections were washed in 1X Tris-

buffered saline (TBS), permeabilized, and blocked for 1 h at room

temperature (RT) in blocking buffer [5% bovine serum albumin

(BSA), 0.5% Triton-X 100 in 1X TBS)]. Tissues were incubated with

the primary antibody polyclonal rabbit anti-ionized-calcium

binding adaptor protein (Iba) 1 diluted in blocking buffer (1:300,

FujiFilm Wako, Osaka, Japan) overnight at 4°C. The next day,

slides were washed with 1X TBS and incubated with Alexa Fluor
Frontiers in Immunology 04
555-labeled secondary antibody anti-rabbit (1:200, Invitrogen,

Waltham, MA, US) for 3 h at RT (Table 1). Slides were washed

with 1X TBS, and cell nuclei were stained with 4’,6-diamidino-2-

phenylindole (DAPI). Finally, slides were rinsed with 1X TBS,

mounted with an anti-fade mounting media, and visualized in a

Leica DMI8 inverted fluorescence microscope. Image J-assisted

analysis was used to evaluate density of Iba1+ cells, determined as

the number of Iba1+ cells per 100.000 µm2; average Iba1+ cell size,

determined as cell area of Iba1+ cells; and percentage Iba1 coverage,

determined as the percentage of the total section area occupied by

Iba1+ cells (µm2).
2.5 Cell cultures and ex vivo re-stimulation

Mononuclear cells were isolated from SC of EAE mice treated

with PBS or IFN-g at day 19 post-immunization as previously

described (37). Briefly, spinal cord homogenates were obtained and

incubated with 0.5 mg/ml collagenase (Roche, Manheim, Germany)

and 10 units/ml DNAse I (New England Biolabs, Ipswich,
TABLE 1 List of antibodies used for immunofluorescence and flow cytometry.

Specificity Fluorochrome Dilution Source Clone/ID

Neutrophil

LY6G BV605 1:500 BIOLEGEND 1A8

Microglia

TMEM119 Unconjugated (Rabbit) 1:100 ABCAM 106-6

anti-rabbit Alexa fluor 555 1:1000 INVITROGEN AB_2535849

Myeloid cells/Microglia

Iba1 Unconjugated (Rabbit) 1:300 WACO Polyclonal

anti-rabbit Alexa fluor 555 1:200 INVITROGEN AB_2535849

CD11b FITC/PE 1:300 BIOLEGEND M1/70

CD45 APC 1:500 BIOLEGEND 30-F11

CX3CR1 PE/Cy7 1:500 BIOLEGEND SA011F11

PD-L1 (CD274; B7-H1) BV711 1:400 BIOLEGEND 10F.9G2

MHCII Alexa Fluor700 1:600 EBIOSCIENCE MS/114.15.2

CD86 APC/Cy7 1:400 BIOLEGEND GL-1

CD80 PE 1:200 BIOLEGEND 16-10A1

CD40 PerCP 1:300 BIOLEGEND 3/23

CD4+ Treg cells

CD4 FITC 1:200 BIOLEGEND RM4-5

CD25 APC 1:200 BIOLEGEND PC61

FoxpP3 PE 1:200 BIOLEGEND 150D

Myelin

MBP1 Unconjugated (Mouse) 1:70 BIOLEGEND SMI99

anti-mouse Alexa fluor 555 1:500 INVITROGEN AB_2535844
APC, allophycocyanin; BV,brilliant violet; Cy, cyanine; FITC, fluorescein isothiocyanate; PE, phycoerythrin; PERCP, Peridinin Chlorophyll Protein Complex.
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Massachusetts, US) at 37°C for 1 h. Mononuclear cells were purified

using 40%/70% discontinuous Percoll gradients (Amersham,

Piscataway, New Jersey, US), and total cell numbers were

determined using a hemocytometer with viability assessed by

trypan blue exclusion. In some assays, fresh cells were

immediately analyzed by flow cytometry (Figure 1B). In other

experiments, primary cell cultures were established; seeding cells

in 24-well plates at a density of 2x105 cells per well in 1 ml Iscove´

s Modified Dulbecco´s Medium (IMDM) supplemented with

10% fetal calf serum (FCS), 100U/ml penicillin plus 100

µg/ml streptomycin, 1 mM sodium pyruvate, 50 µM beta-

mercaptoethanol, 2 mM glutamine, and non-essential amino

acids (all from Gibco, Carlsbad, California, US) (Figure 1C).

Primary cell cultures usually contained 80-90% of adherent

CD11b+ myeloid/microglia (MC/MG) (Supplementary Figure 1).

For nitric oxide (NO) determination, MC/MG were re-stimulated

with 1 ng/ml IFN-g for 24 h and then pulsed with 5 mg/ml MOG35-

55 for an additional 24 h. Then, re-stimulated MC/MG cultures were

challenged with 1 µg/ml bacterial lipopolysaccharide (LPS) for 72 h

in IMDM culture media. Thereafter, the medium was collected, and

nitrite, a stoichiometric and stable metabolite of NO, was

determined from supernatants by Griess reaction (Promega,

Madison, Wisconsin, US). For cell co-culture experiments, MC/

MG were re-stimulated with varying amounts of IFN-g (0.1-1-10

ng/ml) for 24 h, washed, and then pulsed with MOG35-55 (5 mg/ml)

for an additional 24 h. After washing, cells were co-cultured with

1x106 CD4+ T cells previously purified by negative selection from

spleens of 2D2 mice using a CD4+ T cell isolation kit (Miltenyi

Biotec, Bergisch Gladbach, Germany). After 4 days of co-culture,

cell culture supernatant was collected for further cytokine

analysis, and the cells were analyzed for Treg cell frequency

(CD4+CD25highFoxp3+) by flow cytometry (Figure 1C).
2.6 Immune staining, flow cytometry, and
FACS Sorting.

For cell surface staining, isolated cells were immediately fixed with

fixation buffer (eBioscience, San Diego California, US) overnight at 4°C.

For blocking non-specific Fc receptor-mediated antibody binding, cells

were incubated with anti-FcgR III/II antibody for 15 min at 4°C in 2%

fetal calf serum (FCS) PBS. Then, cells were stained with antibodies

against CD11b, lymphocyte antigen 6 complex locus G (LY6G), CD45,

CX3C chemokine Receptor 1 (CX3CR1), programmed death ligand 1

(PD-L1), CD86, CD80, CD40, MHC class II (MHC-II) molecules, and

transmembrane protein (TMEM) 119 for 30 minutes at 4°C

(Table 1). For intracellular staining, cells were permeabilized with

Permeabilization kit (eBioscience, San Diego California, US) for 30

minutes at RT and then incubated with antibodies against forkhead box

P3 (FoxP3) (Biolegend, USA) for 30 minutes at RT. Next, cells were

resuspended in PBS and analyzed using a Fortessa Flow Cytometer (BD

Biosciences, USA) and FlowJo software (Tree Star, USA). Flow

cytometry gating strategies are described in Supplementary Figure 2.

For FACS (Figure 1D), freshly isolated SC cells of 5-6 mice were

incubated with anti-FcgR III/II antibody for 15 min at 4°C in 2% FCS

PBS and immune stained with antibodies against CD11b, LY6G, CD45,
Frontiers in Immunology 05
CX3CR1, PD-L1, for 30 minutes at 4°C. Cells were immediately sorted

on a FACSAria™ III (BD Biosciences, US), collected in tubes

containing 2.4 ml of RLT lysis buffer (Qiagen, Hilden, Germany),

and frozen at -80°C until RNA-Seq analysis. Usually, 6x104 to 1x105

cells were obtained, and cell viability was higher than 97% (not shown).

Post sorting analysis confirmed that >97.5% of sorted cells were

CD11b+LY6G-CX3CR1highPD-L1low.
2.7 Cytokine analysis

The concentration of IFN-g, IL-1b, tumor necrosis factor (TNF)-

a, granulocyte macrophage colony-stimulating factor (GM-CSF), IL-

2, IL-4, and IL-10 in cell co-culture supernatants was determined by a

multiplex assay using Luminex technology (Merck Millipore,

Darmstadt, Germany) according to manufacturer´s instructions.

Total and active transforming growth factor (TGF)-b production

was determined by ELISA (Invitrogen, Vienna, Austria). The

standard curve was diluted in medium containing 10% fetal calf

serum, so TGF-b production was calculated over the basal level

contained in the fetal calf serum (Figure 1C).
2.8 RNA sequencing analysis

2.8.1 Library preparation and sequencing
RNA was isolated from CD11b+Ly6G-CX3CR1highPD-L1lowcells

obtained from SC of EAE mice treated with either IFN-g or PBS using
RNAeasy Micro kit (Qiagen, Hilden, Germany) (Figure 1D). 1 ml of
ERCC RNA Spike-In Mix (ThermoFisher, Carlsbad, California, US)

diluted 1:5000 was added to the isolated RNA as an external control.

cDNA was synthesized using Ovation RNA-Seq System V2 (NuGen,

Groningen, Netherlands). 100 ng of cDNA was used as input for

fragmentation and followed by library preparation using the IonXpress

plus gDNA and Amplicon Library preparation kit (ThermoFisher,

Carlsbad, California, US) as described by the manufacturer. The library

was then size selected on a 2% E-Gel (ThermoFisher, Carlsbad,

California, US). Sample specific barcodes were then added and

amplified. Individual sample libraries were quantified using a Kapa

Library Quantification Kit (Kapa, Wilmington, Massachusetts, US)

using samples diluted 1:200. Equal quantities of individual samples

were then pooled and sequenced on an Ion Proton Sequencer.

2.8.2 Data analysis
The raw reads (Fastq) were split into sample-specific reads

based on the barcodes. The reads were then checked for sequence

quality and sequence repeats. Low-quality bases and short reads

were removed from further analysis. The reads were subsequently

mapped to the Mus musculus genome (mm10) using TMAP

Aligner and quantified using Ensembl annotation 86 using Partek

Flow. Genes with a minimum of 5 reads in at least 80% of the

samples were considered for further analysis. Differentially

expressed genes (DEGs) were determined in R with the DESeq2

package (38). Genes with at least one-fold change and corrected p-

Value of less than 0.05 were considered as differentially expressed

between IFN-g-treated and PBS control mice. Gene set enrichment
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analysis (GSEA) was performed using the gene sets from the

Molecular Signatures Database-MsigDB. Overrepresentation

analysis was performed using Reactome database (a database of

reactions, pathways, and biological processes) (39, 40).

2.8.3 Construction of a molecular network of
protein interactions

In order to search for molecular connections between selected

genes, each gene was subjected to a nearest neighbor or cluster

analysis using the STRING platform (https://string-db.org/). The

setting of 100 interactions (custom value) and a minimum score of

0.400 (medium confidence) was chosen. The lists for each gene were

entered into “genes.R “ available in “R” (https://cran.r-project.org/

bin/windows/base/) and turned into a graphical display by using

“igraph”, a network analysis R package (http://igraph.org/r/).
2.9 Statistical analysis

Results were analyzed using a Mann–Whitney nonparametric

test or one-way ANOVA using GraphPad Prism v.5.0 (GraphPad

Software). P values <0.05 were considered statistically significant.
3 Results

3.1 IFN-g treatment induces amelioration of
the clinical symptoms and attenuation of
neuroinflammation at the peak of EAE

First, we determined the effect of systemic administration of IFN-g
for 5 days starting at the peak of EAE. The results showed that IFN-g
significantly decreased the severity of clinical symptoms and body

weight loss compared to PBS-treated mice (Figure 2A). After cessation

of treatment, disease severity returned to levels similar to PBS-treated

mice (Supplementary Figure 3). Histological analyses showed that

thoracic and lumbar SC sections from IFN-g-treated EAE mice had

significantly less infiltration of inflammatory cells and fewer

demyelinated areas compared to PBS-treated-EAE mice (Figures 2B,

C). Interestingly, flow cytometry analysis revealed that in vivo IFN-g-
treatment resulted in a significantly lower absolute number of

mononuclear cells and lower frequency and absolute numbers of

CD11b+ cells and non-neutrophil MC/MG (CD11b+Ly6G-)

compared to SC from PBS-treated EAE mice; however, levels were

still higher than the non-immunized (NI) group (Figure 3A–C). There

was no significant difference in the frequency and absolute number of

neutrophils (CD11b+Ly6G+) between the PBS- and IFN-g-treated mice

(Figure 3D). Similar total number of cells was determined in draining

lymph nodes (dLN) and spleen from IFN-g-treated EAE mice and

control mice. Frequency and absolute number of CD11b+ cells and

neutrophils and macrophages in dLN was not affected by IFN-g
treatment. In contrast, a significantly lower frequency and absolute

number of CD11b+ cells and neutrophils were found in spleen

from IFN-g-treated EAE mice compared to those from PBS-treated

EAE mice; whilst macrophages were not significantly altered

(Supplementary Figure 4).
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Several studies have reported that in a neuroinflammatory or

tumor microenvironment MG are induced to upregulate CD45

expression (5, 41–49). Consequently, an increase in the frequency of

CD45hi cells would reflect the activation of CD45low MG into CD45hi

cells resembling peripheral infiltratingMC (44–46). Our results showed

that IFN-g-treatment resulted in a significantly lower frequency and

absolute number of activated MC/MG cells (CD11b+Ly6G-CD45high)

compared to PBS-treatment. In addition, IFN-g-treatment induced a

significant increase in the percentage of resting MG compared to PBS-

treated EAE mice; but was still lower than NI mice (Figure 3E, F).

Consistent with the activation status of these cell populations, activated

MC/MG (CD11b+Ly6G-CD45high) obtained from both IFN-g- and

PBS-treated EAE mice showed a significantly higher expression of

MHC-II molecules, CD80, CD40, and PD-L1 than resting MG

(CD11b+Ly6G-CD45low) (Supplementary Figure 5).

Resting MG are also characterized by a ramified cell morphology

with numerous thin processes that upon activation are drawn back into

the soma, resulting in a rounded amoeboid-like appearance. In order to

evaluate morphological changes associated with microglial activation,

thoracic SC sections from NI mice and IFN-g- and PBS-treated EAE

mice were immunostained for Iba1, a known cell marker used to

evaluate MC/MG morphology and activation (50–54). SC from PBS-

treated mice were characterized by extensive Iba1 staining and

amoeboid-shaped Iba1+ cells. Instead, IFN-g-treated mice had

predominantly ramified-shaped, Iba1-stained cells similar to NI mice

(Figure 4A). In addition, SC from IFN-g-treated EAE mice showed the

density of Iba1+ cells, average Iba1+ cell area (indicative of cell size), and

percentage Iba1 coverage (indicative of simultaneous alterations in cell

density and morphology) significantly reduced in comparison to PBS-

treated mice, but similar to NI mice (Figure 4B–D).

IFN-g also plays a protective role in preventing hindbrain

neuroinflammation, an effect dependent on the interaction between

IFN-g and CNS cells (55–57). Therefore, changes in MG and

myelination in the cerebellum obtained from EAE mice treated with

IFN-g or PBS by immunofluorescence were examined. A significantly

higher expression of TMEM119, a recently described homeostatic

marker for MG (11, 58), and of MBP staining was observed in

response to IFN-g compared to control treatment (Supplementary

Figure 6; Method S1). Taken together, these results indicate that in vivo

IFN-g-treatment starting at the peak of EAE induces amelioration of

clinical symptoms, reduction of body weight loss, attenuation of

neuroinflammation associated with significantly less infiltration of

inflammatory cells and demyelination, reduced activation of MC/

MG, and enhanced expression of homeostatic microglial markers.
3.2 Ex vivo re-stimulation with low doses
of IFN-g and MOG35-55 induces tolerogenic
and anti-inflammatory activity in MC/MG
from IFN-g-treated EAE mice

It has been reported that low concentrations of IFN-g induce a
tolerogenic phenotype in MG from neonatal mice capable of

inducing regulatory T (Treg) cells (59). Thus, we were interested

in determining the tolerogenic activity and phenotype of primary

MC/MG cultures established from EAE-induced mice treated with
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IFN-g or PBS. First, cell cultures were ex vivo pre-conditioned with

low doses (0.1, 1, and 10 ng/ml) of IFN-g and MOG35-55, and then

co-cultured with CD4+ T cells obtained from transgenic 2D2 mice

for 96 h (Figure 1C). The results showed that MC/MG obtained

from IFN-g-treated EAE mice and ex vivo stimulated with 0.1 and 1

ng/ml IFN-g induced a significantly higher frequency of Treg cells

compared to untreated cells. Interestingly, ex vivo re-stimulation

with 1 ng/ml IFN-g and MOG35-55 induced a significantly higher

frequency and absolute number of Treg cells in co-cultures

containing MC/MG obtained from IFN-g-treated EAE mice than

in co-cultures containing MC/MG from PBS-treated EAE mice

(Figure 5A). No differences in the expression of MHC-II, CD86,

CD80, and CD40 in primary MC/MG obtained from either IFN-g-
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treated EAE mice or PBS-treated mice and stimulated with low

doses of IFN-g and MOG35-55 were detected prior to culture with

2D2 CD4+ T cells (Figure 5B). Cell culture supernatants obtained at

the end of the co-cultures of pre-conditioned MC/MG and 2D2

CD4+ T cells were analyzed by immunoassays. Cell co-cultures

containing MC/MG obtained from IFN-g-treated EAE mice had

lower production of IFN-g, TNF-a, and GM-CSF than conditioned

cell co-cultures containing MC/MG obtained from PBS-treated

EAE mice. However, only the secretion of IFN-g in co-cultures

containing MC/MG from IFN-g-treated EAE mice and pre-

conditioned with 10 ng/ml IFN-g and MOG35-55 was statistically

lower than in those from control mice. Interestingly, cell co-cultures

containing MC/MG isolated from IFN-g-treated EAE mice and ex
B

C

A

FIGURE 2

IFN-g treatment induces disease amelioration and attenuation of neuroinflammation at the peak of EAE. (A) Clinical progression and body weight were
monitored daily in non-immunized (NI) mice (white diamonds) and mice developing EAE treated with either PBS (black circles) or 1 mg IFN-g (red
squares) for 5 days at the peak of EAE. n= 5 mice per group; 5 independent experiments. (B, C) Thoracic and lumbar SC sections from NI, PBS-treated
EAE, and IFN-g-treated EAE mice were analyzed by histochemical staining for (B) H&E and (C) luxol fast blue. Representative microphotographs are
shown. Scale bar is 500 mm. Dashed boxes show magnified image of infiltrated and demyelinated area. Infiltration of inflammatory cells and
demyelination area was quantified as described in Methods. All measurements were performed on 3 serial sections per animal (n=5 mice per group).
Results are shown as the mean ± SEM. *P <0.05; **P <0.01.
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vivo pre-conditioned with 1 ng/ml IFN-g and MOG35-55 showed a

significantly higher production of total TGF-b than control co-

cultures (Figure 5C). Furthermore, active TGF-b production was

higher in co-cultures containing MC/MG isolated from IFN-g-
treated EAE mice and ex vivo conditioned with 1 and 10 ng/ml

IFN-g and MOG35-55 than control co-cultures (Figure 5C). In

contrast, cell co-cultures containing MC/MG obtained from PBS-

treated EAE mice and stimulated ex vivo with low doses of MOG35-

55 alone or in combination with IFN-g produced significantly lower

levels of active TGF-b than unstimulated cell co-cultures. There was
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no difference in the production of IL-4, IL-10, IL-2, and IL-1b
between both groups of co-cultures. These results suggest that ex

vivo re-stimulation with low doses of IFN-g and MOG35-55 endow

MC/MGwith the capacity to induce conversion of CD4+ T cells into

Treg cells in association with high secretion of TGF-b.
Since nitric oxide (NO) is recognized as an important effector

molecule produced by macrophages and microglia in response to

inflammation (60), we evaluated NO production. Pre-conditioned

MC/MG cultures obtained from IFN-g-treated EAE mice produced

significantly lower nitrite in response to LPS stimulation than those
B C D

E

F

A

FIGURE 3

IFN-g treatment induces a decrease in the number of spinal cord mononuclear cells, a reduction of activated myeloid cell/microglia, and an increase of
resting microglia. SC from non-immunized (NI) mice (black bar) and mice developing EAE treated with either PBS (white bar) or 1 mg IFN-g (red bar) were
used to determine (A) number of mononuclear cells. (B-D) Frequency (top panel) and absolute cell number (bottom panel) of (B) CD11b+ cells, (C)
myeloid cell/microglia (MC/MG) (CD11b+Ly6G-), and (D) neutrophils (CD11b+Ly6G+) were determined by flow cytometry. (E) Flow cytometry gating for
the determination of activated MC/MG (CD11b+Ly6G-CD45high) and resting MG (CD11b+Ly6G-CD45low). (F) Frequency and absolute cell number of
activated MC/MG and resting MG were determined by flow cytometry. Values In flow cytometry plots indicate the percentage of positive cells in each
gate or quadrant. n= 5 mice per group; 5 independent experiments. Results are shown as the mean ± SEM. *P <0.05; **P <0.01.
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from PBS-treated EAE mice (Figure 5D). Taken together, these results

show that ex vivo re-stimulation with low doses of IFN-g andMOG35-55

induces tolerogenic and anti-inflammatory activity in MC/MG.
3.3 In vivo IFN-g-treatment induces
increased frequency of CX3CR1highPD-
L1low MG in a STAT-1-dependent manner

Next, we examined the expression of MHC class II molecules,

costimulatory molecules (CD80, CD86, CD40), coinhibitory

molecules (PD-L1), and a microglial marker (CX3CR1) in MC/MG

obtained from IFN-g and PBS-treated EAE mice by flow cytometry

(Supplementary Figure 7A). Interestingly, we found that in vivo IFN-

g treatment induced a significantly higher expression of CX3CR1 in
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MC/MG cells than in control cells (Figure 6A). In turn, an analysis of

CX3CR1highCD11b+Ly6G- cells showed that IFN-g treatment

induced a significantly higher frequency of these cells expressing

low PD-L1 (Figure 6B; Supplementary Figure 7B). There was no

difference in the absolute number of CX3CR1highPD-

L1lowCD11b+Ly6G- cells from mice treated with IFN-g or PBS.

However, the total number of live mononuclear cells isolated from

the SC of IFN-g-treated EAE mice was almost half of PBS-treated

EAE mice (Figure 3A). These CX3CR1highPD-L1lowCD11b+Ly6G-

cells were 75-85% TMEM119+ (Supplementary Figure 8A). In

addition, CX3CR1highPD-L1lowCD11b+Ly6G- cells showed a strong

expression of gene markers for MG and weak expression for MC,

oligodendrocytes, and astrocytes (Supplementary Figure 8B).

Therefore, these results strongly suggest that this cell subpopulation

is an enriched subset of CX3CR1high MG expressing low PD-L1
B

C

D

A

FIGURE 4

IFN-g treatment reduces myeloid cell/microglia activation in EAE mice. (A) Representative microphotographs of thoracic SC sections from non-
immunized (NI) mice, PBS-treated EAE mice (PBS), and IFN-g-treated EAE mice (IFN-g) immunostained for Iba1 (red). Cell nuclei were labeled with
DAPI (blue). (B–D) Determination of (B) density of Iba1+ cells (number of Iba1+ cells per area), (C) average Iba1+ cell area, and (D) percentage Iba1
coverage (percentage of the total section area occupied by Iba1+ cells). All measurements were performed on 3 serial sections per animal (n=5 mice
per group). Scale bar is 500 mm. Results are shown as the mean ± SEM. *P <0.05; **P <0.01.
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C

D
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FIGURE 5

Ex vivo re-stimulation with low doses of IFN-g and MOG35-55 induces tolerogenic activity in myeloid cell/microglia from IFN-g-treated EAE mice.
(A) Primary MC/MG culture from EAE mice treated with IFN-g (red squares) or PBS (white circles) were ex vivo pre-conditioned with low concentrations of
IFN-g (0.1, 1, and 10 ng/ml) for 24 h, incubated with 5 mg/ml MOG35-55 for an additional 24 h, and then co-cultured with purified CD4+ T cells obtained
from spleens of transgenic 2D2 mice for 96 h. The frequency of Treg cells (CD4+CD25highFoxP3+) was determined by flow cytometry. Representative flow
cytometry plots and frequency and cell number of Tregs in co-cultures containing untreated (UN) or pre-conditioned MC/MG with 1 ng/ml IFN-g and 5
mg/ml MOG35-55 is shown. (B) The cell surface expression, shown as median fluorescence intensity (MFI), of MHC-II molecules, CD86, CD80, and CD40
was determined by flow cytometry in primary MC/MG obtained from EAE mice treated with IFN-g (red bars) or PBS (white bars) and pre-conditioned with
1 or 10 ng/ml IFN-g and 5 mg/ml MOG35-55 prior to culture with 2D2 CD4+ T cells. (C) Secretion of IFN-g, TNF-a, GM-CSF, IL-2, IL-4, IL-10, and IL-1b was
determined by multiplex assay and the production of TGF-b by ELISA in cell culture supernatants from co-cultures between 2D2 CD4+ T cells and pre-
conditioned MC/MG. (D) Production of nitrites was determined by Griess assay in primary MC/MG obtained from EAE mice treated with IFN-g (red bars) or
PBS (white bars) pre-conditioned with 1 ng/ml IFN-g and 5 mg/ml MOG35-55 (IFN-g/MOG35-55) and challenged with 1 mg/ml LPS for 72 h. Results are shown
as mean ± SEM of five independent experiments. *Comparison between unstimulated cell cultures and cell cultures stimulated with IFN-g. Other relevant
comparisons are shown with brackets. *P <0.05; **P <0.01. aTGF-b: active transforming growth factor.
Frontiers in Immunology frontiersin.org10

https://doi.org/10.3389/fimmu.2023.1191838
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tichauer et al. 10.3389/fimmu.2023.1191838
(CX3CR1highPD-L1low MG). The remaining cells were 47-52%

TMEM119+ (Supplementary Figure 8A) and were considered MC/

MG. A significantly lower frequency and absolute number of MC/

MG was observed in SC from IFN-g-treated EAE mice than in SC

from PBS-treated EAE mice (Figure 6B). Interestingly, NI mice

exhibited a significantly higher frequency and absolute number of

CX3CR1highPD-L1low MG (60.2% ± 5.4%) than MC/MG (39.5% ±

5.6%) (Supplementary Figure 9A).

To determine whether the increase in CX3CR1highPD-L1low

MG induced by IFN-g is due to proliferation, mice treated with

IFN-g or PBS received a simultaneous i.p. injection of 5-bromo-2´-

deoxyuridine (BrdU) starting at the peak of EAE. After 5 days,

mononuclear cells were isolated from SC, and the frequency of

proliferating CX3CR1highPD-L1low MG was analyzed by flow

cytometry. The results showed that there was no difference in the

frequency of proliferating CX3CR1highPD-L1low MG between EAE

mice treated with IFN-g or PBS, suggesting that enhanced
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CX3CR1highPD-L1low MG induced by IFN-g might be explained

by microglial plasticity (Supplementary Figure 9; Method S2).

To obtain mechanistic insight into the induction of

CX3CR1highPD-L1low MG by IFN-g, mice lacking STAT-1, the major

STAT activated in response to engagement of IFN-g receptor, were

induced with EAE and then treated with IFN-g for 5 days starting at the
peak of disease. IFN-g treatment had no effect on disease progression in

EAE-induced Stat-1-/- mice (Figure 6C). Furthermore, the lack of

STAT-1 inhibited the IFN-g-induced expression of CX3CR1 in MC/

MG cells (Figure 6A), suppressed the increase of CX3CR1highPD-L1low

MG, and reversed the decreased frequency ofMC/MG induced by IFN-

g in WT mice (Figure 6B). We thus conclude that the IFN-g/STAT-1
signaling axis is involved in symptom amelioration and induction of

CX3CR1highPD-L1low MG in EAE.

Next, we analyzed the impact of IFN-g-treatment on the

activation state and the expression of MHC-II molecules and

costimulatory molecules in CX3CR1highPD-L1low MG from EAE-
B

C D

E

A

FIGURE 6

In vivo IFN-g-treatment induces increased frequency of CX3CR1highPD-L1low MG in a STAT-1-dependent manner. Mononuclear cells from SC of EAE WT
and STAT-1-/- mice treated with IFN-g or PBS for 5 days at the peak of EAE were analyzed by flow cytometry. (A) The expression level of CX3CR1. (B)
Frequency and absolute cell number of CX3CR1high PD-L1low MG and MC/MG in WT and STAT-1-/- mice treated with IFN-g or PBS. (C) EAE progression
in WT (filled symbols) and STAT-1-/- (empty symbols) mice treated with IFN-g (red line) or PBS (black line) for 5 days at the peak of EAE. (D) Frequency
and absolute cell number of activated (CD11b+CD45high) and resting (CD11b+CD45low) CX3CR1highPD-L1low MG and (E) their expression of MHC-II,
CD86, CD80, and CD40 molecules. *Comparison between mice or cells obtained from IFN-g-treated EAE mice and control cells obtained from PBS-
treated EAE mice. *P <0.05; **P <0.01. #Comparison between mice or cells obtained from WT and STAT1-/- mice.
#P <0.05; ##P <0.01. MFI, median fluorescence intensity.
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induced WTmice treated with IFN-g or PBS. A similar frequency of

activated (51.5 ± 6%) and resting (44.2 ± 12%) CX3CR1highPD-

L1low MG was found in SC from IFN-g- and PBS-treated EAE mice

(Figure 6D). However, activated CX3CR1highPD-L1low MG from

IFN-g-treated EAE mice exhibited a significantly lower frequency

and absolute number of cells expressing MHC-II molecules than

cells from PBS-treated EAE mice (Figure 6E). There was no

significant difference in the frequency or absolute number of cells

expressing CD80, CD86, or CD40 between CX3CR1highPD-L1low

MG from IFN-g- and PBS-treated EAE mice. Interestingly, in NI

mice most of CX3CR1highPD-L1low MG (91.9% ± 4.2%) were in a

resting state and had significantly lower frequency of cells

expressing CD40 compared to activated cells, whereas the

expression of MHC-II molecules, CD86, and CD80 were not

statistically significant (Supplementary Figure 9B).
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3.4 Differential gene expression profile
of MG isolated from IFN-g or PBS-treated
EAE mice

We next wanted to identify genes and signaling pathways in

which IFN-g may be differentially regulating the activity of

CX3CR1highPD-L1low MG in EAE by analyzing the transcriptional

profile of these cells. CX3CR1highPD-L1low MG were isolated from

IFN-g- and PBS-treated EAE mice for FACS sorter (97.5% purity),

and the transcriptional profile was analyzed by RNAseq. A total of

12,524 genes were detected above the threshold (see Methods), with

336 genes upregulated and 188 down-regulated after IFN-g
treatment (Figure 7A). Using more stringent criteria, lowering the

p-value to 0.01, setting the Log2 Fold change to a minimum of 1.0,

and raising the threshold of minimum expression to 40 read units,
B C

A

FIGURE 7

Differential gene expression profile in CX3CR1highPD-L1low MG in response to in vivo IFN-g-treatment. Gene expression profile was analyzed on RNA
obtained from CX3CR1high MG expressing low PD-L1 purified from SC of IFN-g or PBS-treated EAE mice by RNA sequencing (RNA-seq). (A) Left panel,
total number of genes up (red bar)- and down (blue bar)-regulated by IFN-g treatment; right panel, heat map showing the top 100 up (red squares)- and
down (blue squares)-regulated genes in CX3CR1highPD-L1low MG from IFN-g-treated mice versus those cells from PBS-treated mice. (B) Volcano plot
showing up- and down-regulated genes induced by IFN-g in CX3CR1highPD-L1low MG from IFN-g-treated mice. (C) Gene expression analysis using more
stringent criteria by lowering the p-value to 0.01, setting the Log2 Fold change to a minimum of 1.0, and by raising the threshold of minimum
expression to 40 units. n= 3 independent samples per group.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1191838
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tichauer et al. 10.3389/fimmu.2023.1191838
resulted in 25 upregulated and 22 down-regulated genes in response

to IFN-g (Figures 7B, C). Interestingly, the gene expression of

ATPase phospholipid transporting 8A2 (Atp8a2), a selective

microglial gene marker, and several genes associated with anti-

inflammatory processes such as dual-specificity phosphatase 5

(Dusp5), MLX interacting protein-like (Mlxipl, ChREBP),

dishevelled segment polarity protein 1 (Dvl1) and gamma-

aminobutyric acid type B receptor subunit 1 (Gabbr1), were

upregulated in IFN-g-treated EAE CX3CR1highPD-L1low MG

(Figures 7B, C; Table 2). Several genes associated with M1

inflammatory activity such as the cd38 molecule (Cd38),

complement factor B (Cfb), inhibin subunit Beta A (Inhba), serum

amyloid A3 (Saa3), and APN-like peptidase cytosolic alanyl-

aminopeptidase (Anpep) were down-regulated in IFN-g-treated
Frontiers in Immunology 13
EAE CX3CR1highPD-L1low MG (Figures 7B, C; Table 2).

Unexpectedly, arginase 1 (Arg1), a M2 classic gene, was down-

regulated in CX3CR1highPD-L1low MG from IFN-g-treated EAE

mice. However, the cationic amino acid transporter 2 (Slc7a2), a

gene involved in the uptake of arginine, was also down-regulated,

suggesting a decreased substrate availability for NO production in

these cells (Figures 7B, C; Table 2).
3.5 IFN-g-treatment induces an anti-
inflammatory profile in MG

To determine if any molecular pathways were differentially

regulated in CX3CR1highPD-L1low MG by IFN-g, changes in the
TABLE 2 Role of genes regulated by IFN-g.

Up Name Activity Role Ref

Atp8a2
ATPase Phospholipid
Transporting 8A2

Lipid flipping: generating and maintaining
asymmetry in membrane lipid

Selective microglial marker
(117)

Dusp5
Dual specificity phosphatase

5
Mitogen-activated protein kinase phosphatase

Inhibits production of TNF-a and IL-6 by inactivating
ERK 1/2 pathway (61, 62)

Mixipl
(ChREBP)

Carbohydrate-responsive
element binding protein

Transcription factor involved in regulation
and maintenance of macrophages redox

status
Prevents macrophage inflammatory responses

(63)

Dvl1
Dishevelled Segment
Polarity Protein 1

Cytoplasmic phosphoprotein
Participates in the Wnt/b-catenin signaling pathway

inducing tolerogenic DC (64, 65)

Gabbr1
Gamma-Aminobutyric Acid
Type B Receptor Subunit 1

Metabotropic GABAB inhibitory G-coupled
receptor

Inhibits LPS-induced IL-6 and IL-12p40 expression in
microglia

(66, 67)

Ifn-y Interferon-y Cytokine Pro- and anti-inflammatory role (19)

Down Name Activity Role Ref

Cd38 CD38
Transmembrane enzyme that synthesizes and

hydrolyzes cADP-ribose

Associated to M1 macrophages activity inducing
activation of iNOS and production of TNF-a, IL-6 and

IL-1b.
EAE mice lacking CD38 showed ameliorated disease. (68–71)

Cfb Complement Factor B
Component of the alternative pathway

complement activation

Associated to M1 macrophages activity.
Enhanced expression of Cfb in microglia is associated

with late stages of neurodegeneration.
Inhibition of alternative complement pathway in EAE

attenuated the chronic phase of disease.

(72)

Inhba
Inhibin Subunit Beta A

(Activin A)
Member of TGF-b- superfamily proteins

Induces M1 macrophage polarization and is considered
a canonical M1 marker.

Blocking anti-Activin A antibody reduced M1
macrophage polarization

(73, 74)

Saa3 Serum amyloid A3 Acute phase lipoprotein

Associated to M1 macrophage activity.
Considered a pro-inflammatory biomarker

involved in releasing active IL-1b by the activation of
the NLRP3 inflammasome in LPS-induced microglia (75–77)

Anpep
Alanyl Aminopeptidase,

membrane (CD13)
aminopeptidase

Involved in adhesion of monocytes to endothelial cells
and trafficking toward inflammation.

Pharmacological inhibition of ANPEP induced
amelioration of EAE. (110–111)

Slc7a2
Solute Carrier Family 7
Member 2 (CAT2)

Cationic amino acid transporter
Responsible for the cellular uptake of arginine, lysine,

and ornithine.
Controls critical aspects of macrophage activation (78)

Arg 1 Arginase 1
Catalyzes the hydrolysis of arginine to

ornithine
A canonical M2 marker

(73)
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1191838
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tichauer et al. 10.3389/fimmu.2023.1191838
transcriptional profile were analyzed by gene set enrichment

analysis (GSEA) using different reference databases. Using Gene

Ontology (GO) biological processes and Reactome databases, we

found that gene sets corresponding to RNA transcription and

nucleus-cytoplasmatic transporter activity were highly and

significantly upregulated in CX3CR1highPD-L1low MG from IFN-

g-treated EAE mice, compared to the control group (p< 0.001);
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indicating enhanced transcriptional and translational activities in

response to IFN-g stimulation (Figure 8A). The Kyoto Encyclopedia

of Genes and Genomes (KEGG) analysis showed that the top

enriched gene set induced by IFN-g were related to signaling

transduction pathways (MAPK and RIG I like receptor),

transcription factors (Basal transcription factors), and metabolism

(Methionine and Glycerolipids metabolism), which might be
B

C

A

FIGURE 8

Gene set enrichment analysis (GSEA) and over-representation analysis in CX3CR1highPD-L1low MG in response to in vivo IFN-g-treatment. GSEA
enrichment score plots show (A) up-regulation of gene sets corresponding to RNA transcription and to nucleus-cytoplasmatic transporter activity in
CX3CR1highPD-L1low MG from IFN-g-treated EAE mice compared to those cells from PBS-treated EAE mice. Each bar at the bottom of each panel
represents a member gene of the respective pathway and shows its relative location in the ranked list. (B) Normalized enrichment scores indicate
the distribution of Gene Ontology categories across a list of genes ranked by hypergeometrical score (HGS). Higher enrichment scores indicate a
shift of genes belonging to certain GO, KEGG, or Reactome categories toward either end of the ranked list, representing up or down-regulation
(positive or negative values, respectively). (C) Over-representation analysis showing significantly up- and down-regulated cellular pathways in MG
from IFN-g-treated EAE mice compared to MG from PBS-treated EAE mice. n=3 independent samples per group.
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related to a change in the activation pattern, oxidative status and

lipid-related metabolism associated with a decreased inflammatory

profile. Instead, downregulated enriched gene sets in CX3CR1highPD-

L1low MG from IFN-g-treated EAE mice were associated with

oxidative metabolism (pyruvate metabolism), lipid metabolism,

nitric oxide induction (peroxisome), and G-protein coupled

receptor-associated to a neuroantigen response (neuroactive ligand-

receptor interaction) (Figure 8B). Remarkably, over-representation

analysis using the Reactome database showed that IFN-g significantly
induced an anti-inflammatory profile in EAE MG. Regarding

immune cell function, genes in the TRAF3-dependent IRF

activation pathway and Interleukin-10 signaling pathway were

upregulated, while neutrophil degranulation, alternative

complement activation, and activation of C3 and C5 pathways

were down-regulated in CX3CR1highPD-L1low MG from IFN-g-
treated EAE mice (Figure 8C). Taken together, these results

confirm that IFN-g is a key inducer of anti-inflammatory pathways

and suppressor of inflammatory mechanisms in EAE MG.

Because our results indicate the importance of IFN-g/STAT-1
axis in the induction of CX3CR1highPD-L1low MG in EAE, STAT-1

target genes were analyzed in our RNAseq database using the

Harmonizome database (p< 0.05) (79). The analysis revealed that

8 genes (Cfb, Dusp5, Anxa4, Neurl1b, C3, Naca, Anxa11, Slc15a2)

were regulated by STAT-1. Using more stringent criteria (p< 0.01),

Cfb and Dusp5 were functionally associated with STAT-1.
3.6 IFN-g establishes tight connections
with clusters of down-regulated
inflammatory genes and with upregulated
anti-inflammatory genes

In order to search for molecular connections among genes

regulated by IFN-g-treatment, a molecular network of protein-

protein interactions has been constructed based on the known

interactions between the gene products of the 25 up- and 22 down-

regulated genes by IFN-g using the STRING database. Some regulated

genes could not be considered because no interacting proteins were

found in the STRING database. This resulted in 31 regulated gene

products (primary nodes), 13 up-regulated, and 18 down-regulated

by IFN-g-treatment, with various numbers – up to 100 – of

interacting proteins (secondary nodes) with each primary node. All

secondary nodes were then searched for their occurrence in columns

of at least two regulated gene products (Figure 9A). Inserting edges

(connections) of all primary nodes with secondary nodes identified in

their respective columns gave rise to the molecular network displayed

in Figure 9. As expected, Ifn-g interacted with secondary nodes

associated with inflammation, such as TNF-a, IL-6, IL-4, TGF-b1,
or IL-10 (Figure 9A). Interestingly, we also found that Ifn-g associated
with secondary nodes interacting with three clusters of down-

regulated inflammatory genes (cluster 1: Inhba, Cfb, and F7; cluster

2: Saa3, Cd38, and Anpep; cluster 3: acid phosphatase 5, tartrate

resistant (Acp5), c-type lectin domain family 4 member d (Clec4d), and

Arg1) and with secondary nodes interacting with up-regulated genes

associated with anti-inflammatory roles (Dusp5, Mlxipl, and Gabbr1)

(Figures 9A, B; Table 2).
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4 Discussion

The role of IFN-g in EAE and MS is still controversial, with

evidence supporting both a pathogenic and beneficial function.

Some studies have suggested that IFN-g may have dual activity in

these diseases depending on the dose, target cell, and stage of the

disease [reviewed in (19–21)]. However, the neuroprotective

mechanisms of IFN-g in EAE remain largely unclear. It is shown

here, for the first time, that IFN-g has therapeutic activity at the

peak of EAE by suppressing neuroinflammation and inducing

tolerogenic activity of MC/MG and STAT-1-dependent

homeostatic adaptation of MG.

Our results showed that IFN-g-treatment resulted in a significant

amelioration of clinical symptoms and reduction of body weight loss.

Consistently, SC from IFN-g-treated EAE mice had significantly less

infiltration of inflammatory cells and fewer demyelinated areas.

Furthermore, dampening of neuroinflammation by IFN-g was

associated with decreased frequency of CNS infiltrating CD11b+

cells and activated MC/MG and increased frequency of resting

MG. Decrease of absolute cell number of CD11b+ cells was

associated with a selective decrease in the absolute cell number of

activated CD45high cells without changes in the absolute cell number

of resting CD45low cells. This effect could reflect a decreased

infiltration of peripheral MC, a deactivation of CD45high activated

MC/MG or both processes induced by treatment with IFN-g. We

have found no significant difference in the total numbers of cells in

lymph nodes and spleen from IFN-g- and PBS-treated EAE mice.

However, splenic CD11b+ cells and neutrophils were significantly

reduced in EAE mice treated with IFN-g; whilst macrophages were

not significantly altered. Further studies will be necessary to

determine if other peripheral subsets of CD11b+ cells are

influenced by IFN-g. In addition, we have found a similar number

of cells and frequencies of CD4+ T cells, Th1, and Th17 cells in the

periphery and the CNS of IFN-g- and PBS-treated EAE mice

(unpublished data). Although IFN-g did not affect macrophages,

these results suggest that IFN-g might also have a protective role in

EAE decreasing the abundance of neutrophils and some other

peripheral subset of CD11b+ cells, which might indirectly

contribute to downregulate MG activation. However, induction of

tolerogenic and anti-inflammatory activity in primary MC/MG

cultures from the spinal cord of IFN-g-treated EAE mice by ex vivo

re-stimulation with low doses of IFN-g and MOG35-55 argues for a

direct regulatory role of IFN-g on these cells. Supporting this view,

several studies have demonstrated a direct protective role of IFN-g in
the CNS as well as on MG. Intracerebroventricular (i.c.v.)

administration of IFN-g or intrathecal delivery of an IFN-g
expression system in EAE mice resulted in suppression of clinical

symptoms (33, 34). In vitro assays have shown that IFN-g treatment

enabled MG to restore homeostasis by promoting neuroprotection,

neurogenesis and glutamate clearance (80–82). In turn, i.c.v. injection

of IFN-g-treated MG during the inductive phase of EAE significantly

delayed the onset of the disease compared to control mice (83).

Remarkably, silencing IFN-g signaling in MG significantly enhanced

EAE severity accompanied by a significant increase in the total

number mononuclear cells and in the absolute number of CD11b+,

CD11b+CD45lo, CD11b+CD45high, CD11c+, Gr-1+, CD4+, Th1, and
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Th17 cells in both spinal cords and brainstems (84). These findings

are consistent with our results showing that IFN-g treatment

significantly reduces the total number of mononuclear cells and

CD11b+ cells in spinal cord of EAE mice and demonstrate that

IFN-g signaling in MG plays an important role in controlling CNS

cell infiltration and MG activation. On the other hand, a previous

report using bone marrow chimeras showed that the protective effect

of IFN-g in EAE is mediated by an increased production of nitric

oxide (NO) at the level of both the periphery and the CNS. Peripheral

mononuclear cells were identified as cells producing NO in the

periphery whereas the authors suggested that microglia and

astrocytes could be involved in the IFN-g-driven NO production in

the CNS (85). Taken together, the evidence suggests that IFN-g can
exert protective effects both in the periphery as in the CNS.

Importantly, immunohistochemistry analysis confirmed a

significant increase in the percentage of resting microglia,
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characterized by a ramified morphology and reduced density and

cell size, in response to IFN-g. Furthermore, high expression of

TMEM119, a homeostatic marker of MG, and of MBP1 was

observed in the cerebellum from IFN-g-treated EAE mice,

supporting the notion that IFN-g induces a shift of activated MG

to a homeostatic profile. These results are in line with previous

observations showing that IFN-g plays an important role in EAE;

regulating inflammation of specific regions of the CNS (55–57, 86).

Ex vivo re-stimulation with low doses of IFN-g (1 ng/ml) and

MOG35-55 of primary MC/MG cultures obtained from IFN-g-
treated EAE mice resulted in conversion of CD4+ T cells into

Treg cells associated with higher secretion of TGF-b. Consistently,
we have found a significant increase of Treg cells in spinal cord from

IFN-g-treated EAE mice compared to that of the PBS-treated EAE

mice (unpublished data). In line with our results, low

concentrations of IFN-g induce a tolerogenic phenotype in MG
B

A

FIGURE 9

Molecular Network of differentially regulated genes by IFN-g in CX3CR1highPD-L1low MG. (A) A molecular network of protein-protein interactions
based on the known interactions between the gene products of 31 regulated genes regulated by IFN-g in an enriched subset of CX3CR1highPD-L1low

MG. Blue and green circles show down- and upregulated genes by IFN-g, respectively. Yellow circles represent secondary nodes (connector genes),
and their size represents the number of connections with regulated genes. Lines indicate the interaction of regulated genes with connector genes.
(B) An enlarged area of the molecular network showing that Ifn-g associated with connectors (yellow circles) interacting with three clusters of
down-regulated inflammatory genes (green circles) as well as with connectors interacting with upregulated genes (blue circles) associated with anti-
inflammatory roles. The table summarizes the up- and down-regulated genes by IFN-g that interact with each connector.
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from neonatal mice, characterized by the expression of intermediate

levels of MHC-II and increased secretion of IL-10, capable of

inducing Treg cells (59). Supporting our results, a recent study

showed that microglia require IFN-g-signaling to shape the Treg

cell compartment in relapsing-remitting EAE and that the absence

of microglial IFN-g-receptor results in worse disease (87). Another

study showed that the administration of the microparticle MIS416

in EAE mice induced an IFN-g-dependent expansion and

suppressive function of Treg cells (88). Additionally, a direct role

of IFN-g on the conversion of CD4+CD25- T cells to CD4+ Treg

cells has been reported in EAE (89). Taken together, these results

suggest that IFN-g exerts a tolerogenic role in EAE acting on Treg

cells either directly or indirectly through MC/MG.

The contribution of Treg cells to the mechanisms that actively

regulate the neuroinflammatory process in EAE has been

unequivocally demonstrated (90, 91). Different treatments such as

glatiramer acetate, indoleamine 2,3-dioxygenase (IDO), and IL-10

administration, suppress EAE progression promoting an increase in

Treg cells (92, 93). In contrast, other treatments such as atorvastatin

and trichostatin A suppress EAE progression in a Treg cell-

independent manner, suggesting that Treg cells may not always

be necessary for the protective effects of some treatments for EAE

(94–96). In addition, Korn et al. reported that Treg cells expand in

the periphery and accumulate in the CNS but are unable to suppress

the proliferation of MOG35-55-specific T effector cells from the CNS.

Intrinsic resistance of CNS-derived T effector cells to suppression

was associated with high production of IL-6 and TNF (97, 98).

However, a subsequent report combining targeted depletion of Treg

cells with intravital two-photon microscopy concluded that Treg

cells mediate recovery from EAE by controlling cytokine

production, proliferation, and motility of effector T cells in the

CNS (99). Therefore, the activity of Treg cells can be understood as

a dynamic process that would depend on the balance between Treg

cells and effector T cells as well as the local inflammatory cytokine

milieu (90). Additionally, crosstalk between Treg cells and local

APC might be critical in modulating effector T cell pathogenicity

(100). Our results showing a higher production of TGF-b and

conversion of Treg cells in IFN-g-treated primary MC/MG cultures

obtained from IFN-g-treated EAE mice are consistent with that

model of regulation.

We found that MC/MG from EAE mice treated with IFN-g had
a higher expression of CX3CR1, in support of a recent study

showing high expression of CX3CR1 in MG at the peak of EAE

(10). CX3CR1 is highly expressed in MG (101, 102) as an alert

receptor “sensing” the ligand CX3CL1 released by dying neurons.

Importantly, lack of this receptor exacerbates inflammation and

increases the expression of MHC class II molecules in microglial

cells (12–14). In addition, we found that IFN-g induced a higher

frequency of MG with high expression of CX3CR1 and low

expression of PD-L1, compared to MG obtained from PBS-

treated EAE mice. Although PD-L1 is involved in maintaining

immune tolerance and homeostasis through the regulation of T cell

activation and differentiation in MS and EAE (103), low expression

or absence of PD-L1 has also been related to a tolerogenic effect of

APC. Consistent with our findings, low doses of IFN-g were

required to obtain optimal activation of type II macrophages, a
Frontiers in Immunology 17
subset of macrophages that have been shown to induce a Th2-type

anti-inflammatory response after initial activation in an

inflammatory environment. Interestingly, IFN-g-primed type II-

macrophages are characterized by an enhanced production of IL-10,

reduced expression of IL-12, and low expression of PD-L1, CD40,

and CD80. Furthermore, mice receiving IFN-g-primed type II-

activated macrophages were protected from EAE whereas those

receiving classically activated macrophages developed EAE (104). In

another study, TNF-treated semi-mature DC deficient in PD-L1

showed a stronger tolerogenic capacity in EAE protection compared

to wild-type DC. PD-L1-/–DC-treated EAE mice presented lower

numbers of MOG-specific IFN-g and IL-17 producing cells in the

CNS whereas an increased production of the protective cytokines

IL-10, IL-13, and IL-4, and reduced levels of IFN-g and IL-17 were

detected in the periphery. Therefore, absence of PD-L1 expression

on semi-mature DC enhanced their tolerogenic activity in EAE

mice (105).

Bulk RNAseq analysis and recent single-cell RNAseq studies of

MG have revealed that unique MG subpopulations, characterized

by a distinct signature, emerge during development and

homeostasis in the healthy brain as well as during demyelination

and remye l ina t ion in models of demyel ina t ing and

neurodegenerative diseases, including EAE and MS (106–108).

These results confirm the ability of MG to shift into different

functional states in response to a variety of environmental

challenges. Accordingly, our results uncover a new mechanism

whereby IFN-g enables a subset of MG to adapt the

transcriptional program into a tolerogenic and anti-inflammatory

profile at the peak of EAE. Transcriptional profile analysis of

CX3CR1highPD-L1low MG isolated from IFN-g- and PBS-treated

EAE mice revealed that genes with a pro-inflammatory role in MC,

MG and EAE such as Cd38 (68–71, 109), Cfb (72, 108), Saa3 (75,

76), Inhba, Anpep (110, 111), and Apoc2 (112) were down-regulated

by IFN-g. From these genes, Cd38, Cfb, Saa3, and Inhba are

considered canonical M1 pro-inflammatory genes in macrophages

(73, 74). Transcriptional analysis of MG have showed that genes

encoding for apoliprotein C1 and C2 (Apoc1 and Apoc2) were up-

regulated during the process of demyelination in the mouse

cuprizone model and brain samples from MS patients (107, 112).

Interestingly, IFN-g treatment induced a down-regulation of Apoc2

in CX3CR1highPD-L1low MG. Taken together, these results

highlight lipid and lipoprotein metabolism as a key mechanism in

the modulation of microglial inflammatory status and as a

modifiable target for the treatment of MS (113). A significantly

lower frequency and absolute number of activated CX3CR1highPD-

L1low MG expressing MHC-II molecules was found in IFN-g-
treated EAE mice but not in MG from PBS-treated EAE mice. In

addition, a decreased expression of MHC class II antigen

presentation gene set was observed in CX3CR1highPD-L1low MG

from IFN-g-treated EAE mice compared with CX3CR1highPD-L1low

MG from control mice; although this difference did not reach

statistical significance. Also, Cfb, a component of the alternative

pathway of complement activation, was downregulated in

CX3CR1highPD-L1low MG from IFN-g-treated EAE mice.

Consistent with our results, single-cell RNAseq analysis revealed

decreased gene expression of the MHC-II antigen presentation
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pathway both in peripheral APC (dendritic cells, macrophages and

B cells) as in microglia in EAE mice treated at the peak of disease

with an antigen-specific dual microparticle system (Ag-dMP). In

addition, a set of complement genes were downregulated in the

microglia from Ag-dMP-treated EAE mice (114). Consequently,

EAE mice treated with a monoclonal antibody directed against Cfb

significantly attenuated the chronic phase of disease, resulting in

reduced cellular infiltration, inflammation and demyelination (72).

In line with these results, upregulation in the expression of

complement components, including Cfb and MHC-II pathway

was determined by single-cell RNAseq analysis in MG isolated

during the later stages of neurodegeneration in an Alzheimer’s

disease-like animal model (108). Arginase 1 (Arg-1) is an enzyme

dominantly expressed in M2 macrophages that hydrolyzes arginine

to ornithine and urea, limiting bioavailability of intracellular

arginine to be metabolized to NO by the enzyme nitric oxide

synthase (NOS), resulting in dampening of inflammation (115,

116). Surprisingly, we found that Arg1, encoding arginase 1, was

down-regulated in CX3CR1highPD-L1low MG by IFN-g treatment.

However, Nos2, encoding inducible NOS, was slightly decreased. In

addition, Slc7a2, which encodes inducible cationic amino acid

transporter, and is involved in the uptake of arginine (78), was

significantly down-regulated. Consequently, decreased availability

of arginine could be expected in response to IFN-g treatment.

Therefore, although Arg1 is down-regulated in CX3CR1highPD-

L1low MG, the net result would be an anti-inflammatory effect due

to a decrease in the uptake of arginine and decreased Nos2

expression. This hypothesis is supported by the decreased

secretion of nitrites induced by LPS in primary MC/MG cell

cultures obtained from IFN-g-treated EAE mice (Figure 5D). On

the other hand, Atp8a2 gene, a selective microglial marker (117),

and other genes related to tolerogenic and anti-inflammatory

processes in MG and EAE such as DVL-1 (64, 65) and Dusp5

(61, 62) were up-regulated by IFN-g in CX3CR1highPD-L1low MG.

Importantly, raising the Log2 Fold change to 1.5, a set of key genes

(Saa3, Inhba, Apoc2, Atp8a2, and DVL-1) maintains differential

expression in response to IFN-g treatment.

Our results show that IFN-g is unable to promote amelioration

of EAE symptoms and induction of CX3CR1highPD-L1low MG in

the absence of STAT-1, indicating that STAT-1 is critical in the

protective effects mediated by IFN-g in EAE. In line with these

results, we found that from all up- and down-regulated genes in

CX3CR1highPD-L1low MG by IFN-g, 8 of them (Cfb, Dusp5, Anxa4,

Neurl1b, C3, Naca, Anxa11, Slc15a2) are also regulated by STAT-1,

suggesting that the IFN-g/STAT-1 signaling axis would be involved

in suppressing neuroinflammation in EAE regulating the expression

of a set of genes involved in microglial activation. Supporting this

potential mechanism, previous studies have reported that the IFN-

g/STAT-1 axis regulates the expression of indoleamine 2,3-

dioxygenase (IDO), a tryptophan catabolizing enzyme involved in

immune tolerance and suppression of EAE (118, 119), in microglia

(120). Similarly, the IFN-g/STAT-1 axis also regulates the

tolerogenic activity of IDO in dendritic cells in a mouse model of

prediabetes (121).

To obtain more detailed insights into the molecular interactions

between the differentially expressed genes in MG in response to
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IFN-g, we created a molecular network of protein-protein

interactions based on the known interactions between the

products of the genes targeted by IFN-g. In this analysis, the

number of interacting genes depended on the existing knowledge

available from the STRING database and does not necessarily reflect

the actual number of biological interactions. Therefore, this model

is biased as some genes have been widely studied by many

investigators, others less so. Despite this, the model reveals

molecules physiologically interacting with those identified by

expression profiling and delivers a more complete understanding

of their connectedness. These analyses highlight the master role that

IFN-g plays in regulating microglial activity and provide new

insights into the cellular and molecular mechanisms involved in

the therapeutic activity of IFN-g in EAE.
5 Conclusions

Our findings show that IFN-g exerts therapeutic activity in EAE

by regulating myeloid cell infiltration and inducing attenuation of

neuroinflammation and a shift from activated MG to resting MG. In

addition, IFN-g promotes the induction of homeostatic

CX3CR1highPD-L1low MG, characterized by a homeostatic and

anti-inflammatory transcriptional signature. The amelioration of

clinical symptoms and the induction of CX3CR1highPD-L1low MG

were dependent on STAT-1. Also, our analyses reveal that IFN-g
plays a master role in regulating a network of genes involved in

microglial activation. Taken together, our findings uncover a novel

cellular and molecular mechanism whereby IFN-g exerts

therapeutic activity in EAE and contribute to clarify the complex

role that IFN-g plays in EAE and MS.
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