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Exome sequencing to explore
the possibility of predicting
genetic susceptibility to the
joint occurrence of polycystic
ovary syndrome and
Hashimoto’s thyroiditis
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Katarzyna Jankowska5, Monika Grymowicz3,
Roman Smolarczyk3 and Ewa E. Hennig1,2*

1Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate
Medical Education, Warsaw, Poland, 2Department of Genetics, Maria Sklodowska-Curie National
Research Institute of Oncology, Warsaw, Poland, 3Department of Gynaecological Endocrinology,
Medical University of Warsaw, Warsaw, Poland, 4Institute of Computer Science, Polish Academy of
Sciences, Warsaw, Poland, 5Department of Endocrinology, Centre of Postgraduate Medical Education,
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A large body of evidence indicates that women with polycystic ovary syndrome

(PCOS) have a higher risk of developing Hashimoto’s thyroiditis (HT) than healthy

individuals. Given the strong genetic impact on both diseases, common

predisposing genetic factors are possibly involved but are not fully understood.

Here, we performed whole-exome sequencing (WES) for 250 womenwith sporadic

PCOS, HT, combined PCOS andHT (PCOS+HT), and healthy controls to explore the

genetic background of the joint occurrence of PCOS and HT. Based on relevant

comparative analyses, multivariate logistic regression prediction modeling, and the

most informative feature selection using the Monte Carlo feature selection and

interdependency discovery algorithm, 77 variants were selected for further validation

by TaqMan genotyping in a group of 533 patients. In the allele frequency test,

variants in RAB6A, GBP3, and FNDC7 genes were found to significantly (padjusted <

0.05) differentiated the PCOS+HT and PCOS groups, variant in HIF3A differentiated

the PCOS+HT and HT groups, whereas variants in CDK20 and CCDC71

differentiated the PCOS+HT and both single disorder groups. TaqMan genotyping

data were used to create final prediction models, which differentiated between

PCOS+HT and PCOS or HT with a prediction accuracy of AUC = 0.78. Using a 70%

cutoff of the prediction score improved the model parameters, increasing the AUC

value to 0.87. In summary, we demonstrated the polygenic burden of both PCOS

and HT, and many common and intersecting signaling pathways and biological

processes whose disorders mutually predispose patients to the development of

both diseases.

KEYWORDS

polycystic ovary syndrome, autoimmune thyroid disease, Hashimoto thyroiditis (HT),
whole-exome sequencing (WES), prediction model, immune response, female
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1 Introduction

Both polycystic ovary syndrome (PCOS) and Hashimoto’s

thyroiditis (HT) are common endocrinopathies, affecting 5-20% of

the female population of reproductive age (1, 2), with a prevalence

that varies depending on the ethnicity of the population and the

diagnostic criteria used (3, 4). PCOS is a heterogeneous disorder

characterized mainly by hyperandrogenism, ovarian dysfunction

often manifested as chronic oligo- or anovulation, and polycystic

ovarian morphology (PCOM) on pelvic ultrasonography. Because

two of these three features must be present for PCOS diagnosis

(Rotterdam criteria) (5), their different combinations determine the

various phenotypes of the disease (6).

HT is an organ-specific T cell-mediated autoimmune disorder

in which an autoimmune attack targeting components of the

thyroid gland can lead to a decreased production of thyroid

hormones (hypothyroidism) (3). HT is considered the main cause

of hypothyroidism, although it can persist for years without

noticeable thyroid dysfunction (7). As a result, HT has a clinically

heterogeneous presentation, ranging from the presence of thyroid

antibodies but normal thyroid function (euthyroidism) to

subclinical hypothyroidism, defined as a serum thyroid-

stimulating hormone (TSH) level above the reference limit and a

normal level of free thyroxine (fT4), and finally, overt

hypothyroidism, in which the fT4 level is reduced below the

normal limit and TSH is further increased (8, 9). In most cases,

HT eventually progresses to hypothyroidism, even though patients

were euthyroid or even transiently hyperthyroid (hashitoxicosis) at

the time of presentation (10). However, it should be noted that the

definition of HT is not unambiguous and some authors define HT

as hypothyroidism and elevated levels of antithyroid antibodies.

Nearly all patients with HT (90-95%) have antibodies against

thyroid peroxidase (TPO) and 60-80% have antibodies against

thyroglobulin (Tg) (11, 12). In general, the diagnostic criteria for

HT are based on the detection of elevated serum levels of anti-TPO

and/or anti-Tg antibodies and a typical hypoechogenic pattern in

the thyroid gland on ultrasound imaging (13).

PCOS and HT share several common symptoms and may be

accompanied by similar endocrine and metabolic disorders,

including inflammation, insulin resistance, and dyslipidemia,

which contribute to the increased risk of obesity, diabetes,

cardiovascular disease, and cancer (14–17). Both disorders are the

leading causes of reproductive complications and infertility in

women of childbearing age (18). A growing number of studies

have indicated a higher incidence of various thyroid disorders in

patients with PCOS than in the general population (19, 20).

According to several meta-analyses, HT occurs approximately

three times more often among patients with PCOS than among

healthy women, with a slightly higher prevalence in Asian

populations than in European and South American populations

(21–24). Interestingly, a higher risk of developing PCOS was

observed among Asian patients with newly diagnosed HT but was

lower than the risk of developing HT among PCOS patients in the

same population (25).
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While the close interaction between PCOS and HT seems

indisputable, its causes are not entirely clear. Current research has

shown that epigenetic changes may play a leading role in the

etiology of both diseases. In turn, such post-translational

modifications of the genome depend on the environmental

changes during the lifetime (26–28). Growing evidence suggests

that environmental factors can trigger epigenetic modifications that

may lead to the development of the disease in genetically susceptible

individuals (29–31). Given the strong genetic component in the

heritability of PCOS and HT, exceeding 70% (32, 33), it can be

assumed that some elements of their genetic backgrounds are

common or mutually predispose to the joint occurrence of these

diseases. Although many candidate gene and genome-wide

association studies (GWAS) have been performed for each of

these diseases (19, 34–36), genetic variants predisposing

individuals to the joint occurrence of both disorders have not yet

been extensively studied. To date, only a few polymorphisms

contributing to both PCOS and HT have been proposed,

including the most convincingly described polymorphisms in

FBN3, CYP1B1, and GNRHR, and GWAS-selected single

nucleotide polymorphisms (SNPs) in FSHR and INSR which are

common in PCOS and HT (17, 19, 37).

Despite many efforts, PCOS- or HT-related variants identified

by GWAS account for only a small proportion of the estimated

disease heritability (38–40), likely due to the specificity of the

GWAS technique, which primarily identifies SNPs in non-coding

regions as common markers of linkage disequilibrium with causal

variants. PCOS and HT are highly polygenic disorders, in which

both common and rare variants may account for multifactorial

susceptibility. Unlike GWAS, whole-exome sequencing (WES)

allows the identification of variants in the coding region, which

are often rare and have a functional effect (41). Several new variants

have been discovered in studies using WES for both familial and

sporadic cases of PCOS and HT (42–49), confirming that this

approach can be effective in discovering genes underlying

complex diseases. To date, WES has not been employed to search

for susceptibility variants related to the risk of joint occurrence of

PCOS and HT. In this study, we performed WES to investigate the

genetic background and biological pathways associated with both

disorders and explored the possibility of predicting the genetic

susceptibility to their joint occurrence.
2 Materials and methods

2.1 Ethics statement

All enrolled patients and controls were Polish Caucasians. The

local ethics committee approved the study (Medical University of

Warsaw, No: KB/200/2015 and Centre of Postgraduate Medical

Education, No: 77/PB/2017, Warsaw, Poland), and all participants

provided written informed consent before participating in the

study. The study protocol conformed with the ethical guidelines

of the 1975 Declaration of Helsinki.
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2.2 Study population

A total of 571 women aged 15-45 were recruited for this study.

Of these, 250 were included in WES: 70 patients with PCOS (P

group), 71 with HT (H group), 71 with both PCOS and HT (P+H

group), and 38 healthy women in the control group (K group). To

ensure the greatest possible homogeneity of the study groups,

stricter inclusion and exclusion criteria were used to recruit

patients. Patients included in the WES must meet all three

Rotterdam criteria (5) for the diagnosis of PCOS: chronic

anovulation or infrequent ovulation, hyperandrogenism

presenting as elevated androgenic hormone levels, and the

presence of PCOM on ultrasound examination. A serum

progesterone (PRG) concentration of ≤ 3 ng/ml on the 22nd to

24th day of the cycle confirmed an anovulatory cycle.

Oligomenorrhea was defined as a menstrual cycle duration > 35

days, and secondary amenorrhea was defined as a lack of menstrual

bleeding for over six months. Clinical hyperandrogenism manifests

as hirsutism, acne, and alopecia. The degree of hirsutism was

assessed using the Ferriman-Gallwey scale, and the cutoff point

indicative of hirsutism was defined as a score of at least eight points.

Biochemical hyperandrogenism involves elevated levels of

androgen hormones (testosterone and androstenedione). Pelvic

ultrasound was performed using ProSound Alpha 7 equipment

(Hitachi-Aloka Medical America Inc., Wallingford, CT, USA) to

assess ovarian morphology. The presence of at least 12

circumferentially located follicles that are 2-9 mm in diameter in

each ovary or an ovarian volume > 10 ml without the presence of

confounding pathology was considered indicative of PCOM. The

exclusion criteria were as follows: refusal to participate in the study

and diagnosis of hyperandrogenism due to causes other than PCOS,

such as nonclassical adrenal hyperplasia, androgen-secreting

tumors, or Cushing syndrome. An additional exclusion criterion

was the use of oral contraception, glucocorticoids, biguanides, and

other drugs, supplements or herbs that could affect the hormonal

function and serum androgen levels, for up to six months before

participation in the study.

The inclusion criteria for patients with HT included, at least, an

elevated serum level of anti-TPO autoantibodies and reduced

echogenicity of the thyroid gland on the ultrasound image. This

means that all patients had elevated anti-TPO antibodies, and the

majority (excluding seven patients) also had elevated anti-Tg

antibodies. Echogenicity was assessed in both the thyroid lobes

and muscles surrounding the neck. Hypoechogenicity was assessed

by comparing the distribution of echoes in the thyroid parenchyma

with those in the surrounding neck muscles. For the remaining

patients in the study who were not included in the WES, the

criterion of PCOM presence may not have been met in cases of

PCOS, and an elevated level of anti-Tg autoantibodies, in addition

to the hypoechogenic thyroid gland, was sufficient for the diagnosis

of HT. Approximately 55% of the patients with HT or PCOS+HT

were supplemented with levothyroxine because of additionally

diagnosed clinical or subclinical hypothyroidism. At the time of

recruitment and blood collection, all patients with HT were

euthyroid, either because hypothyroidism had not yet developed
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or as a result of adequate supplementation. Baseline serum levels of

relevant autoantibodies, hormones, and endocrine parameters were

determined as part of routine diagnostic procedures. See

Supplementary Table S1 for the ranges of s tandard

concentrations. The demographic and clinical characteristics of

the enrolled patients and controls are shown in Table 1.
2.3 Nucleic acid extraction

Total genomic DNA was extracted from whole blood treated

with EDTA using a QIAamp DNA Mini Blood Kit (Qiagen GmbH,

Hilden, Germany) according to the manufacturer’s instructions.

Quantity and purity of extracted DNA were measured using

Qubit™ dsDNA HS Assay Kit on Qubit fluorometer 2.0 (Thermo

Fisher Scientific, Waltham, MA, USA) and NanoDrop 2000

spectrophotometer (Thermo Fisher Scientific, Waltham, MA,

USA), respectively.
2.4 Whole-exome sequencing and exome
sequence data analysis

Exome regions were captured using the Twist Human Core

Exome Kit with RefSeq and Mitochondrial Panel (Twist Bioscience,

San Francisco, CA, USA). Paired-end sequencing (2 × 100 bp) was

performed using an Illumina NovaSeq 6000 next-generation

sequencing platform (San Diego, CA, USA), yielding a minimum

read depth of 40x in the cohort. The generated reads were aligned to

the human reference genome build, hg19, from the UCSC Genome

Browser, using Bowtie2 (version 2.4.4) (50). After removing

duplicate reads and base quality recalibration using Picard tools

(http://broadinstitute.github.io/picard), genetic variations were

determined using the Genome Analysis Toolkit (GATK)

HaplotypeCaller with the default parameters (51). Variant

genotyping was implemented using the GATK GenotypeGVCFs

tool with the dbSNP build 155 vcf file as a reference and the variant

call confidence score set to 50.

After variant quality control (QC), ethnicity was inferred using

the R package EthSEQ (version 2.1.4) (52) based on ancestry

reference samples from the 1000 Genomes Project (http://

www.1000genomes.org), indicating that all samples were within the

European population. Principal Component Analysis of WES data

generated for all 250 participants, implemented using Plink version

1.9, identified seven outliers that were excluded from further analysis.

A Variant Effect Predictor (VEP; GRCh37 Ensembl release version

105) (53) was used to assess the potentially deleterious effects (high,

moderate, low, or modifier impact) of the exome variants (http://

www.ensembl.org/index.html).
2.5 Association analyses

Four association analyses were conducted using a variant in the

hg19 sequence as the reference allele. The principal analysis
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assumed a dominant mode of inheritance, where the number of

alternate allele genotypes and reference allele homozygotes were

compared using Fisher’s exact test conducted in rvtests version

20170613 (54). The same test was used for two other analyses: a

comparison of the number of alternate allele homozygotes with

other genotypes (recessive mode of inheritance) and a comparison

of both alternate and reference allele frequencies (allelic test).

Individual genotype frequencies were analyzed using Plink

version 1.9.

Functional enrichment analysis in sets of selected genes was

conducted using the Cytoscape platform v.3.6.1 with the ClueGO

v.2 .5 .1 appl icat ion (55) and GeneAnalyt ics program

(geneanalytics.genecards.org) (56), based on Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases,

using the default settings and the p-value adjusted (padj-value) for

multiple comparisons with the Benjamini–Hochberg algorithm with

significance threshold < 0.05 (57). Candidate gene prioritization was

conducted us ing the Endeavour approach (ht tps : / /

endeavour.esat.kuleuven.be/) (58), using genes associated with HT

and PCOS according to the Malacards database (59) as the training set.
2.6 Prediction models – stepwise forward
logistic regression analysis

Multivariate logistic regression was used to create models to

predict the risk of joint occurrence of PCOS and HT. For the
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selection of marker SNPs, variants significantly associated (p < 0.05)

with the joint occurrence of PCOS and HT in any of the four

association analyses were clumped using Plink version 1.9 with

default parameters (variants with p < 10-3 in the 250 kb region).

Body mass index (BMI) value was included as an additional

variable. Predictive analysis was performed using a stepwise

forward logistic regression method, with the Akaike information

criterion (AIC) as a variable selection criterion and the step function

of the R basic statistics package. Significant SNPs were ranked

according to their AIC values, starting from the variant with the

lowest AIC value, and were sequentially introduced into the

prediction model. Nagelkerke’s pseudo-R2 value for each step was

computed with the DescTools package, version 0.99.40 (60) to

estimate the proportion of the overall risk of developing PCOS

and HT.

The area under the ROC curve (AUC) value, describing the

accuracy of the prediction, was computed using the pROC package,

version 1.16.2 (61). 10-fold cross-validation was performed to avoid

model overfitting. The remaining parameters describing the

prediction accuracy were calculated using two probability

threshold levels: 50% and 70%. A probability threshold of 50%

means that PCOS+HT was predicted if the prediction probability

was ≥ 50%. If the probability was < 50%, a non-PCOS+HT stage was

predicted. A probability threshold of 70% means that PCOS+HT

was predicted only if the prediction probability was ≥ 70%.

Prediction results that did not reach the 70% probability
TABLE 1 Clinical and hormonal characteristics of study participants.

Parameter

PCOS
N = 203

HT
N = 164

PCOS+HT
N = 166

Control
N = 38

Kruskall
Wallis

Median (IQR) Median (IQR) Median (IQR) Median (IQR) padj-value

Age (years) 24 (7)* 33 (8)** 27 (7.25) 30.5 (10.25)* 2.2 × 10-25

BMI (kg/m2) 25 (7.9) 24 (5)* 26 (10.5) 22.1 (4.18)* 3.4 × 10-3

FSH (mIU/ml) 4.97 (1.67) 5.5 (2.38)* 4.75 (2.1) 5.52 (1.23) 2.8 × 10-4

LH (mIU/ml) 7.6 (5.53)* 4.9 (2.9)** 6.06 (4.46) 4.77 (1.39)* 3.9 × 10-13

LH/FSH 1.5 (1.14)* 0.85 (0.44)** 1.3 (0.97) 0.81 (0.38)** 8.5 × 10-24

E2 (pg/ml) 37.5 (21.0)* 42 (43) 41 (24.5) 41.5 (28) 7.0 × 10-3

T (ng/ml) 0.55 (0.22) 0.32 (0.11)** 0.56 (0.23) 0.3 (0.1)** 1.1 × 10-50

A (ng/ml) 4.08 (1.75) 1.9 (0.8)** 3.9 (1.37) 1.94 (0.31)** 1.6 × 10-67

PRG (ng/ml) 0.27 (0.2)** 8 (8.48)** 0.43 (2.42) 11 (5)** 1.6 × 10-45

17-OH-PRG (ng/ml) 1.74 (1.34)* 1.04 (0.67)** 1.38 (1.2) 1.2 (0.57) 7.1 × 10-18

DHEAS (mmol/l) 9.26 (4.82) 6.23 (3.48)** 8.36 (4.65) 6.88 (3.16)* 1.1 × 10-13

TSH (mIU/ml) 1.55 (0.83) 1.47 (1.07)* 1.72 (1.18) 1.48 (1.12)* 5.4 × 10-2

fT4 (pmol/ml) 12.41 (1.91) 12.9 (2.55) 12.7 (2.38) 12.49 (1.26) 1.9 × 10-2

TPO-Ab (IU/ml) 0.33 (0.49)** 254 (557) 127 (404) 0.46 (0.64)** 8.1 × 10-76

Tg-Ab (IU/ml) 1.38 (1.17)** 36 (90.58) 41 (95.75) 1 (0.56)** 3.6 × 10-74
f

Data are shown as median and interquartile range (IQR). Bold value indicates statistically significant difference with PCOS+HT group (*p < 5 × 10-2, **p < 10-4). A, androstenedione; BMI, body
mass index; DHEAS, dehydroepiandrosterone sulfate; E2, estradiol; FSH, follicle-stimulating hormone; fT4, free thyroxine; HT, Hashimoto’s thyroiditis; LH, luteinizing hormone; PCOS,
polycystic ovary syndrome; PRG, progesterone; T, testosterone; Tg-Ab, anti-thyroglobulin antibody; TPO-Ab, anti-thyroid peroxidase antibody; TSH, thyroid-stimulating hormone.
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threshold were considered to be inconclusive (30-70%) or no-PCOS

+HT (< 30%).
2.7 Monte Carlo feature selection
and interdependencies discovery –
feature importance

The Monte Carlo feature selection and interdependency

discovery (MCFS-ID) method implemented in the rmcfs R

package, as the mcfs() function, was used to perform supervised

feature selection (62, 63). The data input to the mcfs() function was

in the form of a decision table, in which features were stored as

columns, and one row reflected one patient. To fix the input data

values, column names, and attribute types, the fix.data() function

was applied (63). The initial data consisted of 175,376 features

(WES-identified variants and BMI). Of these, 1979 showed no

variance across patients and was excluded. To evaluate the feature

potential for distinguishing patients between groups (P+H vs. P and

P+H vs. H), two computational runs were performed using the

MCFS-ID algorithm. In each, the algorithm builds thousands of

decision trees on randomly selected subsets of features and patients

to obtain the relative importance (RI) score for each feature. Based

on the calculated RI, two rankings of features that best predicted the

samples belonging to a given group were returned. The permutation

method was used to evaluate the significance of the top features.

Because further steps of the analysis assumed verification of the

significance of the returned features, the relaxed cutoff point was

used according to the critical angle cutoff point implemented in the

MCFS-ID. Finally, to maintain an equal number of features, the top

15 variants were selected from each comparison and the ID module

of the mcfs() function was used to reveal the associations between

these variants and their most important 40 interactions. The created

networks of interdependencies are presented in the form of directed

SVG graphs.
2.8 TaqMan genotyping and data analysis

To further verify the association of the selected SNPs, DNA

samples were genotyped using TaqMan SNP Genotyping Assays

(Thermo Fisher Scientific, Waltham, MA, USA), Sensi FAST Probe

Hi-ROX Kit (Bioline Ltd., London, United Kingdom), and 7900HT

Real-Time PCR system (Thermo Fisher Scientific, Waltham, MA,

USA) in a 384-well format. The Hardy–Weinberg equilibrium

concordance of SNPs selected for verification was tested using the

HardyWeinberg R package version 1.7.5 (64). Differences in allele

frequencies between groups were verified using Fisher’s exact test

(implemented in the EpiTools R package), whereas differences in

genotype frequencies were assessed using the chi-squared test. The

p-value significance threshold was adjusted using the Benjamini–

Hochberg false discovery rate (FDR) algorithm (57). Odds ratios

(ORs) and 95% confidence intervals (CIs) were estimated using the

normal approximation implemented in the EpiTools R package,

version 0.5–10 (65). Unless otherwise noted, OR values were

calculated using the hg19 sequence allele as a reference.
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3 Results

In this study, WES was used to identify genetic variants

associated with the joint occurrence of PCOS and HT. A total of

571 women were included in the study: 203 with PCOS, 164 with

HT, 166 with both disorders, and 38 healthy controls. All the

patients were of European ancestry. Table 1 presents the

characteristics of the study participants. Patients with HT were

more likely (p < 10-4) to have lower serum levels of luteinizing

hormone (LH) , dehydroep i andros t e rone (DHEAS) ,

androstenedione, testosterone, 17-OH-PRG, and LH/follicle-

stimulating hormone (FSH) ratio and higher levels of PRG than

patients with combined PCOS and HT. Whereas, patients with

PCOS had lower serum levels of anti-TPO and anti-Tg antibodies

and PRG than patients with both disorders. For the WES, 250 study

participants were included: 70 patients with PCOS, 71 patients with

HT, 71 pat i en t s wi th both PCOS and HT, and 38

control individuals.
3.1 Association analyses

After QC filtering of the exome sequence data, 175,374

qualifying variants located in 18,886 genes and 98 regulatory

regions were selected for further association analyses (median

25,603 variants per sample). Of these, 46% were missense

variants, 35% were synonymous variants, and 7% were intronic

variants according to VEP (GRCh37 Ensembl). Association

analyses, assuming a dominant model of inheritance, were

performed for the following group comparisons: P+H vs. H, P+H

vs. P, H vs. P, P+H vs. K, H vs. K, and P vs. K. The number of

significantly differentiating variants (p < 0.05) in these comparisons

was 2061, 1960, 1583, 2275, 2381, 2558, respectively, including 20,

31, 18, 26, 16, 30 with p < 10-3, respectively, and 7, 19, 7, 10, 7, 17

with p < 5×10-4, respectively. The most significant association with

co-occurrence of PCOS and HT was observed for rs17855988 in

ELN gene (p = 4.96 × 10-6), unknown variant 9:139846575_A/

AGGTG located in the regulatory region upstream of the LCN12 (p

= 4.3 × 10-5) and rs4758289 in TUB (p = 7.65 × 10-5) in P+H vs. P;

rs7259 in CERCAM (p = 1.95 × 10-4) and rs562859 in OPRM1 (p =

2.99 × 10-4) in P+H vs. H; rs4746970 in TYSND1 (p = 6.2 × 10-5)

and rs7145565 in CDCA4 (p = 1.71 × 10-4) in P+H vs.

K comparison.
3.2 Common or unique variants and
functional enrichment analyses

Venn diagrams were created to identify unique or common

variants, differentiating patients with both disorders from those

with PCOS or HT alone. As shown in Figure 1A, 303 variants were

unique to PCOS with HT, as they differentiated the double-case

group from both single-case groups (common for P+H vs. H and P

+H vs. P comparisons). According to the VEP, 132 of these variants

were low-impact (mostly synonymous), 115 were moderate-impact,
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four were high-impact, and 52 were changes in non-coding

regulatory sequences (modifier impact) (Supplementary Table

S2). To increase the chance of detecting biological processes

related to the above genetic variants, all variants, regardless of the

expected effect, were included in functional enrichment analyses

based on the GO and KEGG databases. Analysis of 234 genes to

which the above 303 variants were assigned indicated a significant

association (padj < 0.05) with 40 biological processes and signaling
Frontiers in Immunology 06
pathways, such as Protein O-linked glycosylation and O-glycan

processing, Voltage-gated calcium channel activity and Calcium

ion transmembrane transporter activity, Regulation of microtubule

polymerization and depolymerization andMotor activity (Figure 2A;

Supplementary Table S3).

A Venn diagram of the results of patient group comparisons

with the control group indicated 292 common variants (assigned as

‘minimal genetic background’), differentiating all three groups of
A B

FIGURE 1

Venn diagram for significantly differentiating variants. (A) Pairwise comparisons of combined PCOS and HT (PCOS+HT) with solely PCOS or HT
groups. A total of 303 variants were common for both comparisons. (B) Pairwise comparisons of PCOS+HT, PCOS, and HT groups with the control
(K) group. 293 variants were common for all three comparisons (‘minimal genetic background’), whereas, 319 and 320 variants were common for
PCOS+HT and PCOS (‘PCOS element’), and for PCOS+HT and HT (‘HT element’) comparisons with the K group, respectively.
A

B D

C

FIGURE 2

ClueGo analyses of functional enrichment in biological processes and molecular function Gene Ontology terms. (A) 303 variants differentiating
combined PCOS and HT (PCOS+HT) from both PCOS and HT groups (common for P+H vs. H and P+H vs. P comparisons). (B) 292 variants
differentiating all three groups of patients (PCOS+HT, PCOS, and HT) and control (K) group – assigned as ‘minimal genetic background’. (C) 319
variants differentiating PCOS+HT and PCOS groups from K group (common for P+H vs. K and P vs. K comparisons) – assigned as ‘PCOS element’.
(D) 320 variants differentiating PCOS+HT and HT groups from K group (common for P+H vs. K and H vs. K comparisons) – assigned as ‘HT element’.
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patients (P+H, P, and H) from the K group (Figure 1B). Among

them, 123 were variants with low impact, 113 with moderate, six

with high impact, and 50 variants were potential modifiers

(Supplementary Table S4). In total, 88 GO and KEGG terms were

significantly associated with the 212 genes assigned to these

variants, including Antigen processing and presentation of peptide

antigen, Regulation of insulin receptor signaling pathway, Vesicular

transport between the endoplasmic reticulum and the Golgi

apparatus, Dynein light intermediate chain binding, Regulation of

cell junction assembly, Peroxisome organization and Positive

regulation of epidermal growth factor receptor signaling pathway

(Figure 2B; Supplementary Table S5).

The same Venn diagram (Figure 1B) indicated 319 variants

common for only the P+H and P groups in comparison with the K

group (assigned as ‘PCOS element’). Of these, 126 were low-impact

variants, 144 were moderate-impact, five were high-impact, and 44

were located in the regulatory regions (Supplementary Table S6).

Functional enrichment analysis of 216 genes assigned to these

variants indicated their involvement in 95 biological processes

and molecular activities such as Regulation of T cell-mediated

cytotoxicity and Immunoglobulin mediated immune response,

Female meiotic nuclear division and Spindle localization,

Lamellipodium assembly and Cell adhesion, Phospholipase D

signaling pathway and Choline metabolism (Figure 2C;

Supplementary Table S7).

Similarly, 320 variants were common only for P+H vs. K and H

vs. K comparisons (assigned as ‘HT element’) (Figure 1B). Low

impact was attributed to 116 variants, moderate impact to 140

variants, high impact to four variants, and modifier impact to 60

variants (Supplementary Table S8). The 244 genes assigned to these

variants were related to 87 GO and KEGG terms, including

Regulation of T cell-mediated cytotoxicity and immunity,

Interferon-gamma-mediated signaling pathway, Cilium or

flagellum-dependent cell motility and Axoneme localization,

Bilateral symmetry determination, Microtubule-based transport

and Cell adhesion molecules (Figure 2D; Supplementary Table S9).
3.3 Prediction modeling based on WES
data - stepwise forward logistic regression

Considering the different inheritance modes of the genetic

variants, three additional association analyses were conducted:

comparison of the number of alternate allele homozygotes with

other genotypes (recessive mode of inheritance), comparison of

both alternate and reference allele frequencies (allelic test), and

comparison of individual genotype frequencies (genotype test).

Statistically significant variants (p < 0.05) in any of the four

association analyses were subjected to a clumping procedure to

select marker SNPs (p < 10-3 in the 250 kb region). Stepwise forward

logistic regression was used to create models predicting the risk of

the joint occurrence of PCOS and HT, using the AIC minimization

approach for significant variable selection. The selected variants

were ranked according to their AIC values and were sequentially
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introduced into the prediction model. Two prediction models were

created: differentiating PCOS+HT from PCOS (PCOS model) and

differentiating PCOS+HT from HT (HT model).

As estimated using Nagelkerke’s pseudo-R2 statistics, the eight

variants included in the PCOS model explained 83% of the overall

variation between patients with combined PCOS and HT and those

with PCOS alone (Table 2). The model prediction accuracy

expressed by the AUC was 0.912 (95% CI 0.861-0.956) with a

sensitivity of 88.7% and a specificity of 92.9%. The accuracy of the

model for the 10-fold cross-validation was 0.84 ± 0.12. Seven

variants were selected for the HT model, which explained 73% of

the overall variation between the co-occurrence of both diseases and

HT alone (Table 2). The AUC value of this model was 0.874 (95%

CI 0.819-0.929), sensitivity 88.7%, specificity 85.9%, and accuracy

for 10-fold cross-validation 0.84 ± 0.08. The BMI was not selected

for any of the models.
3.4 Importance of the features – Monte
Carlo feature selection and
interdependencies discovery

The MCFS-ID algorithm was used to select the most

informative features (variants) and rank them according to the

calculated RI values. Analyses were performed on the WES-

identified variants to compare the P+H group with the P or H

groups, yielding ranking lists of variants that best distinguished

patients with co-occurrence of PCOS and HT from those with

either PCOS or HT alone. Among the variants with the highest RI

values, rs36104512 in RANBP17 was common in both comparisons

(P+H vs. P and P+H vs. H). In addition, the best-differentiating

PCOS+HT and PCOS groups were rs17855988 in ELN, rs1061638

in AHSA1, rs140634372 in PRDM5, and rs77570237 in IGSF9. The

variants that best differentiated the PCOS+HT and HT groups were

rs62638683 in GPR37, rs185466872 in MYO18B, rs1043424 in

PINK1, and the undescribed 19:6751068_T/A variant in TRIP10

(Supplementary Figure S1). BMI was not ranked among the top 500

features in any comparison.

For the top 15 variants, selected based on the adopted critical

angle cutoff point, and for their 40 most significant interactions, a

network of interdependencies was built and presented as a directed

SVG graph, where the nodes represent variants, and the thickness of

the edges shows the importance of the association (Figure 3). Thus,

features that do not have significant predictive power in themselves

(e.g., due to very low prevalence in the population) in the presence

of other features become significant for differentiating patients

between groups and can be considered potentially causal. Two

hub nodes, rs36104512 and 19:6751068_T/A, had the largest

number of associations with other variants in the P+H vs. P and

P+H vs. H analyses, respectively. Interestingly, in the P+H vs. P

graph (Figure 3A), there were fewer edges with arrows in both

directions between pairs of variants, indicating a stronger

hierarchical relationship between them than between pairs of

features in the P+H vs. H.
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TABLE 2 The results of the stepwise selection for the logistic regression models based on WES data.

Model differentiating PCOS+HT and PCOS

dbSNP ID a Gene AIC b AIC change (%) R2 c R2 change (%)

9:139846575_A/AGGTG, (rs11787588) d intergenic 183.50 0.16

rs5751516 e IGLV2-23 167.44 16.06 (8.8) 0.32 0.16 (98)

rs61750041 CERKL 152.16 15.28 (9.1) 0.45 0.13 (40.6)

rs59506446, (rs7129499) d KRTAP5-2 136.62 15.54 (10.2) 0.56 0.11 (24.4)

rs2777962 FCRL4 123.73 12.89 (9.4) 0.65 0.09 (16.1)

rs7427 MSRB2 113.26 10.47 (8.5) 0.71 0.07 (10.8)

rs10789501 e CYP4A22 101.18 12.08 (10.7) 0.78 0.07 (9.9)

rs7499814 e BANP 91.30 9.88 (9.8) 0.83 0.04 (5.1)

Model differentiating PCOS+HT and HT

dbSNP ID a Gene AIC b AIC change (%) R2 c R2 change(%)

rs3737075 e FAM207A 184.38 0.16

rs812847 NWD1 168.49 15.89 (8.6) 0.32 0.15 (93.8)

rs675026, (rs677830) d OPRM1 155.46 13.03 (7.7) 0.43 0.12 (37.5)

rs11642122 intergenic 143.10 12.36 (8.0) 0.52 0.09 (20.9)

rs3818222 BPIFA3 131.95 11.15 (7.8) 0.60 0.08 (15.4)

rs2075577 UCP3 122.76 9.19 (7.0) 0.67 0.07 (11.7)

rs8066132 SLFNI2L 113.17 9.59 (7.8) 0.73 0.06 (9.0)
F
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The marker variants (p < 10-3), ranked using the Akaike Information Criterion (AIC), were sequentially implemented into the model, starting with the variant with the lowest AIC value.
a/SNP identifier based on NCBI SNP database (http://www.ncbi.nlm.nih.gov/SNP/).
b/AIC value calculated after sequential implementation of the ranked SNPs.
c/Nagelkerke pseudo-R2 value calculated after sequential implementation of the ranked SNPs.
d/The probe was unavailable; SNP located in the same 250 kb clumping region was chosen (ID in the parenthesis).
e/The probe was unavailable; there were no other SNPs in the clumping region.
A B

FIGURE 3

The directed graphs presenting interdependencies of the top 15 variants according to the relative importance (RI) value and their 40 most important
interactions: (A) P+H vs. P, (B) P+H vs. H. Nodes represent variants and the thickness of the edges shows the importance of the association. The
direction of the arrow points from the feature that was closer to the root in the decision trees to the feature further away. The size of the node
reflects the number of interdependencies (the more interdependencies the larger node) and its color intensity represents the RI value (the more
intensive, the higher value).
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3.5 TaqMan genotyping

Several approaches have been applied to select differentiating

variants for further validation by TaqMan DNA genotyping: (1)

association analyses and Venn diagram selection of unique or

common variants significant in pairwise comparisons, (2)

stepwise forward logistic regression selection for prediction

models, (3) MCFS-ID selection of feature importance, and (4)

candidate gene prioritization using the Endeavour approach.

Some of the differentiating variants could not be selected for

genotyping validation because TaqMan probes for these variants

were not commercially available, and universal custom probes or

primers could not be designed because of the architecture of variant

locations. Finally, 77 SNPs were selected for allele frequency

analyses in 533 patients: 203 with PCOS, 164 with HT, and 166

with both disorders. The estimated variant OR, 95% CI, and

significance p-value in P+H vs. P and P+H vs. H comparisons of

allele and genotype frequencies are presented in Supplementary

Table S10. Six and three SNP associations were significant in the

allelic test with FDR padj-value < 0.05 for P+H vs. P and P+H vs. H,

respectively (Table 3). Additionally, the two variants were

significantly associated (padj < 0.05) with the combined PCOS

and HT in the P+H vs. P genotype frequency comparison. The

most significant differentiation between PCOS+HT and PCOS

groups was observed for rs4484951 in FNDC7 gene (OR 4.62;

95% CI 1.95-12.85) and between PCOS+HT and HT groups for

rs8101480 in HIF3A gene (OR 5.88; 95% CI 1.89-25.0). Two

significant SNPs, rs4955418 in CCDC71 and rs28364969 in

CDK20, were common in both comparisons.
3.6 Validation of the WES
prediction models

Based on the TaqMan genotyping results, both prediction

models built on WES data were further validated in an unrelated
Frontiers in Immunology 09
group of 322 patients: 133 with PCOS, 93 with HT, and 96 with

both disorders. However, TaqMan probes were available for three of

the eight variants included in the original PCOS model, and two

additional probes were selected for variants from the same clamping

region as the marker SNP (Table 2). The overall accuracy of the

prediction of the joint occurrence of PCOS and HT based on these

five variants was as follows: AUC, 0.536 (95% CI 0.437-0.635);

sensitivity, 14.7%; specificity, 88.6%; 10-fold cross-validation

accuracy 0.54 ± 0.05. In total, they explained only about 2.4% of

the total variation in PCOS+HT. In the case of the WES data-based

HT model, probes for five of the seven variants were available, and

an additional one was selected for the variant from the same

clumping region (Table 2). The calculated accuracy of model

prediction expressed by AUC was 0.594 (95% CI 0.523-0.665),

with the sensitivity of 63.8% and the specificity 54.8%, and the 10-

fold cross-validation accuracy 0.53 ± 0.06. The selected variants

accounted for a total of 8.3% the variation in PCOS+HT.
3.7 Prediction modeling based on
TaqMan genotyping data - stepwise
forward logistic regression

To create more accurate and useful models for predicting the

risk of the joint occurrence of PCOS and HT, stepwise forward

logistic regression was used to select variants from a set of 77

differentiating SNPs based on genotyping results in a group of 533

patients. In the analysis, the FAM homozygote was used as the

reference. When absent, the FAM/VIC genotype was used as the

reference. The final PCOS (differentiating PCOS+HT and PCOS)

and HT (differentiating PCOS+HT and HT) models are presented

in Table 4. The variants selected for the models accounted for 47.4%

and 44.3% of the PCOS+HT variability compared with the PCOS

and HT groups, respectively.

The prediction accuracy parameters were calculated for both

models (Table 5). The AUC value for the PCOS model was 0.785
TABLE 3 TaqMan genotyping significant associations.

dbSNP_ID a Gene MA MAF

PCOS+HT vs. PCOS PCOS+HT vs. HT

OR allelic (95% CI) Allelic
padj

Genotype padj OR allelic (95% CI) Allelic
padj

Genotype padj

rs1061638 AHSA1 A 0.33 1.08 (0.78-1.49) 0.736 0.009 1.15 (0.82-1.63) 0.559 0.451

rs4955418 CCDC71 A 0.35 0.59 (0.43-0.81) 0.026 0.046 0.51 (0.36-0.71) 0.005 0.014

rs28364969 CDK20 T 0.34 0.56 (0.40-0.79) 0.026 0.023 0.57 (0.40-0.76) 0.046 0.081

rs4484951 FNDC7 C 0.02 4.62 (1.95-12.9) 0.026 0.021 3.76 (1.59-10.5) 0.059 0.081

rs4656077 GBP3 A 0.33 0.64 (0.48-0.86) 0.048 0.047 0.69 (0.51-0.94) 0.111 0.171

rs634710 GOLGA1 A 0.43 1.47 (1.10-1.97) 0.085 0.047 1.34 (0.99-1.83) 0.173 0.081

rs1007298 GUSBP11 T 0.32 1.69 (1.23-2.33) 0.026 0.049 1.59 (1.15-2.22) 0.077 0.140

rs8101480 HIF3A T 0.13 1.45 (0.70-2.99) 0.490 0.431 5.88 (1.89-25.0) 0.046 0.039

rs41298115 RAB6A C 0.01 NA 0.042 0.047 NA 0.404 0.395
Bold indicates genotype-phenotype relationship significant at FRD p-adjusted (padj) < 0.05. MA; minor allele, MAF; MA frequency, CI; confidence interval, OR; odds ratio.
a/SNP identifier based on NCBI SNP database (http://www.ncbi.nlm.nih.gov/SNP/).
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TABLE 4 The results of the stepwise selection for the logistic regression models based on TaqMan genotyping data.

Model differentiating PCOS+HT and PCOS

dbSNP ID a Gene AIC b AIC change (%) R2 c R2 change (%)

rs4484951 FNDC7 384.80 0.048

rs41298115 RAB6A 375.52 9.28 (2.4) 0.098 0.050 (102.8)

rs634710 GOLGA1 365.39 10.13 (2.7) 0.157 0.059 (60.8)

rs11787588 PRR31 358.94 6.45 (1.8) 0.199 0.042 (26.8)

rs3179003 NCR3 353.30 5.64 (1.6) 0.229 0.030 (15,0)

rs17301182 DYNC2H1 347.47 5.83 (1.7) 0.267 0.037 (16.3)

rs1061638 AHSA1 342.59 4.88 (1.4) 0.299 0.033 (12.2)

rs4656077 GBP3 338.48 4.11 (1.2) 0.328 0.029 (9.7)

rs8066132 SLFN12L 333.61 4.87 (1.4) 0.359 0.031 (9.4)

rs12038198 CGN 329.79 3.82 (1.1) 0.379 0.020 (5.5)

rs276937 DSC3 326.64 3.15 (1.0) 0.402 0.024 (6.2)

rs28364969 CDK20 322.77 3.87 (1.2) 0.428 0.025 (6.3)

rs1786263 CEP192 320.93 1.84 (0.6) 0.446 0.018 (4.3)

rs79609470 MICALCL 319.18 1.75 (0.5) 0.458 0.012 (2.6)

rs1063479 PLEK 317.90 1.28 (0.4) 0.474 0.016 (3.5)

Model differentiating PCOS+HT and HT

dbSNP ID a Gene AIC b AIC change (%) R2 c R2 change (%)

rs4484951 FNDC7 344.56 0.056

rs8101480 HIF3A 336.39 8.17 (2.4) 0.106 0.050 (89.9)

rs3829817 FBN3 331.13 5.26 (1.6) 0.150 0.044 (41.4)

rs2256273 FAM189A1 326.18 4.95 (1.5) 0.191 0.041 (27.3)

rs4955418 CCDC71 322.61 3.57 (1.1) 0.224 0.034 (17.6)

rs11564148 LRRK2 318.92 3.69 (1.1) 0.257 0.033 (14.7)

rs12038198 CGN 316.99 1.93 (0.6) 0.274 0.017 (6.4)

rs909920 TPSG1 315.35 1.64 (0.5) 0.297 0.023 (8.5)

rs28364969 CDK20 313.13 2.22 (0.7) 0.322 0.025 (8.4)

rs1054645 CACNA1H 310.35 2.78 (0.9) 0.349 0.027 (8.3)

rs41275060 EFNB2 308.97 1.38 (0.4) 0.369 0.021 (5.9)

rs1156287 STXBP4 308.08 0.89 (0.3) 0.388 0.018 (5.0)

rs595844 AZU1 306.40 1.68 (0.5) 0.409 0.021 (5.4)

rs1800472 TGFB1 304.14 2.26 (0.7) 0.424 0.015 (3.8)

rs634710 GOLGA1 302.78 1.36 (0.4) 0.443 0.019 (4.5)
F
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Selected SNPs, ranked using the Akaike Information Criterion (AIC), were sequentially implemented into the model, starting with the variant with the lowest AIC value.
a/SNP identifier based on NCBI SNP database (http://www.ncbi.nlm.nih.gov/SNP/).
b/AIC value calculated after sequential implementation of the ranked SNPs.
c/Nagelkerke pseudo-R2 value calculated after sequential implementation of the ranked SNPs.
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(95% CI 0.731-0.831), sensitivity was 85.7%, specificity was 68.1%,

and the 10-fold cross-validation accuracy was 0.71 ± 0.06. The AUC

value for the HT model was 0.776 (95% CI 0.724-0.828), sensitivity

was 72.4%, specificity was 82%, and 10-fold cross-validation

accuracy was 0.71 ± 0.12. When a 70% probability threshold was

applied, the accuracy of both models prediction improved,

increasing the AUC value to approximately 0.87 and the

specificity of the prediction to 93% (Table 5). However,

inconclusive results were obtained at 35% and 40% for PCOS and

HT models, respectively.
4 Discussion

Here, for the first time, WES was used to explore the possibility

of predicting the joint occurrence of PCOS and HT. In addition, our

study is among the largest WES analyses of any of these diseases

(42–49). Despite the high heritability of PCOS and HT as indicated

by familial clustering and twin studies (32, 66), the mode of

inheritance remains unclear. The lack of clear genetic causes

reinforces the hypothesis of the polygenic nature and genetic

heterogeneity of both diseases. Therefore, in our analyses, we

considered different modes of disease inheritance. Additionally,

the analyses included both common and rare variants with

different predicted impacts, increasing the chances of identifying

biological significance and putative associations with the joint

occurrence of the two diseases.
4.1 Association and functional
enrichment analyses

One of the main aims of this study was to identify variants that

are unique or common to the double-case disease compared to

PCOS or HT alone and to determine the biological significance of

the genes assigned to these variants. An important observation from

functional enrichment analyses was that variants differentiating

PCOS+HT from PCOS and/or HT were assigned to mostly

similar or closely related functional pathways, even if they were
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unique for a given comparison. This suggests that both diseases

share a large portion of their genetic background, and the joint

occurrence of both diseases may be determined by the emergence of

additional variants that disrupt the same basic processes and are

mutually predisposed to the second disease.

Strikingly, several of the same GO BP terms related to the

category of immune response were significantly enriched with genes

assigned to two otherwise non-overlapping sets of variants, ‘PCOS

element’ and ‘HT element’, such as Interferon-gamma-mediated

signaling pathway, Regulation of lymphocyte- and T cell-mediated

cytotoxicity and immunity, Positive regulation of cell killing, Positive

regulation of adaptive immune response, Positive regulation of

adaptive immune response based on somatic recombination of

immune receptors built from immunoglobulin superfamily

domains and Detection of other organism and biotic stimulus

(Supplementary Tables S7, S9). In addition, among the significant

GO categories characterizing the set of variants comprising the

‘minimal genetic background’, several were related to processes of

antigen processing and peptide antigen presentation via Major

histocompatibility complex (MHC) class I (Supplementary Table

S5), that are prerequisites for activation of the adaptive immune

system. Antigen molecules are expressed on the surface of target

cells and presented in association with MHC class I or II molecules,

typically to CD8+ cytotoxic T (Tc) cells or CD4+ helper T (Th)

cells, respectively. The cross-presentation of autoantigens can lead

to impaired self-tolerance and the development of autoimmune

diseases (67). Overall, this finding may support the concept of an

autoimmune etiology of PCOS (68), or more likely, indicate that the

systemic immune activation created in PCOS promotes the

development of autoimmune diseases, explaining the repeatedly

observed association between PCOS and various autoimmune

conditions (69, 70).

Interferon-gamma (IFN-g), a pro-inflammatory cytokine

produced by activated T cells, plays an essential role as a

mediator of the immune response. It favors the development of

Th1 cells over Th2 cells and assists Th1 cells in macrophage

activation and B-cell isotype switching (67). Several studies have

suggested a protective effect of endogenous IFN-g in T cell-

mediated autoimmune diseases. For example, produced by Th1
TABLE 5 The prediction parameters of models differentiating PCOS+HT and PCOS (PCOS model) or HT (HT model).

Prediction
parameters

Probability
threshold

PCOS model
[95% CI]

HT model
[95% CI]

AUC 50% 0.785 [0.731-0.831] 0.776 [0.724-0.828]

Sensitivity 85.7% 72.4%

Specificity 68.1% 82.0%

Accuracy 0.708 [SD 0.056] 0.711 [SD 0.120]

AUC 70% 0.875 [0.824-0.927] 0.865 [0.811-0.919]

Sensitivity 77.6% 76.8%

Specificity 93.4% 92.9%

Inconclusive 35% 40%
Accuracy; 10-fold cross validation accuracy, AUC, area under the ROC curve; CI, confidence interval; SD, standard deviation.
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cells counteracts the development of Th17 cells, inhibits the

proliferation of Th2 but not Th1 cells, and stimulates the

suppressive activity of thymus-derived CD4+CD25+ natural

regulatory T (Treg) cells (71, 72). Chronic inflammation is a

hallmark of both HT and PCOS (73, 74). In patients with HT, the

expression of interleukin (IL)-17 was elevated and was significantly

correlated with the levels of thyroid hormone, anti-TPO, and anti-

Tg antibodies (75). In turn, IFN-g and IL-10 levels were significantly
lower in the HT patients compared with the controls. Similarly,

PCOS patients had lower levels of IFN-g than healthy women, and

in the rat model of DHEA-induced PCOS, decreased levels of IFN-g
were observed compared to control rats, which was negatively

correlated with elevated testosterone levels (76). DHEA was

shown to inhibit the proliferation and promote the apoptosis of

ovarian granulosa cells by downregulating the expression of IFN-

g (76).
One of the four unique SNPs that significantly differentiated

PCOS+HT and PCOS (padj < 0.05) in TaqMan genotyping was

rs4656077 in the GBP3 gene (Table 3), which encodes a guanylate-

binding protein belonging to the family of IFN-g-inducible GTPases
involved in host defense against infection and inflammasome

response, as well as in metabolic inflammatory diseases and

cancer (77). This variant was selected to the final prediction

model differentiating PCOS+HT and PCOS, as were the SNPs in

NCR3 and SLFN12L (Table 4). NCR3 encodes natural cytotoxicity-

triggering receptor 3, which interacts with CD247, a T cell receptor

(TCR), and activates natural killer cell cytotoxicity and cytokine

secretion (78). SLFN12L belongs to the Schlafen family of growth-

regulating genes involved in thymocyte development and T cell

activation. Its upregulation in primary immune cells depends on

autocrine type I IFN signaling. SLFN12L has been suggested to play

a role in T cell quiescence (79).

The GO biological processes related to O-glycan processing,

voltage-gated calcium channels, and transporter activity were

significantly enriched in genes assigned to variants differentiating

PCOS+HT from all three other groups (Supplementary Table S3).

Glycosylation is one of the most abundant post-translational

modifications and glycoproteins play essential roles in diverse

processes, including inflammatory and immune responses (80). O-

glycosylation affects the structure and function of cell surface proteins

and modifies antigen processing and presentation to T cells (81).

Specific O-GlcNAc modifications are important for T cell activation

and their blocking reduces IL-2 production and cell proliferation (82).

Changes in O-glycan composition are associated with different

metabolic conditions and disorders, including autoimmune diseases,

type II diabetes, and cardiovascular diseases (83, 84). O-glycans are

present in high concentrations in the zona pellucida surrounding

mammalian eggs and play critical roles in fertilization (85). They are

involved in sperm-oocyte binding and acrosome reaction induction

(86). Oocyte core 1-derived O-glycans are involved in the regulation of

cumulus-oocyte complex development by modifying the extracellular

matrix (ECM) composition (87). O-glycan-deficient oocytes exhibit

altered follicle development, resulting in the production of more

follicles by increasing FSH sensitivity and reducing apoptosis (88).

Voltage-gated Ca2+ channels are multi-subunit complexes

activated by membrane depolarization that allow Ca2+ influx into
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the cell. In the ovary, intracellular Ca2+ plays an essential role in

folliculogenesis (89), oocyte maturation, fertilization, and early

embryonic development, particularly in egg activation, blocking

polyspermy, and egg-to-embryo transition (90). The a1 subunit of

the T-type voltage-gated Ca2+ channel CaV3.2, encoded by

Cacna1h, mediates Ca2+ influx into mouse oocytes and is

required to increase the total and endoplasmic reticulum Ca2+

stores in eggs (91). A variant of CACNA1H was selected for our

prediction HT model to differentiate the PCOS+HT and HT

groups (Table 4).

The specific GO categories enriched by genes related to ‘PCOS

element’ are associated with female meiosis and establishment of

spindle localization. In addition to the regulation of insulin

secretion, oocyte meiosis was significantly associated with PCOS

in a pathway-based approach and the application of meta-analysis

gene-set enrichment of variant associations (MAGENTA) to the

PCOS GWAS dataset (92). Mammalian oocytes undergo meiotic

maturation, including extreme asymmetric division and polar body

extrusion, to produce fertilizable haploid eggs. Centromere-free

bipolar spindle assembly relies on the close interactions between

microtubules and actin filaments, which are critical for spindle

migration to the actomyosin-rich oocyte cortex and proper spindle

positioning for asymmetric division (93, 94). Precise alignment and

segregation of chromosomes during meiosis are crucial events that

require stabilization of the spindle pole assembly by microtubule

cross-linking and anchoring of the minus ends of microtubules in

the spindle pole region (95). The assembly of spindles with unstable

poles is a leading cause of aneuploidy, resulting in pregnancy loss

and genetic defects. Mutations in meiotic genes can impair meiotic

progression leading to oocyte death (96).

The PCOS prediction model included SNP rs1786263 in

CEP192 (Table 4), which encodes a protein essential for bipolar

spindle assembly and high fidelity of chromosome segregation. Its

depletion delays microtubule spindle assembly and causes

chromosomal misalignment (97). Similarly, rs41298115 in RAB6A

encoding a small GTPase was included in the PCOS model and was

one of four unique variants significantly differentiating patients with

combined PCOS and HT from those with PCOS alone in TaqMan

genotyping (Table 3). Rab6A plays a key role in the maintenance of

the cytoskeletal structure and normal progression of oocyte

maturation (98, 99). Rab6A knockdown mouse oocytes fail to

form an actin cap and microtubule network, and the spindle

assembly checkpoint during meiosis is inactivated (99). Upon

Rab6A depletion, spindle defects and chromosomal misalignment

were significantly increased. Additionally, reduced intracellular

Ca2+ stores and endoplasmic reticulum abundance have been

observed (98). Through recruitment of the dynein/dynactin

motor complex, Rab6A plays an essential role in microtubule-

dependent retrograde trafficking and recycling in the Golgi

apparatus. It interacts with several effector proteins localized in

the Golgi called golgins (100). Interestingly, rs634710 in GOLGA1,

which encodes golgin A1, was one of the variants selected to both

final prediction models (Table 4).

Vesicular transport and regulation of the insulin receptor

signaling pathway were represented by several GO terms

associated with the ‘minimal genetic background’ variant set
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1193293
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zeber-Lubecka et al. 10.3389/fimmu.2023.1193293
(Supplemental Table S5). Many important transmembrane

receptors and transporters are selectively sorted by endosomal

trafficking, in cooperation with sorting nexins and the retromer

complex. The retromer protects these proteins from degradation in

the lysosome, directing them back to the cell surface (recycling),

Golgi network, or specialized endosomes (101). Abnormal

endosomal trafficking after T cell activation leads to the loss of

surface expression and, ultimately, lysosomal degradation of the

TCR or glucose transporter GLUT1 (102). Variants of the syntaxin-

binding protein 4 (STXBP4) and leucine-rich repeat kinase 2

(LRRK2) genes were included in our final HT model (Table 4);

both genes are involved in vesicle trafficking. STXBP4

phosphorylation is required for insulin-stimulated Glut4

translocation and glucose uptake, suggesting that defects in

STXBP4 phosphorylation underlie insulin resistance (103). With

the association of the SNARE syntaxin-4, STXBP4 plays a role in the

regulation of insulin release by pancreatic beta cells after

stimulation by glucose (104). LRRK2 is a key regulator of Rab

GTPases through phosphorylation and has been implicated in

retromer-dependent protein recycling, maintenance of organelles,

including Golgi, endosomes, and lysosomes, and the regulation of

primary ciliogenesis. Patients with LRRK2 mutations exhibited

altered lysosomal morphology (105).

Genes assigned to variants from the ‘HT element’ were

specifically enriched with GO categories related to ciliary

assembly and intraciliary transport (Supplementary Table S9).

Cilia are specialized microtubule-based organelles that, depending

on their axonemal structure, are used by cells to direct fluid flow

over their surface (motile cilia) or sense and conduct extracellular

signals (primary cilia). Primary cilia concentrate various ion

channels and receptors, including Hedgehog (Hh), Wingless

(Wnt), Notch, transforming growth factor (TGF)-b, and platelet-

derived growth factor receptors; hence, they play important

physiological roles in embryonic development and tissue

homeostasis (106). Ciliary dysfunction and disorder of their

signaling activities are associated with a group of diseases known

as ciliopathies, with a wide range of clinical manifestations,

including, among many others, female and male infertility and

cyst formation (107, 108). The primary cilia play an important role

in maintaining the globular follicular structure of the thyroid gland.

Their defects result in the irregular dilation of follicles and

decreased colloid Tg levels (109). Thyrocyte cilia contain the Tg

receptor LDL-related protein 2 (LRP2) and are involved in TSH-

mediated Tg endocytosis, which is crucial for thyroid hormone

release (110). LRP2 knockout mice showed hypothyroidism

associated with decreased serum Tg and fT4 levels and increased

TSH levels (111).

Ciliary and signaling components are trafficked in the

anterograde and retrograde directions along the axoneme

microtubule by intraflagellar transport (IFT) complexes, which

engage dynein and kinesin motors, respectively (107). Recently,

cyclin-dependent kinase 20 (CDK20) was shown to regulate ciliary

retrograde protein trafficking by interacting with TBC1D32 and the

phosphorylation of ciliogenesis-associated kinase 1 (CILK1) (112).

CILK1 is involved in motor switching at the ciliary tip. In CDK20

knockout cells, IFT proteins accumulate at the bulging ciliary tips
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and are eliminated as extracellular vesicles. Mutations in CDK20

and TBC1D32 are associated with ciliopathies and defective

embryonic development resulting from the dysregulation of Hh

signaling (113). In our study, the variant in CDK20 significantly

differentiated the PCOS+HT group of patients from the PCOS and

HT alone groups (Table 3). In addition, SNP in DYNC2H1

encoding dynein cytoplasmic 2 heavy chain 1, a component of

the IFT dynein motor (114), was included in the final PCOS

model (Table 4).

Changes in ovarian ECM composition and the organization of

collagen, fibronectin, and elastin play significant roles in follicle

development (115). Recently, two rare missense variants in FBN3

encoding an ECM protein, a member of the fibrillin/latent TGF-b
binding protein (LTBP) family, and a missense variant in FN1,

which encodes a member of the fibronectin family, were identified

byWES in families with PCOS (48). In addition, the FBN3D19S884

allele 8 variant has been identified by candidate gene analysis and its

causality in PCOS susceptibility has been suggested (116, 117).

Together with other components of TGF-b and androgen signaling,

FBN3 is present in the fetal ovary, and its expression is restricted to

the perifollicular stroma of the follicles (118). It has been

hypothesized that changes in FBN3 expression during fetal

development influence TGF-b bioactivity and collagen deposition

in the ovarian ECM and predispose women to PCOS later in life

(119). In turn, TGF-b is a key regulator of immune tolerance that

upregulates Treg cells, and its downregulation may predispose to

autoimmunity (19). Accordingly, variants in both FBN3

(rs3829817) and TGFB1 (rs1800472) were selected for the final

HT model, and the variant rs4484951 in FNDC7, which encodes a

fibronectin type III domain-containing protein, was selected for

both prediction models in our study (Table 4). In addition,

rs17855988 in ELN encoding elastin was the most significant

variant (the highest RI) according to MCFS-ID analysis in the

P+H vs. P comparison (Supplementary Figure S1).

SNP rs8101480 inHIF3A was a unique variant that significantly

differentiated the PCOS+HT and HT groups (OR = 5.88; padj < 0.05)

in both allelic and genotype analyses of the TaqMan genotyping

results (Table 3). HIF3A belongs to the transcription factor family

and is involved in adaptive responses to hypoxia. It is highly

expressed in adipocytes and is negatively correlated with insulin

resistance and adipose tissue dysfunction in obesity (120).
4.2 Prediction modeling of the joint
occurrence of PCOS and HT

Based on TaqMan genotyping of WES-identified variants in a

cohort of 533 patients, we created two prediction models to

differentiate patients with joint PCOS and HT from those with

PCOS or HT alone. Both final models included 15 genetic variants,

and their prediction accuracy estimated by the AUC value was 0.78,

with the specificity of 68% and 82% for the PCOS and HT models,

respectively (Tables 4, 5). Use of the 70% cutoff of the prediction

score to distinguish patients with higher confidence improves the

model parameters, increasing both the accuracy (up to 0.87) and

specificity (up to 93%) of prediction, but 35-40% of the model
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results remain inconclusive. In addition, we identified the FNDC7

variant as the one that contributed the most to the predictive power

of both models, followed by RAB6A and GOLGA1 variants in the

PCOS model and HIF3A and FBN3 variants in the HT model.

Our study has some limitations. One of these may be that the

age of the patients with HT in our study was significantly higher

than that of the patients with PCOS and PCOS+HT. Therefore, the

possibility that HT appears later in patients with PCOS cannot be

ruled out. On the other hand, in PCOS patients, HT may be

detected earlier thanks to thyroid tests performed during the

diagnostic process. Second, the sample size of our patient cohort

may have been relatively small, especially considering the whole-

exome analysis of sporadic cases. This may partly contribute to the

poor validation of WES-derived classifiers in an independent group

of patients (121). However, it must be emphasized that the WES-

derived models in our study could not be fully validated owing to a

partial lack of suitable probes. To increase the power of our study

and the chance of detecting significant relationships, we adopted

more stringent diagnostic criteria, thus reducing the phenotypic

and, most likely, genotypic heterogeneity of the studied groups. Our

goal was to obtain the largest possible collection of putative

candidate genes to identify the biological processes involved. A

study in women with sporadic diseases was supposed to facilitate

the unraveling of the complex genetic background of these two

polygenic disorders. Indeed, analyses of functional enrichment in

the obtained gene sets indicated several processes significantly

related to the etiology of PCOS and HT.
5 Conclusion

This study provides new insights into the joint occurrence of

PCOS and HT, despite their phenotypic heterogeneity, complex

genetic backgrounds, and limitations. Several variants were found

to significantly differentiate between patients with joint PCOS and

HT and those with both diseases separately. Functional enrichment

analysis of genes related to the selected variants identified several

processes whose abnormal functions may be involved in the

development of both diseases, such as immune responses, insulin

signaling, O-linked glycosylation, ECM organization and

composition, membrane trafficking, ion channels, retrograde and

axonemal transport, follicular development, meiosis, and cell

communication, including gap junctions. Overall, our study

supports the concept that PCOS and HT share a large portion of

their genetic backgrounds, and the joint occurrence of both diseases

may be determined by the emergence of additional variants that

disrupt the same basic processes and mutually predispose patients

to a second disease.

Novel candidate genes have been proposed as predisposing

factors for the co-occurrence of PCOS and HT. Based on the

TaqMan genotyping data for WES-selected variants, two

prediction models were proposed, differentiating patients with

both diseases and each disease separately, with 78% prediction

accuracy. Such WES-generated models can be useful for creating

multigenic panels, which may eventually be introduced into clinical
Frontiers in Immunology
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practice. In the case of the joint occurrence of PCOS and HT,

studies using WES can help identify patients with a predisposition

to comorbidity even before the disease develop, enable the

implementation of appropriate preventive measures, and support

parental planning and decisions regarding childbirth.
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