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Tumor-associated macrophages (TAMs) represent one of the main tumor-

infiltrating immune cell types and are generally categorized into either of two

functionally contrasting subtypes, namely classical activated M1 macrophages

and alternatively activated M2 macrophages. TAMs showed different activation

states that can be represent by the two extremes of the complex profile of

macrophages biology, the M1-like phenotype (pro-inflammatory activity) and the

M2-like phenotype (anti-inflammatory activity). Based on the tumor type, and

grades, TAMs can acquire different functions and properties; usually, the M1-like

phenotype is typical of early tumor stages and is associated to an anti-tumor

activity, while M2-like phenotype has a pro-inflammatory activity and is related to

a poor patients’ prognosis. The classification of macrophages into M1/M2 groups

based on well-defined stimuli does not model the infinitely more complex tissue

milieu where macrophages (potentially of different origin) would be exposed to

multiple signals in different sequential order. This review aims to summarize the

recent mass spectrometry-based (MS-based) metabolomics findings about the

modifications of metabolism in TAMs polarization in different tumors.

The published data shows that MS-based metabolomics is a promising tool to

help better understanding TAMs metabolic phenotypes, although it is still poorly

applied for TAMs metabolism. The knowledge of key metabolic alterations in

TAMs is an essential step for discovering TAMs polarization novel biomarkers and

developing novel therapeutic approaches targeting TAM metabolism to

repolarize TAMs towards their anti-tumor phenotype.

KEYWORDS

tumor associated macrophages (TAMs), prognostic markers, metabolism, mass
spectrometry, TAM polarization
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Introduction

Macrophages are immune cells essential component of the innate

immune system, with a wide distribution in lymphoid and non-

lymphoid tissues throughout the body that play a pivotal role in

innate immunity, tissue homeostasis, and response to adverse signals,

such as pathogenic infections or inflammatory stimuli (1–3).

Macrophages principally originate from monocyte precursors

mainly generated from hematopoietic stem cells placed in the bone

marrow; then, monocytes migrate to several tissues and differentiate

into tissue-specific macrophages (3, 4). Instead, tissue-resident

macrophages such as Kupffer cells (liver), microglia (central nervous

system), and Langerhans cells (skin) originate from the yolk sac and

fetal liver during primitive and definitive hematopoiesis and they are

responsible for the innate immunity (5, 6).

Circulating monocytes are recruited by chemotactic signals

generated upon injury, infection etc. and migrate to the target
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tissues where they differentiate and polarize into mature

macrophages depending on the microenvironment (5, 7, 8). It is

possible to identify two main activation states that represent the two

extremes of the complex profile of macrophage biology (9).

The current classification into M1-type (classically activated

macrophage) and M2-type (alternatively activated macrophage) is

based upon macrophage polarization and describe macrophages

different behaviors (10). One phenotype, the pro-inflammatory or

classically activated M1 phenotype, allows the host to fight

infections and pathogens and exhibits anti-tumoral activity. The

second phenotype, the anti-inflammatory or alternatively activated

M2 phenotype, displays the capability to repair damaged tissues but

also presents a pro-tumoral functions (Figure 1A) (11–15).

The M1 phenotype is induced by microbial products like

lipopolysaccharide and cytokines secreted by Th1 lymphocytes,

such as Interferon-g (IFN-g) and tumor necrosis factor-alpha

(TNF-a). On the other hand, anti-inflammatory molecules, such
A

B

FIGURE 1

(A) Schematic representation of the characteristics of M1 and M2 macrophages phenotypes. (B) Schematic view of M1 and M2 macrophages
metabolism. Green and red arrows indicate an up-regulation and down-regulation of a specific pathway respectively.
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as glucocorticoid hormones and interleukin (IL)-4, IL-10, IL-13,

secreted by Th2 lymphocytes, induce the M2 phenotype (Figure 1A)

(5, 16, 17).

M1 macrophages express high levels of inducible nitric oxide

synthetase (iNOS) that promote the release of nitric oxide, reactive

oxygen species and pro-inflammatory cytokines (IL-1b, IL-6, IL-12)
promoting Th1 response (2, 13). The high production of anti-

microbial and anti-tumoral molecules gives to M1 macrophages the

capability to kill intracellular pathogens (5, 18). Classically activated

macrophages express specific surface proteins, such as CD68, CD80,

and CD86 (Figure 1A).

In contrast, M2 macrophages produce a high amount of anti-

inflammatory cytokines (IL-10, TGF-b), low levels of pro-

inflammatory cytokines (IL-12) and diminished expression of the

NOS enzyme. M2 macrophages have a strong phagocytosis capacity

and induce angiogenesis and lymphangiogenesis (2, 19, 20).

Furthermore, the arginase pathway induces increased production

of ornithine, collagen, and polyamines with an elevated expression

of arginase-1 (Arg1) (Figure 1A).

From a biochemical point of view, the metabolism of M1 and

M2 activated macrophages were extensively characterized. M1

macrophages metabolism is based on anaerobic glycolysis,

truncated tricarboxylic acid cycle (itaconate production), fatty

acid synthesis and pentose phosphate pathway (Figure 1B) with, a

consequent decrease in oxidative phosphorylation (OXPHOS) and

fatty acid oxidation (5, 21–23)

M2 macrophages have a poorly glycolytic profile with higher

arginine metabolism and preferential fatty acid oxidation (oxidative

glucose metabolism), glutamine metabolism and OXPHOS

(Figure 1B) (5, 18, 19, 24). Glycolysis is not essential for M2

phenotype, and glucose is mainly employed to sustain OXPHOS

(25–27).

In tumors, monocytes from bone marrow and circulating

monocytes are recruited through the release of cytokines and

macrophages were functionally polarized in tumor-associated

macrophages (TAMs) (9, 28). Within the tumor microenvironment

(TME), TAMs exhibit high plasticity and undergo specific functional

metabolic alterations according to the availability of tumor tissue

oxygen and nutrients, thus further contributing to tumorigenesis and

cancer progression.

In this review, we describe the relationship between TAMs

metabolic profile and activation states and their involvement in

cancer pathologies. We focus on mass spectrometry (MS)-based

metabolomics analysis that is able to detect, quantify and map a

huge number of molecules for recapitulate the different TAMs

metabolic phenotypes (29).
TAMs density and polarization as
prognostic marker in cancer
pathologies: state of the art

TAMs are one of the most abundant immune myeloid

populations in the TME (30). Meta-Analyses indicates that high

density of TAM (CD68+) could be associated with worse prognosis
Frontiers in Immunology 03
in almost all cancers (31–35), contradictory in gastric cancer (32,

36) or should be linked to a favorable prognosis in colorectal cancer

(37, 38).

TAMs could exhibit pro-tumoral or anti-tumoral roles

depending on the stimuli generated by the TME and can acquire

different functions and properties depending on cancer type, grade,

and during tumor progression (39). Several studies are committed

to quantify and characterize the M1 and M2 TAM phenotype to

better refine the prognostic significance of TAMs.
M1-like TAMs as prognostic marker

TAMs can show a M1-like phenotype, in particular during the

early stages of tumor development (2, 20, 39, 40), promoting

antineoplastic and phagocytose activity. During the tumor

progression, the TME produce a large amount of growth factors

and anti-inflammatory mediators that induce a shift in

TAMs phenotype.

In ovarian cancer, two prospective observational studies (140

Italian and 112 Chinese patients) showed that intratumoral M1/M2

TAM ratio decreased as the cancer stage increased (41) with a

significant association between higher M1/M2 TAMs ratio and the

longer overall survival and progression-free survival (42),

Similar findings were obtained in Non-Small Cell Lung Cancer

(NSCLC) studies, where high infiltration of M1 like TAMs (41 UK

and 80 Lithuanian subjects) were associated with a better survival

outcomes (43, 44). Consistently with these studies, a high density of

iNOS+ M1-like macrophages predicted the improved survival rate

in a cohort (40 Finland patients) of HER2+ breast cancer subjects

(45). Also considering TAMs morphologies, M1-like macrophages

more frequently appear round and flattened, as opposed to M2-like

cells that present an elongated morphology. A higher percentage of

TAMs with small dimensions and regular shape were associated

with a better prognosis in colorectal liver metastasis patients (101

Italian patients) (46).

Overall, these data point out that M1-like TAMs infiltrate may be

associated with a favorable survival rate in several cancer pathologies.
M2-like TAMs as prognostic marker

The alternative activated M2-like phenotype promote cancer

cells growth through the secretion of pro-angiogenic factors, like

vascular endothelial growth factors, and immunosuppressive

factors, as IL-10 and TGF-b (47). This M2-like phenotype is

considered as pro-tumoral increasing neovascularization,

angiogenesis, infiltration and consequently metastatization; has

therefore an immune-suppressive activity and antitumor adaptive

immune response (14, 16, 26, 48).

High number of M2-like TAMs were observed associated with

tumor growth and poor patient prognosis in breast (562 Finland,

144 Sweden patients), NSCLC (349 Korean patients) and melanoma

(184 Finland, 94 Italian patients) cancers (49–52).

Overall, these studies highlight that M1 and M2 TAMs may be

useful markers of patient prognosis (M1-like better and M2-like
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worst) regardless of tumor type and patient ethnicity. However,

meta-analyses considering prospective studies employing

standardized methodology and larger sample sizes are still

needed to validate the prognostic significance of M1 and M2

TAMs infiltration.

Metabolism as modulator of macrophage functionality

driving the balance between M1-like and M2-like TAMs

might lead to different strategies for chemotherapeutic and/or

immunotherapeutic approaches.
Mass spectrometry-based
metabolomics approaches in
cancer research

Metabolomics is the large-scale study of endogenous small

molecules of low molecular weight molecules (<1000 Da),

commonly known as metabolites, within cells, biofluids, tissues, or

organisms. Metabolomics together with genomics, transcriptomics,

and proteomics, drive the connection between the genotype and the

phenotype in both physiological and pathological processes in order

to be a powerful tool in biomarker discovery, developing drugs, and

personalized medicine (53–55). Metabolomics is an essential tool for

the simultaneous measurement and quantification of thousands of

small metabolites from biological matrices, with the possibility to be

hypothesis-generating, without a priori knowledge, or hypothesis-

driven, with a priori knowledge about the metabolites present in the

sample. The applicability of metabolomics in identifying metabolic

dysregulation has been demonstrated in a wide range of human

diseases, including cardiovascular diseases, diabetes, obesity, and

cognitive disorders, but also cancers (54). For this reason,

metabolomics could be considered a promising approach for the

identification of metabolites acting as biomarkers to allow early

diagnosis, to follow pathological processes and progression or

response to treatments.

The two main analytical techniques employed for metabolomics

profiling are Nuclear Magnetic Resonance (NMR) and Mass

Spectrometry (MS), which allow the achievement of both

qualitative and quantitative information. We will focus on the

role of MS as a powerful tool for the identification of a large set

of ionized analytes based on their mass-to-charge ratio (m/z)

(53, 56).
Analytical methods for
MS-based metabolomics

MS is usually coupled with a chromatographic separation

system (hyphenated techniques), such as gas chromatography

(GC)-MS, liquid chromatography (LC)-MS [both high-

performance LC (HPLC) and ultra-performance LC (UPLC)],

and capillary electrophoresis (CE)-MS, but a sample could be also

directly injected into the MS (flow-injection analysis-MS) (56, 57).

GC-MS is employed for the identification of volatile compounds,

like fatty acids and organic acids, requiring a derivatization step
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before the analysis (58). Electron impact (EI) and chemical

ionization (CI) sources are commonly used with a GC separation

system (59). However, LC-MS does not require any derivatization

and allows the detection of more analytes (60), and it is usually

combined with an electrospray (ESI) and CI sources.

CE-MS allows the separation of polar and charged metabolites

based on their electrophoretic mobility, an intrinsic property that

depends on the size and charge of the molecule (61). To date, MS-

based metabolomics strategies are widely employed in the tumor

research area to identify biomarkers for prediction, diagnosis, and

prognosis (62, 63).
Metabolomics approaches

Untargeted and targeted MS are the two methods used for the

identification of endogenous small molecules (58). The untargeted

strategy allows the identification of a huge number of metabolites

with high accuracy using high-resolution MS, without knowing

basic information about the metabolome of the sample.

Orbitrap and Time-of-flight (ToF) are the preferred mass

analyzers for high-resolution untargeted metabolomics analysis.

Ionized molecules in the orbitrap analyzer are forced to move in

complex spiral patterns by the electrostatic field, combining axial

oscillations with rotation around the central axis (56). Different

frequencies of oscillation are then associated with different m/z. In

the ToF analyzer, ions with initial kinetic energy enter a field-free

drift region of known length and are dispersed in time based on

their different m/z. Ions with the larger m/z arrive at the end of the

drift length after ions with a smaller m/z (64).

Then, after the final ion detection, the use of database is

required for metabolites identification and annotation [HMDB

(65), METLIN (66)]. This annotation is performed by comparing

the experimental mass to libraries within a mass tolerance frame,

depending on the mass spectrometer used for the analysis (58, 60,

67). On the other hand, the information should be incomplete cause

of employed solvents, pH, chromatographic separation, ionization

techniques; and the detection of chemical unknowns with no

annotation in database. MS/MS fragmentation experiments are

then required to confirm the metabolites’ structure, especially to

distinguish co-eluting isobaric species (67).

Targeted metabolomics is a hypothesis-driven strategy that

allows the identification of a specific set of metabolites from a

panel of interest with high accuracy, selectivity and sensitivity (59).

Triple quadrupole (QQQ) and quadrupole ion trap are useful

mass analyzers for targeted metabolomics (56, 58). QQQ is the most

common type of tandem MS, the first and the third quadrupole are

used as mass filters, while the second quadrupole is used as a

collision cell to generate fragment ions. Into the Q, ions with a

particular range of m/z values have stable periodic trajectories

imposed by the direct current and the radio frequency potential

of the four rod electrodes composing the Q that periodically

changes in time (56, 68). The voltage polarity between two

adjacent rods is opposite (64). The quadrupole is often combined

with other mass analyzers to filter ions to remove matrix ions such

as in Q-Trap.
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The ion trap analyzer is a modification of the Q with improved

sensibility. The operating principle of Q and ion trap is the same:

ions of different m/z are selectively ejected from the analyzer by

varying the radio frequency potential (68).

Targeted metabolomics allows the quantification and semi-

quantification using internal standards (69) and the Multiple

Reaction Monitoring (MRM) approach, performed on QQQ or

Q-ion trap, is used for the exact identification of the molecules of

interest, selecting specific precursor and product ions.

The number of publications in PubMed related to cancer

metabolomics shows that the MS-based approach has been largely

preferred over NMR with more than 4000 results obtained for the

search query “cancer metabolomics AND mass spectrometry” and

less than 1500 results obtained for the search “cancer metabolomics

AND NMR”, supporting the higher impact of MS-based techniques

on cancer research.
MS-based metabolomics limitations and
future perspective

Mass spectrometry (MS) techniques, because of their sensitivity

and selectivity, have become methods of choice to characterize the

human metabolome, being able to detect and quantify many

thousands of metabolite features simultaneously. Because the

metabolite composition is central to every living organism the in-

depth biological insides, metabolomics can advance research across

a variety of scientific areas. However many challenges still exist for a

successful metabolomics study. Much has been discussed on this

issue elsewhere (67, 70, 71), here we address few of the unique

challenges for metabolomics. The first one is analytical, due to the

chemical diversity of the metabolites, their wide dynamic range and

the confidence for their unambiguous identification. To this

purpose, implementation of analytical and bioinformatic tools for

the accurate and standardized metabolites identification is a current

goal to be achieve for a large-scale coverage of metabolites and to

facilitate data processing. Although there is no single analytical

platform strategy that provides the complete coverage for the whole

metabolome, there are common experimental criteria to all

strategies that need to be addressed. Robust metabolomics results

hinge on further key elements such as a proper study design (e.g.

number of observations, power size, and sampling storage), method

optimization, data processing and final validation. The application

of this virtuous workflow will help not only in assigning biological

meaning to metabolites but also to move towards finding robust

mechanism of diseases. Metabolomics as for the other omics, is not

a separate discipline, and the implementation of bioinformatic

algorithms and computational strategies for multi-omics

integration is fundamental to place metabolites in a biological

context and to associate metabolites with phenotype causality.

This promotes the understanding of metabolome in a system-

wide level in order to develop personalized treatments and help

in early diagnosis of disease. It is believed that the continuous

progress in technologies together with bioinformatics and

computational tools will feed metabolomics research to guide not
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only biomarkers discovery but also to delve and discover

mechanisms of disease development and progression.
The MS-based metabolomics profile
of TAMs in cancer pathologies

Exploring the biochemical mechanisms underlying TAMs

polarization during tumor development and progression could

contribute to the development of new therapeutic approaches. In

the last few years, metabolism of M1 and M2-like macrophages was

mainly studied in in-vitro polarized TAMs (72, 73). Nevertheless,

the in-vivometabolic phenotypes of resident TAMs directly isolated

from fresh tumor specimens are not largely explored. Considering

the heterogeneity of activation stimuli from TME, deciphering the

TAMs metabolism in the tissue has a vital importance in

cancer research.

We summarized the scientific analysis of TAMs metabolism

obtained by MS-based metabolomics studies in different cancer

pathologies. MS-based studies on TAMs metabolism could

determinate the metabolic alterations in different metabolic

pathways such as glycolysis, mitochondrial machinery, amino

acids, and lipid metabolism. These information are critical for

identifying new biochemical pathways underlying tumor resident

TAMs polarization useful to influence overall patient survival.
Central cellular biochemical pathways
in TAMs

Untargeted metabolomics by using CE-ToF-MS of in-vivo

sorted murine TAMs from a colon adenocarcinoma xenograft

model in both early (14 days after tumor implantation) and late

tumor stage (28 days after tumor implantation) showed an

increasing of different cellular metabolic pathways (glycolysis,

methionine metabolism, TCA cycle, and glutamine and glutamate

metabolism) in the tumor resident TAMs relative to myeloid-

derived suppressor cells (74). This metabolic asset [increase in

oxidative phosphorylation (OXPHOS) and glycolysis] of TAMs

was confirmed in peritoneal Mf macrophages isolated from naive

and ID8 tumor-bearing mice (75). The untargeted metabolomics

(GC-TOF) identified itaconic acid, the product of the catabolism of

mitochondrial cis-aconitate, the most highly upregulated

metabolites in Mf macrophages of tumor-bearing mice (75). The

high glycolytic activity of TAMs was also observed by untargeted

metabolomics (by means of UHPLC-Orbitrap) on in-vitro

generated human pancreatic ductal adenocarcinoma (PDAC)

TAMs. The mixed M1/M2 TAMs generated from monocytes

exposed to PDAC conditioned medium were characterized by

elevated glycolysis, increased lactate production and reduced

OXPHOS compared to normal macrophages (76).

The reliance on glycolysis of pancreatic cancer derived TAMs

was confirmed by untargeted metabolomics (using both LC-ToF-

MS and CE-ToF-MS) on TAMs deleted for the Glucose Transporter

1 (GLUT1). Tumor resident GLUT1 deleted TAMs showed the
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decrement of glycolytic intermediates such as glucose-6-phosphate

and fructose 1,6-biphosphate with no substantial difference of the

TCA cycle relative to control (77).

For the characterization of metabolic pattern characteristic of

M1 and M2-like TAMs, a metabolic flux analysis (13C-labeling

experiments coupled with GC-MS) on in-vivo sorted NSCLC

resident TAMs (3LL-R Lewis lung murine model) was used. In

this model M1-like TAMs (major histocompatibility complex

(MHC)-IIhi) display a hampered tricarboxylic acid (TCA) cycle,

while M2-like TAMs (MHC-IIlo) show higher OXPHOS and

glycolytic metabolism (78). Another metabolic profiling (through

UPLC QQQ tandem MS) of in-vitro conditioned PDAC TAMs

indicated that nucleoside metabolism is the principal biochemical

pathway able to distinguish TAM and M2 macrophages from the

M1 (72).

Metabolism of M1 was also studied in ex vivo NSCLC tumor

slices. Slices were treated with the macrophage activator b-glucan,
and metabolic changes were monitored by metabolic flux analysis

(13C6-glucose LC–MS). MS highlighted a higher synthesis of

itaconate and higher levels of NADPH in M1-like generated

TAMs relative to the general TAMs population (79).
Lipid metabolism in TAMs

Lipidomics is focused on the identification of lipid species

present within a cell, organ, or biological system. The lipidome

compartment in the cells is composed of several lipid categories

(e.g., fatty acids, glycerolipids, sphingolipids, and sterol lipids).

Among the metabolic alterations observed in TAMs, lipid

metabolism seems to directly affected TAMs polarization and

function (80).

Eicosanoids quantification (Target lipodomics by using LC-

QQQ tandem MS) on in-vivo sorted tumor resident TAMs

populations (resident alveolar macrophages MacA and M2-like

TAMs MacB) in orthotropic lung cancer model, showed that M2-

like TAMs had low level of eicosanoids production relative to

resident alveolar macrophages (81).

Global lipidomics analysis (by using LC-HRMS with Orbitrap)

on in-vitro generated TAMs (monocytes exposure to gastric cancer

conditioned medium) showed almost 10-fold higher triacylglycerol

levels relative to control macrophages (73). This data was also

supported by the high amount of total lipid found in in-vivo TAM

sorted from both murine and human gastric cancer specimens. The

lipid accumulation seems to occur by uptakes of lipids released by

cancer cells, that drives TAMs polarization toward an M2‐like

profile (73). Finally, target lipidomics (by QTrap analyzer) on

conditioned medium from in-vivo sorted TAMs reveal that M2-

like TAMs (CD163+CD206+) actively released of PLA2G7 and

autotaxin that play an essential role in ovarian cancer invasiveness

and metastatic spread (82).
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Overall, mass spectrometry-based metabolic profiling of TAMs

converges to define the increased glycolytic and OXPHOS activity

of TAMs relative to control macrophages also considering the in-

vivo sorted and in vitro conditioned TAMs (Table 1). Considering

the heterogeneity of the TAMs populations in the cancer

microenvironment and the different experimental settings for

determining TAMs subpopulation, it is difficult to speculate the

attribution of the augmented metabolism at a particular TAMs

populations. It is possible to speculate that M2-like TAMs identified

as CD11b+Ly6G−Ly6ClowMHC-IIhigh (78) rely on glycolysis,

mitochondrial machinery, and lipid metabolism to sustain their

functionality (Table 1). On the contrary, M1-like TAMs, when

compared to the general control macrophages cells, seem be less

metabolic active with a hampered OXPHOS capacity (Table 1).

These data only partially agree with the metabolic characteristics of

M1, and M2 polarized macrophages. Indeed, the M2 phenotype is

mainly defined by a poor glycolytic profile with higher arginine

metabolism and preferential fatty acid oxidation (oxidative glucose

metabolism) and OXPHOS (5, 19) (Figure 1).
Discussion

TAMs are one of the most common immune cells in the TME

and they are characterized by a great plasticity and adaptability

to the environment they infiltrate by re-programming their

activation state towards a pro- (M1) or an anti- (M2)

inflammatory phenotype (26). Macrophages polarization in

various malignancies appears to be complex, and the M1 to M2

phenotype switching can occur during cancer progression. M1-

like and M2-like TAMs can be co-expressed inside the tumor

environment and their ratio can change during cancer

progression. A high amount of M1-like TAMs is typical of the

early stages of tumors development and it is associated with good

prognosis in several malignancies, while M2-like TAMs have a

strong correlation with worst prognosis and advanced tumor

stage. Understanding and deciphering the complexity of

metabolic mechanisms involved in TAMs polarization could be

a useful strategy to target cancer. Mass spectrometry-based

metabolomics/lipidomics provide the capability to profile and

detail the metabolic alterations in TAMs providing new

mechanistic hypothesis for find more effective TAMs-targeted

therapy. The collected results point to the fact that there are few

articles dissecting the metabolic characteristics of the in-vivo

derived human TAMs populations and up to now it is only

possible to state that in-vivo patient derived TAMs populations

(mixed M1- M2-like phenotypes) had an augmented metabolic

activity that not completely recapitulate the M1, M2 macrophages

metabolic peculiarity. Of note, current evidence based on MS-

metabolomics studies are still limited and mostly focused

in comparing TAMs metabolism relative to non-tumor
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counterparts, thus not allowing an in-depth metabolic

characterization of TAMs subset. So far, metabolic profiling is

mainly related to the general description of metabolic pathways

and does not go deeply into the definition of the enzyme activity to

discover new fragi le metabol ic points that might be

pharmacologically targeted. Considering the technological

advances in the field of cytofluorimetry and mass spectrometry,

it is urgent and feasible to investigate the metabolic structure of

TAMs sorted directly from patients, without having to analyze

orthotropic mouse models or in vitro conditioned monocytes.

Therefore, more effort is needed to implement bulk metabolic

analyses such as targeted metabolomics, 13C-label-tracing, and

extracellular flux analysis to provide the complete metabolic picture

and address the therapeutic implications of TAMs metabolism.
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TABLE 1 List of papers employing mass spectrometry based metabolomics approaches to describe the metabolic state of TAMs populations.

Study Specimens TAMs populations Metabolic
pathways

Trend of metabolic alterations

(74)
Subcutaneous colon
adenocarcinoma mouse
model

General macrophages (CD11b+ sorted cells)

Glycolysis
TCA cycle
Glutamine
Methionine
metabolism

Increased in CD11b+ resident tumor cells
relative to the spleen resident cells)

(75)
Orthotropic mouse model
of ovarian cancer

General macrophages (F4/80+ sorted cells).
Glycolysis
Polyamines
TCA cycle

Increased in resident peritoneal macrophages Mf
of bearing tumor mice relative to peritoneal
resident naive Mf

(76)
Human pancreatic ductal
adenocarcinoma (PDAC)
cell lines

Mixed M1, M2 phenotype (in-vitro conditioned
monocytes CD68+, CD163+, M-CSFR, and CD206+)

Glycolysis
Increased in conditioned TAMs relative to
control monocytes

(77)
Orthotropic mouse model
of PDAC

General macrophages (CD45+ sorted cells) Glycolysis
Increased in resident tumor CD45+ TAMs
relative to the non-tumor bearing controls cells

(78)
Subcutaneous Lewis Lung
carcinoma mouse model

M1-like and M2-like TAMs (CD11b+Ly6G
−Ly6ClowMHC-IIlow and CD11b+Ly6G
−Ly6ClowMHC-IIhigh sorted cells)

TCA cycle
Glutamine
metabolism

Increased in tumor resident MHC-IIhi TAMs
relative to the Ly6ClowMHC-IIlow

(72) Human PDAC cell lines
M2 macrophages (in-vitro conditioned murine bone-
marrow-monocytes)

Pyrimidines
Increased in conditioned murine M2 like TAMs
relative to control macrophages

(79)
Non-small cell lung
cancer tumor slices

M1-like TAMs (iNOS and CD68+ stained cells)
Glycolysis
TCA cycle

Increased in iNOS and CD68+ TAMs

(81)
Orthotropic Lewis lung
mouse model

Mixed macrophages populations (SigF+/CD11c
+/F480+/CD11b (MacA), F480+/CD11b+/Ly6G-/
SigF-, (MacB) sorted cells)

Eicosanoids Increased in MacA relative to MacB populations

(73) Gastric cancer cell line
M2-like TAMs (in-vitro conditioned CD206, CD163,
TGFb, Arg‐1 murine bone-marrow cells)

Triacylglycerol
Increased in conditioned TAMs relative to
control

(82)
High-grade serous
adenocarcinoma

General macrophages (EpCAM+ CD14+ CD163+
CD206+ sorted cells)

Lysophosphatidic
acid

Increased in TAMs populations
For each paper, the reference, the specimens, the TAMs populations selected in the study, the altered metabolic pathway and the trend of deregulation.
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