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Gene-engineered immune cell therapies have partially transformed cancer

treatment, as exemplified by the use of chimeric antigen receptor (CAR)-T

cells in certain hematologic malignancies. However, there are several

limitations that need to be addressed to target more cancer types. Natural

killer (NK) cells are a type of innate immune cells that represent a unique

biology in cancer immune surveillance. In particular, NK cells obtained from

heathy donors can serve as a source for genetically engineered immune cell

therapies. Therefore, NK-based therapies, including NK cells, CAR-NK cells, and

antibodies that induce antibody-dependent cellular cytotoxicity of NK cells, have

emerged. With recent advances in genetic engineering and cell biology

techniques, NK cell-based therapies have become promising approaches for a

wide range of cancers, viral infections, and senescence. This review provides a

brief overview of NK cell characteristics and summarizes diseases that could

benefit from NK-based therapies. In addition, we discuss recent preclinical and

clinical investigations on the use of adoptive NK cell transfer and agents that can

modulate NK cell activity.

KEYWORDS

natural killer cell, chimeric antigen receptor, immunotherapy, cancer, aging,
immune surveillance
Introduction

Natural killer (NK) cells are innate immune cells that account for 5–10% of peripheral

blood (PB) lymphocytes (1). NK cells are classified as cytotoxic lymphocytes that play a

crucial role in the recognition and elimination of malignant or infected cells. The

expression of major histocompatibility complex class I (MHC-I) molecules in cells is

often suppressed by neoplastic transformation and viral infection, making these cells

“missing self” targets for NK cells. This mechanism allows NK cells to overcome suppressed

immunosurveillance by CD8+ T cells, which require antigen presentation on MHC-I
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molecules (2). Unlike T cells, NK cells can be primed with

interleukin-2 (IL-2) or IL-15 without licensing. Mature NK cells

express various receptors that modulate their activity against target

cells. These unique characteristics make NK cells an attractive

option for adoptive immune cell therapy. Allogeneic transfer of

NK cells derived from healthy donors or the use of chimeric antigen

receptor (CAR)-NK cells has shown promising results for the

treatment of various types of cancers. In addition, there is

growing interest in exploring the use of NK cell therapies for

other indications, such as viral infections or aging. Several

therapeutic strategies have been developed to enhance NK cell

function. This review provides an overview of the NK cell

mechanisms and recent advancements in NK cell therapy. The

first part describes these pathways during the developmental

process and the intracellular signaling pathways. The second

section discusses the application of NK cell therapies to various

diseases, followed by an introduction to the genetic engineering of

NK cells in the third section. Finally, the fourth section covers

approaches that can stimulate NK cells, which may be combined

with genetic engineering for NK cell therapies in the future.
NK cell biology

NK cell development

NK cells originate from common lymphoid progenitors (CLPs)

that are derived from hematopoietic stem cells (HSCs) in the bone

marrow (BM) (3). Unlike T and B cells, which generate antigen

receptors via gene rearrangements, NK cells express a broad range

of germline-encoding receptors (4). The development of NK cells is

facilitated by cytokine IL-15, which binds to the IL-15 receptor

subunit alpha, CD122 (IL-2/IL-15 receptor subunit beta), and the

common gamma chain on NK progenitors (NKPs), resulting in the

commitment of these cells to the NK cell lineage (5). Although IL-2

promotes NK cell proliferation during ex vivo culture, it is not

essential for the development of NK cells in mice (6). NKPs

differentiate into immature NK cells (iNKs), which are identified

by the expression of NK1.1 marker in mice and the NKp46

activation receptor in both mice and humans (7). In humans,

CD56bright NK cells are abundant in secondary lymphoid tissues

and mature into CD56dim NK cells in PB (8). Usually, CD56dim NK

cells are more cytotoxic and express the CD16 (Fc gamma RIIIA)

receptor, while CD56bright NK cells produce more cytokines and

have lower levels of CD16 expression (9). CD56dim NK cells are

generally considered as a more mature form of NK cells (mNK);

however, the precise mechanism governing the differentiation of

these two subsets is not yet well understood. NK cells can be

classified into group 1 innate lymphoid cells (ILCs), as they

produce type 1 cytokines, interferon gamma (IFN-g) and tumor

necrosis factor (TNF) (10–13). NK cells also have tissue-specific

subsets with distinct functions that potentially modulate immune

responses in different contexts (14–16).

NK cell development is regulated by several transcription

factors including E4BP4, TBX21, EOMES, GATA3, and ID2 (17).

For instance, mice lacking E4bp4 exhibit decreased levels of NK1.1+
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NKPs and impaired NK cell-mediated cytotoxicity (18). In mice,

CD27+ NK cells mature into CD27-CD11bhigh NK cells. A

deficiency of Aiolos (Ikzf3), a member of the Ikaros family of

zinc-finger transcription factors, was found to prevent the

maturation of CD27+ to CD27- NK cells, while proliferation of

NK1.1+CD122+ iNKs was enhanced in Aiolos-deficient cells

following IL-15 stimulation (19). Likewise, researchers have

investigated the gene network involved in NK cell development

and the regulation of NK cell function. Detailed markers and the

distribution of NK cells during development are shown in Figure 1.
NK cell receptors and functions

NK cells eliminate target cells that appear to be missing self or

stressed, such as those infected with viruses, cancer, or those

undergoing cellular senescence. NK cell killing can be achieved

through the activation of receptors such as NKG2D and natural

cytotoxic receptors (NCRs) NKp30, NKp44, and NKp46. Ligands

for these receptors include major histocompatibility complex class I

(MHC-I) chain-related polypeptide A (MICA) and MICB proteins,

a family of six cytomegaloviral unique long 16 (UL16)-binding

proteins (ULBP 1-6) (20–22), or murine retinoic acid early

transcript 1 (RAET1), histocompatibility H60 (H60), and murine

UL16-binding protein-like transcript 1 (MULT1), and antigens

from pathogens (23–25). DNAX accessary molecule 1 (DNAM1)

and signaling lymphocytic activation molecule (SLAM) family

receptors, including 2B4, SLAMF7, and NKp80, act as co-

receptors to enhance NK cell activity (26). Upon activation, NK

cells use an immunoreceptor tyrosine-based activation motif

(ITAM) or tyrosine-based signaling motif (YINM) to activate

receptors to stimulate protein kinases such as SYK and ZAP70,

resulting in the secretion of perforins and granzymes (27). This

process leads to apoptosis of the target cells. Furthermore, CD56dim

NK cells in PB can mediate antibody-dependent cellular

cytotoxicity (ADCC) via the Fc gamma receptor CD16.

The killer cell immunoglobulin-like receptor (KIR) family and

CD94/NKG2A heterodimer are inhibitory receptors on NK cells that

recognize MHC Class I molecules (28). Humans have 14 KIR genes

specific to each individual (29). KIRs are composed of two or three

immunoglobulin-like (Ig-like) domains: KIR2D and KIR3D. KIRs

have either activating or inhibitory functions. Generally, KIRs with a

short cytoplasmic tail are activated, while those with long cytoplasmic

tails are inhibitory. Activating KIRs, such as KIR2DS1, KIR2DS2,

KIR2DS3, KIR2DS4, KIR2DS5, and KIR3DS1 associate with the

transmembrane adaptor DAP12 to transduce activation signals in

NK cells. Inhibitory KIRs, such as KIR2DL1, KIR2DL2, KIR2DL3,

KIR2DL5, KIR3DL1, KIR3DL2, and KIR3DL3 have an

immunoreceptor tyrosine-based inhibitory motif (ITIM) (30). PB

NK cells have a diverse repertoire owing to the random expression of

KIR genes in each NK cell, resulting in various NK cell clones with

distinct receptor expression patterns. Consequently, a subset of NK

cell clones may recognize a unique ligand expressed by a particular

tumor cell (31, 32). Inhibitory receptors on NK cells include KLRG1,

SIGLEC7, SIGLEC9, leukocyte immunoglobulin-like receptor

subfamily B member 1 (LILRB1), CD161, TIGIT, LAG3, TIM3,
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and PD-1, which recruit protein tyrosine phosphatases, such as

SHIP1 (also known as PTPN6) and SHP2 (also known as

PTPN11), to eliminate tyrosine phosphorylation (27).

NK cells produce chemokines and express various receptors.

Resting CD56bright NK cells preferentially express chemokine

receptors related to BM or lymph node residency, such as CCR2,

CCR7, CXCR3, and CXCR4. In contrast, CD56dim NK cells

primarily express CX3CR1, ChemR23 or CXCR1 (33, 34).

CXCR1 is a cognate receptor of CXCL8, a senescence-associated

secretory phenotype (SASP) factor that can also be released from

NK cells (35, 36).
Signal transduction pathways in
NK cell activation

Upon recognition of NK cell activation receptors, the

phosphorylation of the adaptor proteins DAP10 and DAP12

initiates downstream signal transduction (37, 38). The activation

of phosphoinositide 3-kinase (PI3K) plays a crucial role in NK cells

by recruiting AKT (also known as protein kinase B), which

promotes cell survival and metabolism (39, 40). The MAPK

pathway is also activated, leading to sequential phosphorylation

events involving extracellular signal-regulated kinase (ERK), c-Jun
Frontiers in Immunology 03
N-terminal kinase (JNK), and p38, ultimately resulting in gene

transcription and cytokine secretion (41–43). Phospholipase Cg2
(PLCg2) generates inositol 1,4,5-triphosphate (IP3) and

diacylglycerol (DAG), which trigger calcium ion release from the

endoplasmic reticulum and activate protein kinase C (PKC).

Increased intracellular calcium levels stimulate the Ca2

+/calmodulin (CaM)-dependent phosphatase calcineurin, which

dephosphorylates nuclear factor of activated T cells (NFAT).

Dephosphorylated NFAT translocates into the nucleus,

promoting the transcription of genes involved in NK cell

cytotoxicity and cytokine production, as well as inducing NK cell

development by inducing EOMES and TBX21 upregulation (44).

The mechanistic/mammalian target of rapamycin (mTOR)

signaling pathway is upregulated by cytokines or growth factors,

and inhibition of mTOR suppresses NK cell activity (45, 46). In the

immune suppressive tumor microenvironment, TGF-b1 has been

found to inhibit IL-15-promoted NK cell activation via the mTOR

pathway (47). Upon activation, NK cells release cytotoxic granules

containing perforin and granzymes. Granzymes induce target cell

apoptosis and perforin forms pores in the target cell membrane.

Downstream signaling pathways of NK cell receptors activate

transcription factors, such as nuclear factor-kappa B (NF-kB) (48)
and STAT4, promoting IFN-g gene transcription. IFN-g is secreted
by activated NK cells in response to viral infections or cell
FIGURE 1

Developmental process of NK cells. NK cells originates from HSCs and CLPs in the bone marrow. The immature NK cells express CD122 and NCRs,
such as NKp46, NKp30, and NKp44. Chemokine receptors, including CXCR3, CX3CR1, and S1P5R, are involved in the egression of NK cells. In the
blood, two types of NK cells are majorly found, CD56bright and CD56dim, with CD56dim NK cells expressing CD16. Long-lived NK cells can be
distinguished by increased expression of CD57. Tissue-resident NK cells express CD49a, CD103, CD69, and CD56. The blocked arrows with dotted
lines suggest that further research is required to fully understand these processes. HSC, hematopoietic stem cell; LMPP, lympho-myeloid primed
progenitor; CLP, common lymphoid progenitor; NKP, NK progenitor; iNK, immature NK; mNK, mature NK; NCR, NK cell receptor; KIR, killer cell
immunoglobulin-like receptor; VLA-4, very late antigen-4.
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transformation. The signaling pathways involved in NK cell

activation are summarized in Figure 2.
NK cell characteristics in the elderly

Immunosenescence, which typically involves a decrease in the

frequency of naïve T and B cells, and an increase in the number of

effector/terminally differentiated memory cells, has been examined

and discussed in many studies. Although the number of NK cells

tends to remain stable or increase with age, their function seems to

be impaired (49). Although IL-2 stimulates NK cell responsiveness,

cells from older donors are less activated than those from younger

donors (50). Notably, NK cell dysfunction has been linked to the

development of diseases, particularly an elevated risk of cancer with

age (51–53).

The age-related decline in NK cell activity can be attributed to

several intrinsic and extrinsic factors. Although changes in perforin

levels and KIR diversity have been investigated, other mechanisms

may be involved (54, 55). Human NK cells exhibit telomere

shortening with age in both the CD56bright and CD56dim

populations (56). Extrinsically, research has focused on changes

in endocrine factors with age, as some appear to be associated with

NK cell function (57–59). For example, glucocorticoids, which

inhibit NK cell function by reducing perforin and granzyme B

levels (60, 61), are upregulated in humans (62). Additionally, the
Frontiers in Immunology 04
plasma level of TGF-b1 increases as senescent fibroblasts secrete

more of it (63).

Recently, the coronavirus disease 2019 (COVID-19) pandemic

has highlighted advanced age as a major risk factor for mortality,

with 95% of deaths occurring individuals over 50 years of age (64).

This suggests that immunosenescence in the elderly population may

partially play a role in determining the severity of viral infections

(65, 66). Several studies have used clinical samples to investigate

these mechanisms. For instance, it has been shown that type I IFN

signaling is increased in mild cases of COVID-19, while impaired in

severe cases (67). Single-cell RNA sequencing (scRNA seq) revealed

a decrease in the expression of the human leukocyte antigen-DR

isotype (HLA-DR) on monocytes in patients with moderate or mild

COVID-19 compared to healthy controls (68). Notably, reduced

numbers and cytolytic activity of NK cells have been associated with

severe COVID-19 (69). In a study comparing severely young and

old immune cells, it was found that the functional exhaustion of NK

cells was more pronounced in older individuals (70).

The level of CD57 on NK cells is a marker commonly used to

measure the number of long-lived NK cells in the blood, with higher

levels typically observed in older individuals (Figure 1). These

populations were also considered less cytotoxic. However, CD57

expression levels can vary depending on infection, chronic diseases,

and age. Furthermore, NKG2C+CD57+ NK cells have been

suggested to have strong and rapid antiviral and antitumor

effects, indicating an adaptive immune response (71–73). Killer
FIGURE 2

A schematic overview of signal transduction pathway for NK cell activation. Upon recognition of ligands, activation receptors on NK cell surface
initiate intracellular signaling via adaptor proteins DAP10 and DAP12. These signaling pathways stimulate the transcription of genes involved in
cytokines and cytotoxicity, which are key functions of NK cell surveillance. DAP12, DNAX-activating protein of 12 kDa; DAP10, DNAX-activating
protein 10; SAP, slam-associated protein; PI3K, phosphoinositide 3-kinase; Grb2, growth factor receptor-bound protein 2; PAK, p21-activated kinase;
JNK, c-Jun N-terminal kinase; SLP-76, Src homology 2 domain-containing leukocyte protein of 76 kDa; PIP2, phosphatidylinositol 4,5-bisphosphate;
PIP3, phosphatidylinositol 3,4,5-triphosphate; PLCg, phospholipase C g; IP3, inositol 1,4,5-triphosphate; CaM, calmodulin; CaN, calcineurin; NFAT,
nuclear factor of activated T-cells; DAG, diacylglycerol; PKC, protein kinase C; MSK1, mitogen and stress activated protein kinase-1; IKK, IkB kinase;
IkB, inhibitor of NFkB; NFkB, nuclear factor kappa B; PDK, phosphoinositide dependent kinase; Akt, protein kinase B; TSC, tuberous sclerosis
complex; RHEB, ras homologue enriched in brain; mTORC1, mammalian target of rapamycin complex 1; 4E-BP1, eIF4E-binding protein 1; eIF-4E,
eukaryotic initiation factor 4E; S6K1, ribosomal protein S6 kinase beta-1.
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cell lectin-like receptor subfamily G member 1 (KLRG1) is an

inhibitory receptor found in terminally differentiated effector

lymphocytes, including memory CD8+ T and NK cells. It has

been shown that an increase of KLRG1+CD57+ NK cells was

induced by COVID-19 infection, particularly in older individuals,

indicating NK cell exhaustion (70). Therefore, the significance of

CD57+ NK cells should be interpreted in the context of disease and

their function as long-lived and/or memory NK cell populations.
Targetable diseases by
NK cell therapies

Researchers have found that HLA haplotype-mismatched grafts

with KIR ligand incompatibility can greatly reduce relapse in post-

transplant acute myeloid leukemia (AML) (74). Moreover, T cell-

depleted allogeneic hematopoietic stem cell transplantation

(alloHSCT) is a beneficial therapeutic approach for cancer (75).

Adoptive transfer of NK cells is a safer option than CAR-T cell

therapy for cytokine release syndrome (CRS) or neurotoxicity (76,

77). This can also reduce costs. This section focuses on diseases that

have been targeted by adoptive NK cell therapies, including CAR-

NK cells, and potential target diseases. The list of CAR-NK cells that

are under development for the treatment of diseases, such as solid

tumors and hematologic malignancies, is displayed in Table 1.
Hematologic malignancies

Hematologic malignancies, including AML, chronic

lymphocytic leukemia (CLL), lymphoma, and multiple myeloma

(MM), have become targetable diseases by adoptive immune cell

therapies (86, 87). These therapies are effective because the

administered immune cells can efficiently travel to tumor site in

hematopoietic organs (88). In addition, hematopoietic tumor cells

often express relatively homogeneous antigens such as CD19 in

diffuse large B-cell lymphoma (DLBCL) and B-cell maturation

antigen (BCMA) in MM, making it easier to apply CAR or

monoclonal antibody (mAb) therapies. Since its approval by the

US Food and Drug Administration (FDA) in 2017, six CAR-T cell

therapies have been developed. Four of these target CD19, including

the first CAR-T cell therapy and the remaining target, BCMA (89,

90). They are used to treat refractory or relapsed B cell ALL, B cell

non-Hodgkin’s lymphoma, follicular lymphoma, mantle cell

lymphoma, and MM (91). Notably, a phase I/II clinical trial of

anti-CD19 CAR-transduced cord blood-derived NK cells showed

promising results, with a 73% response rate and long-term survival

of infused CAR-NK cells without CRS toxicity (92). CAR-NK cells

have the potential to benefit from the intrinsic characteristics of NK

cell-activating receptors, which may maintain therapeutic efficacy

even after the CAR is lost (93). As a result, CAR-NK cells are being

developed for hematological malignancies such as T-cell ALL, and

preclinical studies have shown the effectiveness of CAR-NK cells

specific for antigens such as CD5 and CD7 (94, 95).
Frontiers in Immunology 05
Solid tumors

Primary solid tumors
Various studies have shown that a higher number of NK cells in

the PB is associated with better outcomes in solid tumors such as

non-small cell lung cancer (NSCLC) (96), melanoma (97), and

colorectal cancers (98). Similarly, increased tumor-infiltrating NK

cells are related to better prognosis in solid tumors, such as

hepatocellular carcinoma (HCC) (99), prostate cancer (100), and

renal cell carcinoma (101). However, the function of NK cells is

often impaired by the tumor microenvironment, which leads to a

significant decrease in both the frequency and function of NK cells

in solid tumors (102–105). It was demonstrated that NK cells

exhibit lower levels of cytokines like IFN-g and TNFa in gastric

cancer (106). Studies have also found that NK cells had higher

expression of inhibitory receptors while showing decreased levels of

activating receptors in breast cancer or pancreatic cancer samples

(107). Furthermore, the presence of the soluble form of B7-H6, a

ligand of NKp30, has been associated with reduced NKp30

expression in NK cells, which may contribute to their suppression

(108, 109). Markers of exhaustion such as PD-1 (110, 111), TIM3

(112), and TIGIT (113), which have been studied in T cells, are also

expressed in NK cells from cancer patients, indicating an exhaustive

phenotype in NK cells similar to that in T cells (113).

Among peripheral tissues, the lungs are rich in NK cells,

comprising 10–20% of lung lymphocytes (114, 115). Lung cancer

is a significant form of cancer, as it is one of the most frequently

diagnosed cancers and remains a leading cause of cancer-related

deaths (116, 117). Therefore, the anti-tumor effects of NK cells

against lung cancer have been suggested (118, 119). As a therapeutic

approach for treating NSCLC, allogeneic NK cells obtained from

healthy donors were combined with pembrolizumab, a PD-1

inhibitor. The results of this study suggest that the addition of

allogeneic NK cells enhances the anti-tumor immune function of

pembrolizumab. The study showed a reduction in PD-1 levels in PB

NK cells, an increase in IFN-g, an increased proportion of NK cells,

and a significant decrease in circulating tumor cells (CTCs) (120).

The phenotype of NK cells in the lungs is mostly CD56dimCD16+,

which is similar to that in PB but distinct from those in other organs,

such as the liver and secondary lymphoid organs (121). Although PB-

derived CD56dimCD16+ NK cells demonstrate greater differentiation

and target cell-killing effects, lung NK cells exhibit weaker responses to

target cells (122). In contrast, CD56bright NK cells in the lung co-express

CD49a, CD103, and CD69, indicating they are tissue-resident NK cells

(123, 124). Furthermore, NKG2C+ adaptive-like NK cells have been

detected in both the blood and lungs, with a subset of

CD49a+KIR+NKG2C+CD56brightCD16- lung NK cells demonstrating

heightened responsiveness to target cells (125). Therefore, these NK cell

subsets may be potential candidates for novel anti-tumor NK

cell therapies.

The liver receives a substantial amount of blood flow and

encounters numerous foreign antigens. It harbors a diverse range

of immune cells, with NK cells comprising approximately half of all

hepatic lymphocytes (126). HCC is a highly prevalent malignancy

worldwide and the second leading cause of cancer-related mortality
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TABLE 1 A list of current strategies of CAR-NK cell therapy, in combination with other treatments.

Genetic
Target Cell type Combination

(Strategy) Target Disease Clinical Trial
Phase Trial Status Clinical Trial

register
Ref

PSMA NK Chemotherapy Prostate cancer Phase 1 Recruiting NCT03692663

NKG2D-ACE NK N/A COVID-19 Phase 1,2 Unknown NCT04324996

ROBO1 NK N/A Malignant tumor Phase 1,2 Unknown NCT03931720

ROBO1 NK-92 N/A Solid tumor Phase 1,2 Unknown NCT03940820

ROBO1 NK-92 N/A Pancreatic cancer Phase 1,2 Unknown NCT03941457 (78)

HER2 NK-92 N/A Glioblastoma Phase 2 Recruiting NCT03383978 (79)

MUC1 NK-92 N/A Lung cancer
Pancreatic cancer
Gastric cancer
Breast Cancer

Colorectal cancer
Glioma

Phase 1,2 Unknown NCT02839954

CCCR
(PD-1, NKG2D,

41BB)

NK-92 N/A Lung cancer Phase 1 Enrolling by
invitation

NCT03656705 (80)

PD-L1 haNK N/A Advanced Solid tumor
Metastatic tumor

Phase 1 Active, Not
recruiting

NCT04050709

PD-L1 haNK Chemotherapy Lung cancer
Colorectal cancer
Gastric cancer
Cervical cancer

Carcinoma model
Melanoma

Phase 2 Active, Not
recruiting

NCT03228667

PD-L1 haNK Chemotherapy Gastroesophageal junction cancer
Advanced head and neck
squamous cell carcinoma

Phase 2 Recruiting NCT04847466

PD-L1 haNK Chemotherapy
Radiation therapy

Pancreatic cancer Phase 2 Recruiting NCT04390399

Mesothelin PB-NK N/A Ovarian cancer Phase 1 Unknown NCT03692637

NKG2D PB-NK N/A Adult solid tumor Phase 1 Unknown NCT03415100 (81)

N/A iPSC-NK
(FT500)

Chemotherapy Solid tumor
Lymphoma

Phase 1 Completed NCT03841110

hnCD16 iPSC-NK
(FT516)

Chemotherapy Adult solid tumor Phase 1 Completed NCT04551885

N/A INTK N/A B-cell leukemia
B-cell lymphoma

Phase 1,2 Unknown NCT04747093

CD19 NK N/A B-cell lymphoma Phase 1 Unknown NCT02944162

CD19 NK N/A Non-Hodgkin lymphoma Phase 1 Active, Not yet
recruiting

NCT04639739

CD22 NK N/A B-cell lymphoma Phase 1 Unknown NCT03692767

CD19/CD22 NK N/A B-cell lymphoma Phase 1 Unknown NCT03824964

CD33/CLL1 NK N/A Acute myeloid leukemia Phase 1 Recruiting NCT05215015

CD33 NK Chemotherapy Acute myeloid leukemia Phase 1 Recruiting NCT05008575

CD19 NK N/A Lymphocytic leukemia
Non-Hodgkin lymphoma

Phase 1 Recruiting NCT05410041

CD7 NK-92 N/A Leukemia
Lymphoma

Phase 1,2 Unknown NCT02742727

(Continued)
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TABLE 1 Continued

Genetic
Target Cell type Combination

(Strategy) Target Disease Clinical Trial
Phase Trial Status Clinical Trial

register
Ref

CD19 NK-92 N/A Leukemia
Lymphoma

Phase 1,2 Unknown NCT02892695

CD33 NK-92 N/A Acute myeloid leukemia Phase 1,2 Unknown NCT02944162 (82)

BCMA NK-92 N/A Multiple myeloma Phase 1,2 Unknown NCT03940833 (83)

CD19 PB-NK N/A Non-Hodgkin lymphoma Phase 1 Recruiting NCT04887012

NKG2D PB-NK
(Haploidentical

donor)

N/A Acute myeloid leukemia
Myelodysplastic syndrome

Phase 1 Unkonwn NCT04623944

CD19 PB-NK N/A Acute lymphoblastic leukemia Phase 1 Completed NCT00995137

CD19 PB-NK N/A Lymphoma
Lymphocytic leukemia
Lymphoblastic leukemia
Macroglobulinemia

Phase 1 Recruiting NCT05020678

CD19 PB-NK
(Allogenic
donor)

Chemotherapy B-cell lymphoma
B cell acute lymphoblastic

leukemia

Phase 1 Recruiting NCT05379647

CD19/iCas9/IL-
15

CB-NK Chemotherapy B-cell lymphoid malignancy
Lymphocytic leukemia

Non-Hodgkin lymphoma

Phase 1,2 Complete NCT03056339

CD5 CB-NK Chemotherapy Hematological malignancy Phase 1 Active, not yet
recruiting

NCT04796675

CD19 CB-NK Chemotherapy Lymphocytic leukemia
Non-Hodgkin lymphoma

Phase 1 Recruiting NCT04796675

BCMA CB-NK Chemotherapy Refractory multiple myeloma Phase 1 Recruiting NCT05008536

CD19/IL-15 CB-NK Chemotherapy B-cell non-Hodgkin lymphoma Phase 2 Recruiting NCT05020015

CD70/IL-15 CB-NK Chemotherapy B-cell lymphoma
B-cell malignancy

Non-Hodgkin lymphoma

Phase 1,2 Recruiting NCT05092451

BCMA iPSC-NK Chemotherapy Multiple myeloma
Myeloma

Phase 1 Recruiting NCT05182073

CD19/EGFR/IL-
15

iPSC-NK N/A B-cell malignancy
Non-Hodgkin lymphoma

Phase 1 Recruiting NCT05336409

hnCD16 iPSC-NK
(FT516)

Chemotherapy Acute myelogenous leukemia
B-cell lymphoma

Phase 1 Recruiting NCT04023071

hnCD16/IL-15/
CD38 KO

iPSC-NK
(FT538)

Chemotherapy Acute myeloid leukemia
Multiple myeloma

Myeloma

Phase 1 Recruiting NCT04614636 (84)

hnCD16/IL-15/
CD38 KO

iPSC-NK
(FT538)

Chemotherapy Acute myeloid leukemia
Multiple myeloma
Monocytic leukemia

Phase 1 Recruiting NCT04714372

CD19/hnCD16/
IL15R

iPSC-NK
(FT596)

Chemotherapy Acute myeloid leukemia
Monocytic leukemia

Phase 1 Recruiting NCT04714372 (85)

CD19/hnCD16/
IL15R

iPSC-NK
(FT596)

Chemotherapy Acute myeloid leukemia
Multiple myeloma

Phase 1 Recruiting NCT04614636
F
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N/A, Not applicable; PSMA, prostate Specific Membrane Antigen; NKG2D, NKG2-D Type II Integral Membrane Protein; ACE, angiotensin-Converting Enzyme; ROBO1, Roundabout, Axon
Guidance Receptor, Homolog 1; HER2, human epidermal growth factor receptor 2; MUC1, mucin-1; CCCR, chimeric costimulatory converting receptor; PD1, programmed cell death protein 1;
PD-L1, programmed cell death ligand 1; hnCD16, high-affinity noncleavable variant of CD16a; CLL1, C-Type lectin-like molecule-1, BCMA, B-cell maturation antigen; iCAS9, inducible caspase
9; EGFR, epidermal growth factor receptor; IL-15(R), Interleukin 15(receptor); KO, knockout; haNK, high affinity NK cell, NK-92 cells engineered to express the high affinity CD16; PB-NK,
peripheral blood derived NK cell; CB-NK, cord blood derived-NK cell; iPSC-NK, inducible pluripotent stem cell derived-NK cell; ITNK, induced-T-to-natural killer cell.
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(127). Studies have indicated a notable correlation between a

decrease in the proportion of NK cells producing IFN-g and the

severity of HCC, as well as an increased likelihood of HCC

recurrence following treatment (128). Thus, strategies aimed at

activating NK cells have been investigated, including the transfusion

of CAR-NK cells or compounds that promote NK cell function.

Among these approaches, CAR-NK-92 cells specifically targeting

glypican-3 (GPC3) are effective in combating tumors (129).

Cytokines such as IL-12, IL-15, and IL-18 enhance the anti-tumor

capabilities of NK cells in vivo, leading to the suppression of liver

tumorigenesis (126). Furthermore, the antifungal agent lomofungin

was found to decrease the activity of soluble MICA, potentially

augmenting the cytotoxicity of NK cells against HCC (130). Recent

evidence has shown that combining NK cell immunotherapy with

irreversible electroporation (IRE), a non-thermal method of tissue

ablation, results in enhanced clinical outcomes, including improved

progression-free and overall survival, compared with IRE ablation

alone in patients with liver cancer (131). These results suggest that

adoptive NK cell transfer in combination with diverse strategies

holds promise as a beneficial approach for treating advanced HCC.

Pancreatic cancer is a highly aggressive disease with a predicted

future increase in its incidence. Similar to CAR-T cells, CAR-NK

cells have been tested for their ability to target this disease. In a

mouse model of metastatic humanized pancreatic cancer, cord

blood-derived NK cells transduced with an anti-prostate stem cell

antigen (PSCA) CAR construct containing a soluble form of IL-15

showed efficacy (132). Additionally, in an individual with pancreatic

cancer and liver metastasis, anti-ROBO1 CAR NK-92 cells showed

minor adverse events and stable disease status for a certain period

(78). Clinical trials testing the feasibility of CAR-NK cells or

allogeneic NK cell infusion for the treatment of solid tumors are

possible strategies (133).

Metastatic tumors
Metastasis increases with higher tumor stage and is a significant

contributor to cancer-related deaths (134). Metastasis is a complex

process and its occurrence is influenced by various factors,

including the composition of the tumor microenvironment and

the plasticity of cancer cells. Cancer cells undergo several steps

during metastasis, such as invasion and dissemination, during

which they break away from the primary tumor site. These cells

then enter the bloodstream or lymphatic vessels, spread to other

parts of the body, and extravasate from the circulation. These

processes are known as circulation and colonization, respectively.

Afterwards, the cells may enter a dormant state before forming new

tumors (135). Studies have shown that polyclonal clusters of cancer

cells have better survival and colonization capabilities than

monoclonal or single clusters (136–138). Polyclonal clusters are

heterogeneous, making them difficult to control. Furthermore,

CTCs that are likely to metastasize or respond to treatment can

be detected in the blood and protected by platelet adhesion,

preventing detection and elimination by NK cells (139).

Accordingly, multiple studies have reported that NK cell-based

therapy can potentially target metastatic cancers by eliminating

disseminated cancer cells in the circulation or those deposited in
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other organs (140–142). To understand the mechanism of immune

surveillance during the metastatic progression of cancer, it is

essential to analyze the characteristics of cancer cells during this

process. Initially, invasive cells express keratin-14 (K14) and p63,

leading to collective invasion (143). K14 is a basal epithelial marker

critical for metastasis. K14-positive cells evade immune surveillance

(144, 145). Metastatic cells possess genes related to epithelial and

mesenchymal cells (146) as well as cell survival (147). Interestingly,

monoclonal and polyclonal clusters of cancer cells exert distinct

effects on NK cell resistance. Lo et al. (148) engrafted fluorescently

labeled mouse mammary cells, either in a mixed or single

population, into the mammary fat pad of recipient mice. The

recipient mice included wild-type mice, nude mice lacking T cells,

and NOD-Rag1nullIL2rgnull (NRG) mice lacking B, T, and NK cells.

The results showed that NRG mice had an increased number of

monoclonal metastatic lesions, whereas polyclonal clusters were

more dominant in other mice. These findings suggest that these

effects may be dependent on immune cells. When NK cells are

present, monoclonal clusters can be removed; however, polyclonal

clusters are resistant to NK cell surveillance (148). These cells may

lose K14, while E-cadherin plays a role in cluster metastasis (149).

Similarly, non-cluster-forming cancer cells that are sensitive to NK

cell killing express lower levels of genes related to cell-cell adhesion

but higher levels of genes encoding ligands for NK cell receptor

activation (148). Therefore, altering the epithelial features of

metastatic cancer cells, in addition to adoptive NK cell transfer,

may provide a strategy for targeting metastasis.

Cancer cells that migrate to different parts of the body enter

dormancy. This indicates that these cells undergo cell cycle arrest and

remain hidden from the immune system (134, 150). When dormant

cancer cells become active again and start dividing, they become

sensitive to NK cell killing by decreasing the expression of genes

related to MHC class I molecules and increasing the expression of

genes related to ligands against NK cell-activating receptors (151). In

preclinical models, it was found that in mice lacking B, T, and NK

cells, dormant cancer cells increased metastasis, whereas in mice

lacking T cells, they decreased (152). Although these findings suggest

that NK cells can target metastatic cells under certain conditions, the

exact mechanisms by which this occurs, particularly the intrinsic

pathways of cancer cells, are not yet fully understood.

Despite the evidence that NK cells can target metastatic cancer,

several studies have demonstrated that cancer cells reprogram NK

cells to support metastasis. Chan et al. (153) showed that tumor-

exposed NK (teNK) cells promoted tumor cell colony growth in a

3D co-culture platform. teNK cells exhibit increased TIGIT and

KLRG1 expression and upregulated DNA methyltransferases, such

as DNMT1, DNMT3a, and DNMT3b, compared to healthy NK

cells, indicating that epigenetic control by cancer cells occurs in

teNK cells. Similarly, it is well known that TGF-b signaling induces

NK cell-derived ILC1 that show higher expression of immune cell

exhaustion markers, including CTLA4 and LAG3 (11). Therefore,

the tumor microenvironment and cancer cells can alter NK cells to

promote metastasis, which could explain why clinical observations

do not always show a correlation between increased NK cell

numbers and overall survival in patients with cancer (154).
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Expanding the scope of NK cell therapies

Many countries are becoming increasingly aging societies. All

tissues, including those of the immune system, become senescent.

Systemic immunosenescence can lead to a decrease in the efficient

clearance of harmful cells, resulting in an increase in inflammatory

or infectious diseases (155). In this section, we discuss the

relationship between age-related diseases and the potential use of

NK cell therapies.

Cellular senescence and its
implication in disease

Cancer incidence in humans increases with age (156). Many

biological processes that contribute to cancer and aging share

characteristics such as telomere attrition, cellular senescence,

genomic instability, and inflammation (157). The development of

cancer cells can occur through the evasion of apoptosis or senescence

or through the accumulation of senescent cells (158). However, the

cellular processes involved in aging and cancer are not yet fully

understood, and their relationships are complex. Long-lived species

have evolved tumor-suppressing mechanisms and cancer-resistant

features (159, 160). Cellular senescence can lead to irreversible cell

growth arrest (161), typically in response to damage. This plays a

critical role in suppressing abnormal cell proliferation and preventing

tumor growth. Senescent cells have been shown to trigger an immune

response that aids in tumor clearance. In contrast, studies have

demonstrated that senescent cells can promote tumor growth,

angiogenesis, and invasion by secreting factors such as extracellular

matrix components and cytokines, similar to an immunosuppressive

tumor microenvironment. In addition, research has shown that aged

fibroblasts can drive lung metastasis and therapy resistance in a

mouse melanomamodel (162). Understanding the complex interplay

between aging and cancer may lead to the development of novel

strategies for cancer treatment in aging populations.

Senescent cells contribute to inflammation primarily by releasing a

senescent-associated secretory phenotype (SASP) (163), and their

accumulation can lead to various side effects in tissues, such as

fibrosis. For instance, sarcopenia, the loss of regenerative capacity in

skeletal muscle with age, can lead to the replacement of muscle tissue

with fat and fibrotic tissues (164). Interestingly, a recent study

conducted on mice revealed that senescent cells in muscle tissue can

induce age-related changes such as inflammation and increased

fibrosis, as well as alterations in gene expression (165). Removing

senescent cells from tissues promotes tissue regeneration and

suppresses muscle inflammation, suggesting potential beneficial effects.
Using immune cells for senolytic therapy
Recently, it has been questioned whether aging can be cured,

particularly by removing senescent cells using senolytic agents

(166–168). Studies in mice have shown that the removal of

senescent cells can reverse age-related pathologies (169, 170).

Therefore, it has been suggested that methods used for anti-

tumor immune cell therapies can be applied to target senescent

cells. Immune cells such as NK cells, macrophages, and T cells can

recognize senescent cells (171). Furthermore, senescent cells have
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increased ligands for NK cell-activating receptors such as NKG2D

(172). However, senescent cells can also be resistant to immune

surveillance owing to immunosenescence, immune cell dysfunction,

or alterations in MHC molecules. A previous study indicated that

senescent fibroblasts, which are induced either by the natural aging

of human skin fibroblasts or exposure to ionizing radiation, exhibit

upregulation of HLA-E, a non-classical MHC molecule, and the

pro-inflammatory cytokine IL-6. This upregulation inhibits NK cell

surveillance (173). The authors proposed that mAbs targeting the

inhibitory receptor NKG2A, similar to existing cancer treatments,

could be employed as a senolytic strategy to modulate NK cell

activity (174).

Senolytics such as dasatinib in combination with quercetin have

been widely used to remove senescent cells, and new senolytic

treatments are being developed (175, 176). A recent study showed

that infusing NK cells with acein, a non-apeptide that secretes

dopamine (177), reversed senescent markers in a mouse model

(178). Furthermore, researchers have proposed the use of senolytic

CAR-T cells that target urokinase-type plasminogen activator

receptor (uPAR) in senescent cells. uPAR was initially identified

in senescent models, and the effectiveness of uPAR CAR-T cells in

animal models of liver fibrosis has been demonstrated (179). These

findings suggest that adoptive immune cell therapies that target

senescent cells hold promise as potential approaches for the

treatment of aging and aging-related diseases.

Autoimmune disorders and viral infections
NK cells play a crucial role in directly eliminating virus-infected

cells and stimulating antiviral immune responses through IFN-g
production. The number of NK cells is inversely associated with the

severity and recurrence of viral infections in humans (180). Chronic

viral infections can contribute to tumor progression and

autoimmune disorders, and NK cell dysfunction has been

implicated in the pathogenesis of these virus-mediated diseases.

Notably, the immunomodulatory roles of NK cells have been

investigated in various autoimmune diseases such as multiple

sclerosis (MS), rheumatoid arthritis, and systemic lupus

erythematosus. NK cells can promote dendritic cell (DC)

differentiation during adaptive immunity while also exhibiting the

ability to eliminate immature DCs, activated macrophages, and T

cells (181). Impaired NK cell cytotoxicity has been observed in

patients with autoimmune diseases, suggesting its involvement in

disease onset. However, the precise mechanism of action must be

contextually considered. For instance, in MS patients, an

accumulation of CD56bright NK cells was found in the

cerebrospinal fluid, and treatment with daclizumab (a humanized

anti-IL-2Ra antibody) led to a significant expansion of CD56bright

NK cells accompanied by a reduction in CD4 T cells (182). These

observations highlight the critical role of functional NK cells in

antiviral immunity and the regulation of autoimmune diseases,

although investigations into NK cell therapies for these conditions

are still in the early stages of development. Notably, several clinical

trials exploring NK cell therapy for the treatment of adults with

COVID-19 have recently begun (183). These studies indicate the

potential use of NK and CAR-NK cells as therapeutic approaches

for managing viral infections.
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Genetic engineering of NK cells for
adoptive cell therapy

In NK cell clinical trials, a large quantity of cells is used for

infusion, ranging from 5×106 to 1×108 CD3-CD56+ NK cells per

kilogram body weight (184). With the development of techniques

and success of CAR-T cell therapies, NK cells have become the next

generation of genetically engineered immune cell therapies. This

involves the transduction of CARs or other genes that stimulate NK

cell function. Gene transfer is accomplished using viruses such as

lentiviruses, retroviruses, and adeno-associated viruses (185). The

CRISPR-Cas9 system can also be used to delete genes associated

with NK cell suppression. A recent report demonstrated efficient

knockout of genes using a single guided RNAs and Cas9 protein

(RNP) nucleofection method, and the edited NK cells were

successfully expanded (186). The authors suggested a clinically

relevant protocol using cryopreserved PB NK cells, while ensuring

the purity and safety of gene-edited cell therapies as the ultimate

goals. The following sections present current strategies aimed at

genetically engineering NK cells to enhance their functions,

including target cell recognition, NK cell persistence, and

tumor infiltration.
Sources of NK cells for adoptive
cell transfer

Different sources of NK cells have been used to develop NK cell

therapies, including peripheral blood mononuclear cells (PBMC)

(187), umbilical cord blood (UCB) (92), NK-92 cells (188), and

induced pluripotent stem cells (iPSCs) (189). Although NK-92 cells

derived from NK lymphoma offer a valuable research tool for

exploring the function of CARs and genetically engineered cells,

their effectiveness may be limited due to the absence of CD16 and

the need for irradiation before being administered to patients. In

contrast, primary NK cells derived from UCB or PB contain not

only cytotoxic NK cells but also CD34+ hematopoietic stem cells,

which can be expanded and differentiated into mature NK cells.

Both UCB- and PB-derived NK cells exhibit therapeutic efficacy

against leukemia following CAR gene transduction. Notably, UCB-

derived NK cells demonstrate higher proliferative capacity than PB-

derived NK cells (190). Additionally, cytokine-induced memory-

like NK cells sustained by IL-12, IL-15, and IL-18 in primary NK

cells have shown promising clinical outcomes in patients with

myeloid neoplasms (187). However, the isolation of large

numbers of primary NK cells and hematopoietic stem cells is

challenging, and purifying NK cells to deplete CD3 and CD19

positive cells is difficult during allogeneic NK cell transfer. By

contrast, iPSC-derived NK cells are an unlimited source of

homogeneous human NK cells. These iPSCs can be genetically

modified to express or deplete specific genes, followed by

therapeutic NK cell differentiation. However, safety concerns

remain owing to the presence of undifferentiated iPSCs and the

complexity of the differentiation protocol (185).
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Enhancing target cell recognition

CARs enhance immune cell function by combining an

intracellular signaling domain with an antigen-specific single-

chain variable fragment (scFv) that recognizes a specific antigen.

There are four to five generations of CARs with increasing

complexity of the intracellular domains, whereas the recognition

of antigens is dependent on the ectodomains present in each CAR

(191). The second generation, which contains either CD28 or 41BB

as a costimulatory domain, is effective and widely used. Second-

generation CAR-T cells have been utilized in all FDA-approved

CAR-T cell therapies to date. CAR-NK cells are also being

developed, with promising results reported in 2020 for anti-CD19

CAR-NK cells for the treatment of certain blood cancers, as

previously described (92). At least 30 clinical trials of CAR-NK

cells using different sources of NK cells are currently underway

worldwide (192). CAR-NK cells are being developed to target

different diseases, including hematological malignancies (82–85),

solid tumors (78–81), and COVID-19 (Table 1).

Despite the ability of second-generation CARs to stimulate NK

cells such as T cells, researchers have been investigating novel

intracellular CAR domains designed for NK cell activation.

Adaptor proteins such as DAP10 and DAP12, which recruit PI3K

in association with activating NK cell receptors (Figure 2), have been

investigated as potential replacements for CD3z in CAR-NK cells

(193, 194). Furthermore, NKG2D-engineered CAR (NKG2D-

DAP10-CD3z)-NK cells, which targets NKG2D ligands in tumor

cells, have been tested (195). Notably, iPSC-derived NK cells were

used to test various CAR constructs, and the results showed that

NKG2D is a transmembrane domain, followed by 2B4 and CD3z in

iPSC-NK cells, producing optimized activity (189). Similarly,

DNAM1 expression was found to be more effective than that of

CD28 as an intracellular domain in anti-GPC3 CAR-NK-92 cells

(196). A better understanding of the mechanisms underlying NK cell

biologymay lead to the development of novel CAR-NK cell therapies.
Augmenting NK cell persistence

In addition to CARs, various genes have been investigated to

enhance the persistence and function of NK cells in vivo. Expression

of the membrane-bound form of IL-15 in human PB-derived NK

cells has been shown to improve NK cell survival and in vivo anti-

tumor activity (197). Anti-CD19 CAR, IL-15, and inducible

caspase-9-based suicide genes were introduced into CB-derived

NK cells, resulting in the extended survival of modified NK cells

in a mouse model (198). Scalable and uniformly edited NK cells can

be generated from iPSCs. Quadruple-gene-modified iPSC-derived

NK cells, called FT576, were created by Cichocki et al. (199) for the

treatment of MM by incorporating anti-BCMA CAR (200), a non-

cleavable version of the CD16a Fc receptor (201, 202), and a

membrane-bound IL-15/IL-15R fusion molecule. These modified

NK cells can target BCMA-expressing tumor cells and display

improved ADCC and in vivo persistence. Additionally, CD38 has

been knocked out in NK cells (203), enabling a combination
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approach with an anti-CD38 mAb for the treatment of relapsed or

refractory MM (204).

CRISPR-Cas9 gene editing has been used in many studies to

delete negative regulators in NK cells. For example, iPSC-derived

NK cells have been edited to remove the cytokine-inducible SH2-

containing proteins (CIS), encoded by CISH, resulting in potential

IL-15-dependent NK activation (205). Tumor necrosis factor-a
(TNF-a)-induced protein-8 like-2 (TIPE2) negatively regulates

the immune response of NK cells against tumors. This discovery

led to the development of a novel approach involving the use of

TIPE2-deficient NK cells, which could potentially enhance the

effectiveness of cancer treatment in combination with CISH

knockout (206). In animal models, when TIPE2-defecient NK

cells are transferred to the host, they activate the IL-15-mTORC1

pathway, leading to improved antitumor activity and providing

support for T cell-based immunotherapy (207).

Improving tumor infiltration and NK cell
activation in solid tumors

Genetic disruption of NKG2A has been used to modulate

inhibitory signaling in NK cells, resulting in superior tumor

control in a mouse model (208). In the tumor microenvironment,

adenosine A2A receptor is knocked out in CAR-NK cells to

counteract the immunosuppressive effects of adenosine (209).

Deletion of TGF-b receptor 2 in CB-derived NK cells (210) or

downregulation of TGF-b-induced miR-27a-5p has been used to

block TGF-b signaling and improve NK cell function (211). In MM,

the therapeutic mAb daratumumab targets CD38, which is

expressed by both malignant and NK cells, leading to fratricide.

To overcome this issue, CRISPR-modified CD38 knockout NK cells

have recently shown improved efficacy (212, 213).

Adoptive NK cell therapy has limited efficacy against solid tumors

because of the immunosuppressive tumor microenvironment. To

improve the targeting of solid tumors, NK cells have been

engineered to overexpress chemokine receptors such as CXCR1,

CXCR2, CXCR3, CCR7, and CXCR4 in various animal models of

cancer (214–218). In addition, the overexpression of a high-affinity

dominant-negative TGF-b receptor (TGF-b DNRII) has been used to

inhibit TGF-b signaling (219, 220). Clinical trials on patients with

prostate cancer have shown the feasibility of expressing TGF-b DNRII

and T cells in combination with the antiprostate-specific membrane

antigen CAR (221). Another approach involves targeting the inhibitory

receptors on NK cells via viral transduction. For instance, human PB

NK cells were transduced with a retrovirus to express NKG2A protein

expression blocker (PEBL), which abrogates NKG2A expression (208).

The PEBL construct contained an anti-NKG2A scFv linked to four

different endoplasmic reticulum retention domains, which resulted in

enhanced NK cell cytotoxicity and in vivo anti-tumor activity.

Therapeutic approaches to harness
NK cell activation

Immunotherapeutic approaches to enhance NK cell function,

such as monotherapy and combination with other strategies, have
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rapidly developed. This section covers various types of NK cell

activators, including those specifically designed based on NK cell

biology and those that have been found to activate NK cells. These

agents can be combined with NK cell or CAR-NK cell therapies.

Various adoptive NK cell therapies in different combinations are

presented in Table 2. An overview of current NK cell therapies and

targetable diseases is summarized in Figure 3.
Antibodies

Antibodies for ADCC responses
NK cells exert their effector function through the ADCC-

mediated killing of IgG1- or IgG3-opsonized target cells, which

are recognized by CD16 in NK cells. Therapeutic antibody

development often excludes IgG3 because of its long hinge region

and polymorphic nature (224). Several ADCC-inducing antibodies

such as rituximab (anti-CD20), cetuximab (anti-EGFR), and

trastuzumab (anti-HER2) for CLL, colorectal cancer, and breast

cancer, respectively, have been developed and approved by the FDA

for tumor treatment (222). Notably, patients with the CD16

polymorphism at position 158F (phenylalanine) have a limited

response rate owing to their low affinity for the Fc region of

antibodies, in contrast to those with the 158V (valine) variant,

which exhibits a high affinity (225, 226). To overcome this problem,

the development of mAbs that induce ADCC has focused on

improving affinity of low-affinity variant. Elotuzumab and

daratumumab target SLAMF7 and CD38, respectively, and

induced robust ADCC in myeloma cel ls (204, 227) .

Margetuximab, an anti-HER2 antibody, also shows improved

binding to low-affinity CD16 and has received approval from the

US FDA (228). Avelumab, an IgG1 antibody against PD-L1,

provides the additional benefit of inducing checkpoint inhibition

in addition to ADCC (229, 230). Furthermore, anti-MICA

antibodies have been suggested to enhance NK cell cytotoxicity

via NKG2D and ADCC engagement (231).

NK cell engagers
The use of bi- and tri-specific killer engagers (BiKEs and

TriKEs, respectively) in therapeutic approaches is similar to that

of ADCC-inducing antibodies. These molecules facilitate

interactions between effector and target cells, leading to the

activation of NK cells through CD16 engagement. Unlike Fc-

targeted antibodies, BiKEs and TriKEs only target CD16 via Fv

fragments, thereby reducing the off-target effects. AFM13, a BiKE

targeting CD30 for B- and T-cell lymphomas (232), has been

granted orphan drug designation for the treatment of peripheral

T-cell lymphoma (NCT4101331, NCT04074746) (233). Another

BiKE, AFM24, that targets EGFR in solid cancers, has also been

studied (NCT04259450). During the development of TriKEs,

moieties such as IL-15, which enhance NK cell function, can be

incorporated in addition to BiKEs. Studies have investigated the

effectiveness of TriKEs containing IL-15 against several tumor

antigens, such as CD133, CD19, CLEC12, and CD33 (234–236).

TriKEs also target additional NK cell receptors, such as

NKp46 (237).
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TABLE 2 A list of current strategies of adoptive NK cell therapy in combination with other treatments (chemotherapy, radiation therapy and
immunotherapy).

Cell type Combination
(Strategy) Target Disease Clinical Trial Phase Trial Status Clinical Trial

register
Ref

NK-92 N/A Stage IIIb and IV Merkel cell carcinoma Phase 2 Unknown NCT02465957

NK-92 Chemotherapy Pancreatic cancer Phase 1,2 Unknown NCT03136406

haNK Chemotherapy
Radiation therapy

Pancreatic cancer Phase 1,2 Unknown NCT03329248

haNK Chemotherapy
Radiation therapy

Squamous cell carcinoma Phase 1,2 Unknown NCT03387111

haNK Chemotherapy
Radiation therapy

Triple-negative breast cancer Phase 1,2 Active, not
recruiting

NCT03387085

haNK Chemotherapy
Radiation therapy

Metastatic colorectal cancer Phase 1,2 Active, not
recruiting

NCT03563157

PB-NK N/A Plaque psoriasis Phase 1 Completed NCT03894579

PB-NK N/A Cancers Phase 1 Completed NCT00569283 (75)

PB-NK N/A Malignant solid tumor Phase 2 Completed NCT02853903

PB-NK N/A Recurrent childhood medulloblastoma/
Ependymoma

Phase 1 Complete NCT02271711

PB-NK N/A Hepatocellular carcinoma Phase 2 Completed NCT02854839

PB-NK N/A Small cell lung cancer Phase 2 Unknown NCT03410368

PB-NK Immunotherapy
(hu3F8 antibody)

Neuroblastoma Pahse 1 Active, not
recruiting

NCT02650648

PB-NK Immunotherapy
(PD-L1 antibody)

Non-small cell lung cancer Phase 2 Unknown NCT03958097 (118)

PB-NK Chemotherapy Refractory/Metastatic/Recurrent/Advanced
Cancer
Unresectable carcinoma

Phase 1 Active, not
recruiting

NCT03941262

PB-NK Chemotherapy Nasopharyngeal cancer
Head and neck squamous cell carcinoma

Phase 1,2 Unknown NCT02507154 (222)

PB-NK Chemotherapy Breast cancer
Gastric cancer

Phase 1,2 Unknown NCT02030561

PB-NK Chemotherapy Gastric cancer Phase 1,2 Unknown NCT02805829

PB-NK Chemotherapy Non-small cell lung cancer Phase 2 Unknown NCT02734524

PB-NK Chemotherapy Biliary tract cancer Phase 1,2 Completed NCT03937895

PB-NK Chemotherapy
Radiation threapy

Colon cancer stage IV Phase 1,2 Unknown NCT03329664

CB-NK Chemotherapy Cutaneous melanoma
Lip and oral cavity carcinoma
Malignant neoplasm

Phase 1 Recruiting NCT03420963

CB-NK Chemotherapy Ovarian carcinoma
Fallopian tube carcinoma
Primary peritoneal carcinoma

Phase 1 Recruiting NCT03539406

NK-92 Chemotherapy
Immunotherapy
Radiation therapy

Myelodysplastic syndrome
Leukemia
Lymphoma
Multiple myeloma

Phase 2 Recruiting NCT02727803

NK-92
CB-NK

Chemotherapy
Immunotherapy
Radiation therapy

Myelodysplastic syndrome
Leukemia
Lymphoma
Multiple myeloma

Phase 2 Recruiting NCT02727803

(Continued)
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Immune checkpoint inhibitors
Currently, immune checkpoint inhibitors (ICIs) such as anti-

PD1, PD-L1, and CTLA4 antibodies have shown success in

stimulating the immune system to eradicate tumors (238). The

main mechanism of action is thought to be prevention of T cell

exhaustion. Nevertheless, it has been suggested that NK cells could

also benefit from ICIs (239, 240). By activating NK cells through the

ADCC-mediated induction of PD-L1 on the tumor cell surface,

combining ICIs with ADCC immunotherapy may have a synergistic

anti-tumor effect (238). Targeting other immune checkpoints such

as LAG3, TIM3, and TIGIT is currently being investigated because

these receptors are also expressed on tumor-infiltrating NK cells

(241, 242). Previous studies have demonstrated that TIGIT

antibody can increase NK-mediated antitumor response (113).

Efforts have been made to develop ICIs that are specific to NK

cells, owing to their possession of various inhibitory receptors that

could potentially act as immune checkpoints. Lirilumab, a KIR

antibody, was developed to target the HLA-C-specific family of

KIR2D receptors, which can be either inhibitory or activating (243).

However, the clinical use of lirilumab alone has not resulted in

significant responses. Therefore, combination strategies are being

explored (NCT02813135). Another potential target for NK-specific

immune checkpoint inhibition is NKG2A, as its ligand, HLA-E, is

often upregulated in tumors and senescent fibroblasts (173, 244).

Monalizumab (IPH2201), an NKG2A antibody, is currently being

investigated in clinical trials in combination with other agents for

the treatment of solid tumors, such as in head and neck cancer and
Frontiers in Immunology 13
breast cancer (NCT04590963, NCT02643550, NCT04307329, and

NCT02671435). Notably, inhibitory KIR plays a crucial role in NK

cell education and licensing, and NKG2A is important for

maintaining NK cell immune tolerance; thus, caution should be

exercised when targeting these receptors (245).
Other NK cell activating agents and
strategies

There are several ways to enhance the activity of NK cells against

tumor cells, including pharmacological interventions or the use of

cytokines. Immunomodulatory imide drugs (IMiDs) such as

lenalidomide and pomalidomide, which interact with cereblon

(CRBN), can activate NK cells via CRBN-dependent or

independent mechanisms (246, 247). IMiDs activate ZAP70 and

increase granzyme B expression in NK cells (248). In addition, IMiDs

make tumor cells more susceptible to NK cell killing by upregulating

ligands for NKG2D, DNAM1, MICA, and PVR in tumor cells (249).

Bortezomib, a proteasome inhibitor, has been shown to have similar

effects on tumor cells, including downregulation of MHC-I

expression (250). Other pharmacological interventions that increase

the vulnerability of cancer cells to NK cell killing have also been

reported. BH3 mimetics enhance NK cell-mediated killing by

inducing mitochondrial apoptosis in target tumor cells (251).

ONC021, an orally administered antitumor agent, activates TNF-

related apoptosis-inducing ligand (TRAIL) and stimulates NK cells at
TABLE 2 Continued

Cell type Combination
(Strategy) Target Disease Clinical Trial Phase Trial Status Clinical Trial

register
Ref

PB-NK N/A Acute lymphoblastic leukemia
Complete hematologic remission
Persistent/Recurrent minimal residual disease

Phase 1 Active, not
recruiting

NCT02185781

PB-NK N/A Asymptomatic multiple myeloma Phase 2 Completed NCT01884688

PB-NK N/A NK cell mediated immunity Phase 1 Unknown NCT03662477 (119)

PB-NK N/A Acute leukemia Phase 1,2 Completed NCT03669172 (77)

PB-NK N/A Acute myeloid leukemia
Myelodysplastic syndromes

Phase 1,2 Recruiting NCT03300492

PB-NK N/A Acute myelogeneous leukemia
Acute lymphoblastic leukemia

Phase 1,2 Completed NCT01795378 (75)

PB-NK Chemotherapy Multiple myeloma Phase 1 Completed NCT02481934 (87)

PB-NK Chemotherapy Chronic myeloid leukemia
Pancreatic cancer
Colorectal cancer
Multiple myeloma
Non-small cell lung cancer

Phase 1 Completed NCT00720785

PB-NK Chemotherapy Metastatic melanoma
Metastatic kidney cancer

Phase 2 Completed NCT00328861

PB-NK Chemotherapy Acute myeloid leukemia Phase 1,2 Unknown NCT02809092 (76)

PB-NK Chemotherapy Acute myeloid leukemia Phase 1,2 Terminated NCT01898793 (223)

CB-NK Chemotherapy Lymphoma Phase 2 Completed NCT03019640
frontier
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the tumor site, leading to reduced metastasis. Clinical trials for

ONC021 are currently underway (NCT02525692) (252).

The direct stimulation of NK cells has also been extensively

studied, particularly in the context of the tumor microenvironment,

where immune cells are often suppressed. For example, HIF1a
expression induced by a hypoxic tumor microenvironment can

inhibit NK cell activity, but inhibition of HIF1a or using Hif1a-/-

NK cells has been shown to potentiate NK cell activity against

tumors in in vitro and in vivo experiments (253). Various

pharmacological inhibitors against the TGF-b signaling pathway

have been tested in preclinical and clinical studies. It has been

shown that the TGFbRI kinase inhibitor galunisertib (LY2157299)

enhances NK cell-mediated anti-tumor activity (254). On the other

hand, ADAM17, a metalloproteinase that cleaves CD16 on the

surface of NK cells, can suppress ADCC responses (255). Although
Frontiers in Immunology 14
ADAM17 inhibitors have been proposed to enhance ADCC in NK

cells, the potential advantage of using ADAM17 inhibitors remains

a matter of ongoing debate (256).

The cGMP-AMP synthase (cGAS)-stimulator of interferon

gene protein (STING) pathway is crucial for immune cell

activation via the production of type I IFNs (IFNa and IFNb)
(257). Interestingly, cyclic dinucleotides (CDNs), which are STING

agonists, have been shown to activate NK cells (258). NK cell

activation appears to be driven by increased IL-15 production in

dendritic cells treated with CDNs, in response to increased type I

IFNs. Notably, several STING agonists, including CDNs and small

molecules, are currently undergoing clinical testing for tumor

treatment (259).

Numerous cytokines have been identified as stimulators of NK

cell proliferation and activation and cytokine mixtures are being
FIGURE 3

An overview of current and emerging approaches for harnessing NK cell activity. Adoptive transfer of NK cells has demonstrated efficacy in treating
tumors, and various strategies have been employed to further improve their function. These include introducing CARs, chemokine receptors, and
other modifications via genome editing using CRISPR-Cas system. Additionally, ADCC has been shown to efficiently induce NK cell killing activity.
Clinical trials are underway for various therapies for inducing ADCC, including mAbs, BiKEs, and TriKEs. Researches on developing TME inhibitors and
cytokines to enhance cell activity, and combinations of these agents with NK cells or other treatments are also being explored. NK cell therapy is
also being investigated for novel indications such as viral infections and aging, using therapeutic NK cells to eliminate damaged cells. CAR, chimeric
antigen receptor; mAb, monoclonal antibody; BiKE, bi-specific killer engager; TriKE, tri-specific killer engager; sMIC, soluble MHC I chain-related
molecules A and B; DPP4, dipeptidyl peptidase-4; IDO, indoleamine-pyrrole 2,3-dioxygenase; TME, tumor microenvironment; DNRII, dominant-
negative TGF-b receptor 2.
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studied to develop adoptive NK cell maturation strategies for cancer

treatment. Furthermore, efforts are being made to develop cytokines

that can be used as direct cancer treatments, including IL-2 (260),

IL-15 (261), IL-12 (262), IL-18, and IL-21 (263). However, most of

these cytokines have toxic adverse effects and limited efficacy when

used as natural proteins. Consequently, novel approaches are being

explored such as combining cytokines with other therapeutics or

improving their delivery to target tissues. Among these cytokines,

IL-15 potentiates NK and CD8+ T cell activity. Clinical trials are

currently underway for heterodimeric fusion (hetIL-15) packaged

in extracellular vesicles (264) and the superagonists IL-15 and N-

803 (223, 265). Delivery methods for IL-12 such as direct

intratumoral gene delivery or plasmids in combination with PD-1

inhibitors have also been tested (266). Furthermore, a modified

form of the proinflammatory member of the IL-1 cytokine family,

IL-18, has been suggested (267).
Conclusion

There are multiple subsets of NK cells and their activities can

vary within each organ because of their dynamic nature. Exploiting

the cytotoxic efficacy of NK cells through therapeutic strategies,

such as adoptive NK cell therapy and BiKEs, shows great promise.

Although safety is advantageous in adoptive NK cell therapy,

optimizing combination approaches by understanding NK cell-

specific mechanisms may enhance their efficacy. For example,

combining cytokine-induced memory-like NK cells (187) with

CAR (268) or BiKE (269) expression results in improved

responses. Novel indications for efficient NK cell therapies, such

as for virus infection, fibrosis, and aging, are emerging. With the

advent of immune surveillance against abnormal cells, some

researchers have shifted their focus to targeting senescent cells.

Further investigations on NK cell immunity and cell-cell

interactions can greatly support these new phenomena. Advances

in genome editing, immune cell expansion, stem cell biology, and

antibody design technologies are crucial for the progress in this

field. Thus, NK cells have great potential as novel therapeutic agents

against various diseases.
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