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Objective: Antibodies elicited by seasonal influenza vaccines mainly target the

head of hemagglutinin (HA). However, antibodies against the stalk domain are

cross-reactive and have been proven to play a role in reducing influenza disease

severity. We investigated the induction of HA stalk-specific antibodies after

seasonal influenza vaccination, considering the age of the cohorts.

Methods: A total of 166 individuals were recruited during the 2018 influenza

vaccine campaign (IVC) and divided into groups: <50 (n = 14), 50–64 (n = 34), 65–

79 (n = 61), and ≥80 (n = 57) years old. Stalk-specific antibodies were quantified by

ELISA at day 0 and day 28 using recombinant viruses (cH6/1 and cH14/3)

containing an HA head domain (H6 or H14) from wild bird origin with a stalk

domain from human H1 or H3, respectively. The geometric mean titer (GMT) and

the fold rise (GMFR) were calculated, and differences were assessed using ANOVA

adjusted by the false discovery rate (FDR) and the Wilcoxon tests (p <0.05).

Results: All age groups elicited some level of increase in anti-stalk antibodies

after receiving the influenza vaccine, except for the ≥80-year-old cohort.

Additionally, <65-year-old vaccinees had higher group 1 antibody titers versus

group 2 before and after vaccination. Similarly, vaccinees within the <50-year-

old group showed a higher increase in anti-stalk antibody titers when compared

to older individuals (≥80 years old), especially for group 1 anti-stalk antibodies.

Conclusion: Seasonal influenza vaccines can the induction of cross-reactive

anti-stalk antibodies against group 1 and group 2 HAs. However, low responses

were observed in older groups, highlighting the impact of immunosenescence in

adequate humoral immune responses.
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1 Introduction

The influenza virus, with three to five million severe cases and

between 290,000 and 650,000 annual respiratory deaths (1),

represents a major socioeconomic burden (2). Currently, the best

approach to preventing infection and reducing disease severity is

annual vaccination. However, influenza vaccine effectiveness is

moderate, varying from 20% to 70% depending on the season.

Additionally, influenza vaccines provide short-lasting and strain-

specific protection (3). Most neutralizing antibodies induced by

vaccination target hemagglutinin (HA), particularly the

immunodominant head domain, which constantly undergoes

antigenic drift by accumulating amino acid substitutions and

additional glycosylation sites (4). Additionally, during some

seasons, the strains contained in the vaccine do not match the

circulating strain(s) due to viral evolution. Such low effectiveness

makes it necessary for vaccines to be reformulated and re-

administered annually (5).

The HA is the most abundant surface glycoprotein and has two

major domains: the globular head (HA1) and the stalk region

(HA2). The HA stalk domain is highly conserved between

influenza virus strains due to functional restraints and low

immune pressure (6). There a re currently 18 hemagglutinin

subtypes for influenza A virus, which are classified into two

phylogenetic groups based on their antigenic properties: group 1

consists of H1, H2, H5, H6, H8, H9, H11, H12, H13, H16, H17, and

H18; while group 2 contains H3, H4, H7, H10, H14, and H15 (7).

Antibodies against the stalk are more cross-reactive and can bind

different strains of the same phylogenetic group, providing broad

protection. Mechanisms of these antibodies may include

impairment of viral and endosomal membrane fusion, inhibition

of viral release, and interruption of HA maturation. In addition,

these antibodies are functionally involved in antibody-dependent

cell cytotoxicity and phagocytosis (ADCC and ADCP) and

complement-dependent cytotoxicity (CDC) (8). Novel influenza

vaccine designs are focused on the development of influenza

vaccines that would increase the breadth and duration of

protection. Some of the most advanced vaccine candidates target

conserved epitopes of the HA protein, such as the subdominant

stalk domain, with the aim of providing long-lasting protection

against different strains and subtypes of the virus (8, 9).

The aim of our study is to investigate the level of pre-

existing anti-stalk antibodies against phylogenetic groups 1 and 2,

and after seasonal influenza vaccination according to age.

Immunodominance profiles and antibody titers against different

antigenic sites in the HA head of A(H1) that matched influenza

vaccine strains were previously studied in this cohort. Classically,

five antigenic sites in the head of the HA have been defined as Sb, Sa,

Cb, Ca1, and Ca2 and are the main targets of the humoral response

upon vaccination or infection. The first two are placed at the distal

tip of each monomer, while Cb, Ca1, and Ca2 are placed proximally,

near the stalk domain. The receptor binding site (RBS), where the

attachment to sialic acids occurs, is located between Sb, Ca2, and Sa

(10, 11). We found that the immune response was mainly directed

at Sb, followed by Ca2, and that adjuvants can broaden responses to

subdominant antigenic sites (12). Here we expand on our previous
Frontiers in Immunology 02
study and now investigate the antibody response to the stalk

domain according to age.
2 Materials and methods

2.1 Patient recruitment

A total of 166 individuals were recruited from vaccination

programs during the Influenza Vaccine Campaign (IVC) 2018

conducted by the Influenza Sentinel Surveillance Network of

Castile and Leon (Spain) (ISSNCyL). All serum samples obtained

were shipped to Mount Sinai Hospital in New York (USA) and were

used to determine HA stalk-specific antibodies. Serum samples

were obtained before and 28 days after vaccination and stored

at −20°C in the National Influenza Centre of Valladolid (Spain)

before being sent. Two seasonal influenza vaccines were used

following the recommendations of the World Health

Organization (WHO) for the northern hemisphere: A/Michigan/

45/2015 (H1N1)pdm09-like virus, A/Singapore/INFIMH-16-0019/

2016 (H3N2)-like virus, and B/Colorado/06/2017-like virus (B/

Victoria/2/87 lineage) for the trivalent vaccine, and also B/

Phuket/3073/2013-like virus (B/Yamagata/16/88 lineage) for the

quadrivalent one. Following the recommendations for vaccination

in Spain, subjects ≥65 years old received an adjuvanted trivalent

influenza vaccine (ATIV) and subjects <65 years old received a

quadrivalent influenza vaccine (QIV). Two patients from each

group received the other group’s vaccine due to a lack of vaccine

availability. Written informed consent was obtained from the

participants. This research was performed according to the

Declaration of Helsinki and was approved by the Ethics

Committee of the East-Valladolid Health Area under the code PI

21-2314.
2.2 Stalk-specific antibodies

To quantify the levels of the stalk-specific antibodies, two

reassortant viruses were used: a cH6/1N5 and a cH14/3N5. The

first one had an HA stalk derived from the pandemic H1N1 virus

(A/California/04/09) containing an exotic H6 head domain (H6N1

virus A/mallard/Sweden/81/02) and an exotic N5 (H12N5 virus A/

mallard/Sweden/86/03). HA head domains were of wild bird origin,

and hence no specific antibodies should be present in the patients’

serum samples. The methods and description of the generation of

this virus in cell culture by using reverse genetics have been

previously published (13–15). The second virus had an HA stalk

derived from an H3N2 virus A/Hong Kong/4801/2014 combined

with an exotic H14 head domain A/mallard/Gurjev/263/1982

and an exotic N5 from the H12N5 virusA/mallard/Sweden/86/03

(for virus generation, see the Supplementary Appendix).

Reassortant viruses were cultured in 10-day-old embryonic

chicken eggs and titered to confirm the growth and ensure they

had similar hemagglutination units. Then, a purification

by ultracentrifugation in a sucrose gradient was performed

(Supplementary Appendix). Antibodies in human serum were
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measured using an enzyme-linked immunosorbent assay (ELISA)

as described before (16) (for the ELISA protocol, see the

Supplementary Appendix). The optical density (OD) for each well

was calculated by subtracting the average background plus three

standard deviations. The area under the curve (AUC) was

computed using GraphPad Prism v.10 software.
2.3 Statistical analysis

All ELISA values were log10-transformed to improve linearity.

The GMT and 95% confidence intervals (CI 95%) were computed

by taking the exponent (log10) of the mean and the lower and upper

limits of the 95% CI of the log10‐transformed titers. Fold rise was

calculated as the ratio between days 0 and 28. GMFR was computed

by taking the exponent (log10) of the mean fold rise and the lower

and upper limits of the CI 95% of the log10‐transformed titers.

Statistical significance was established at p <0.05. All reported

p values are based on two‐tailed tests. For antibody levels, the

Brown–Forsythe and Welch ANOVA test was adjusted by

controlling the false discovery rate (FDR) with the two-stage

linear procedure of Benjamini, Krieger, and Yekutieli for multiple

comparisons, and the Wilcoxon matched pairs signed rank test was

used when appropriate. All tests were performed using IBM SPSS

Statistics (version 26) and GraphPad Prism (version 10).
3 Results

3.1 Human cohorts

A total of 166 individuals were recruited during the Influenza

Vaccine Campaign (IVC) 2018. Two different inactivated influenza

vaccines were applied according to age following Spanish

recommendations: a quadrivalent influenza vaccine (QIV) in 46

subjects of 28–64 years and two subjects of 73 and 74 years old

(28.9%), and an MF-59 adjuvanted trivalent influenza vaccine

(ATIV) in 116 subjects ≥65 years old and two subjects of 57 years
Frontiers in Immunology 03
old (71.1%). To assess the presence of HA stalk-specific antibodies,

vaccinees were divided according to age into four groups: <50, 50–

64, 65–79, and ≥ 80 years old. Epidemiological and clinical

characteristics are described in Table 1.
3.2 Anti-stalk antibodies according to age

To better understand the baseline antibody landscape, we first

profiled the pre-existing immunity before vaccination. For this, we

investigated the levels of anti-stalk antibodies against HA groups 1

and 2 using reassortant viruses containing an exotic HA head domain

and an exotic NA to whom humans should not have specific

antibodies and a conserved stalk from human pandemic H1N1

virus A/California/04/09 and H3N2 virus A/HongKong/4801/2014

(groups 1 and 2, respectively). Purified viruses were then used to

perform ELISA assays. To improve visualization, the levels of anti-

stalk antibodies of each individual together with the geometric mean

titer (GMT, CI95%) at day 0 are shown in Figure 1A and

Supplementary Table 1. All vaccinees presented anti-stalk

antibodies against both phylogenetic groups. The stalk antibody

levels against HA group 1 in the 50–64-year-old group were

significantly higher compared to <50-year-old, ≥80-year-old, and

65–79-year-old groups. Additionally, antibody levels in the <50-year-

old group were also significantly higher than those in the 65–79-year-

old group. In contrast, stalk antibodies against group 2 were lower in

the <50-year-old cohort compared to the 50–64-year-old and the

≥80-year-old groups. Since different years of birth could influence

previous exposure to different influenza viruses and therefore pre-

existing immunity to influenza A viruses (IAVs), we next investigated

the levels of immunity in the context of historical IAV circulation. In

order to understand whether first exposure to influenza A viruses

could have had an impact on preexisting immunity of anti-stalk HA

group 1 versus HA group 2 antibodies, we analyzed antibody levels in

the context of birth year. To do so, anti-stalk antibody levels based on

birth year against each HA group were plotted, and Lowess curves

were generated (Figure 1B). The timeline and emergence of different

influenza A viruses and their circulation over the years are indicated
TABLE 1 Cohort description and epidemiological and clinical characteristics.

<50 years old 50–64 years old 65–79 years old ≥80 years old

No. 14 34 61 57

Age (Median, IQR)
37.5

(29.75–45.5)
59.5

(55.0–62.25)
70.0

(68.0–74.0)
85.0

(83.0–90.0)

Men (%) 14.3 55.9 60.7 49.1

Type of vaccine Vaxigrip Vaxigrip Chiromas Chiromas

Comorbidities (n, %) 1 (7.1) 4 (11.8) 10 (16.4) 4 (7.0)

Diabetes mellitus 0 1 3 1

Heart disease 0 1 4 2

COPD 0 0 0 1

Immunocompromised 1 2 3 0
No, number; IQR, interquartile range; COPD, chronic obstructive pulmonary disease.
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to represent the likelihood of group 1 or 2 HA influenza primary

infection. There is not a clear pattern, indicating that the likelihood of

first exposure to either HA group virus could have an influence on

pre-existing immunity. However, higher antibody levels against HA

group 1 were found in younger adults when compared to older age

groups, while an increasing tendency with age was found for group 2

anti-stalk antibodies (Figure 1A).

To characterize the antibody response to both groups after

influenza vaccination, we next investigated anti-stalk antibody

levels at day 28. A modest but significant increase compared with

baseline levels was observed in all age groups, except for anti-group

1 stalk antibodies in the ≥80-year-old group (Figure 2A). Post-

vaccination stalk antibody titers against group 1 were significantly

higher in the 50–64-year-old group compared to the other groups.

Again, the titers in the <50-year-old group were significantly higher
Frontiers in Immunology 04
than those in the 65–79-year-old group and the ≥80-year-old group.

Stalk antibodies against group 2 showed the same profile as before

vaccination and were lower in the <50-year-old group compared to

the 50–64-year-old and ≥80-year-old groups (Figure 2B)

(Supplementary Table 1).

To quantify the induction of an antibody response to

vaccination, we next calculated the geometric mean fold rise

(GMFR). Despite only a few patients displaying a higher than

4-fold increase, more than 70% of the individuals in all age

groups showed some level of increase in anti-stalk antibodies,

except for the ≥80-year-old group, where 59.65% of them showed

an increase in group 1 anti-stalk antibodies (Figure 2C). The

distribution of fold-rise levels is also detailed in Supplementary

Figure 2. Adjusted two-tailed p-values for multiple comparisons

after Brown–Forsythe and Welch ANOVA were used to compare
B

A

FIGURE 1

(A) Individual anti-stalk antibodies and geometric mean titer (GMT, 95% CI) before vaccination against HA groups 1 and 2 in all groups. To compute
differences between age cohorts: The two-tailed p-values were calculated with the Brown–Forsythe and Welch ANOVA test adjusted by controlling
the false discovery rate (FDR) with the two-stage linear procedure of Benjamini, Krieger, and Yekutieli for multiple comparisons. *P <0.05, ****P
<0.0001. (B) Stalk antibody pre-immunity trend based on birth year. To represent anti-stalk antibodies based on theoretical first exposures to A
viruses, individual antibody levels of patients based on their birth year were represented against both HA groups, and Lowess curves were designed
with medium smoothing, taking 10 points in the smoothing window.
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GMFR against each group (Figure 2D). Overall responses were

similar for both HA groups 1 and 2. However, there was a

significantly higher response to group 1 in the youngest patients

compared to the oldest (p = 0.0382). No differences were found in

fold induction levels in group 2 HAs between different age groups or

when comparing the responses of groups 1 and 2 within age groups.
4 Discussion

The results of our study indicate that (a) pre-existing HA stalk

immunity against phylogenetic group 1 is higher in younger

populations; (b) seasonal influenza vaccines can moderately (on

average less than two times) boost cross-reactive antibody responses

against the stalk domain of both group 1 and group 2 HA viruses;

and (c) age and previous exposures could impact responses to

conserved epitopes, such as those against the stalk.

Responses to the influenza virus in adults are variable and

complex as they are influenced by many factors (17). Humoral

responses to the influenza virus rely on individual histories of

exposure to the virus and are mainly targeted at the HA head

(18). However, rapid evolution and antigenic drift make them of

lesser importance when we talk about lifelong protection. In

contrast, anti-stalk antibodies target more conserved epitopes and
Frontiers in Immunology 05
provide cross-reactive protection against different strains of the

same phylogenetic group, resulting in an attractive approach to new

vaccine development (19). Additionally, they have been recently

associated as an independent correlate of protection in the case of

group 1 HAs (20). Those antibodies are elicited most effectively

after natural infection or vaccination with antigenically diverse

strains. Our results showed higher baseline antibody levels against

group 1 HAs in individuals <65 years old, in particular those 50–64

years old. This is in contrast with previous findings that suggest that

they tend to increase with age (21–24). In the present study, only in

group 2 HAs, anti-stalk antibodies seemed to increase with age.

Although those studies included different age groups and vaccines,

their results agree with ours in finding better responses in young

adults <50 years old against group 1 HAs (21, 22) and no differences

in responses in group 2 HAs (22).

On the other hand, unlike group 1 Has, of which several different

antigenic strains have circulated in humans (H1N1, H2N2, and

H1N1pdm09), antigenically similar group 2 HA viruses have

circulated in humans since 1968 (25) (Supplementary Figure 3).

It has been shown that divergent strains are more likely to drive the

expansion of cross-reactive antibodies against more conserved

epitopes, such as the HA stalk, than similar ones (24). It is possible

that the lack of stimulus from substantially divergent strains is

responsible for the lower magnitude of antibodies against group 2
A B

DC

FIGURE 2

(A) Individual antibody levels and geometric mean titer (GMT, 95% CI) before and after vaccination against groups 1 and 2 of HAs in each group. The
two-tailed p-values were calculated with the Wilcoxon matched pairs signed rank test. **P <0.01, ****P <0.0001. (B) Individual anti-stalk antibodies
and geometric mean titer (GMT, 95% CI) after vaccination against HA groups 1 and 2 in all groups. To compute differences between cohorts, the
two-tailed p-values were calculated with the Brown–Forsythe and Welch ANOVA test adjusted by controlling the false discovery rate (FDR) with the
two-stage linear procedure of Benjamini, Krieger, and Yekutieli for multiple comparisons. *P <0.05, ***P <0.001, ****P <0.0001. (C) Percentage of
responders and non-responders to seasonal influenza vaccination against groups 1 and 2 of HAs in each group. Responders are considered to have
a fold rise of anti-stalk antibodies >1. (D) Geometric mean fold rise (GMFR, 95% CI) of stalk antibody levels. To compute differences between cohorts:
The two-tailed p-values were calculated with the Brown–Forsythe and Welch ANOVA test adjusted by controlling the false discovery rate (FDR) with the
two-stage linear procedure of Benjamini, Krieger, and Yekutieli for multiple comparisons. To compute differences in antibody levels within the same
cohort: The two-tailed p-values were calculated with the Wilcoxon matched pairs signed rank test. *P <0.05.
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HAs in younger individuals. These results align with a previous

longitudinal study where the highest levels of group 1 HAs were

found in individuals exposed to the most diverse group 1 viruses (26).

Additionally, responses against the head domain have also been

described as being lower against phylogenetic group 2 (27).

Therefore, the lower magnitude in these age groups could also

suggest that group 2 HA viruses are less immunogenic.

The term antigenic seniority or antigen imprinting describes

how influenza antibody responses in humans are shaped by the first

encounters in life, usually at an early stage, and upon repeated

exposure, either by infection or vaccination. This concept is

commonly known as the original antigenic sin. Humoral

responses after natural infection induce broader and longer-

lasting responses than after vaccination (28). However, responses

to vaccination are not equal and depend on the immunodominance

of different epitopes as well as the age of individuals (12). In fact, it

has been shown that antibody responses against the stalk domain

are suppressed in favor of the head domain with currently licensed

influenza vaccines (29, 30). Not many studies attribute an increase

in stalk antibodies to seasonal vaccination (31). Although our

previous results confirmed that most responses are directed

against the HA head (12), here we show that a modest but

significant rise in stalk titers can be found in most individuals

after influenza vaccination. Also, these responses were higher in

younger populations despite receiving a non-adjuvanted influenza

vaccine, in contrast to the adjuvanted vaccine received by older

individuals. This reduction in immune responses, known as

immunosenescence, impairs antibody avidity and B- and T-cell

responses to vaccination as we age (32, 33). This phenomenon could

be one of the reasons for the reduction in baseline levels with age in

the case of group 1 HA anti-stalk antibodies. However, we cannot

explain why group 2 HA responses seem not to be affected by

immunosenescence in a similar way. Nevertheless, responses in the

younger populations are more uniform, while responses in the

elderly seem to have higher variability. This could be explained by

the variability in the degree of immunosenescence, which has

been recently proposed not to be a strict decline but a dynamic

balance that might be necessary for an adequate response to known

antigens but detrimental to responses to new antigens in most

circumstances (34).

Our analysis by birth year did not show a pattern according to

the likely first exposure to each HA group of viruses in our age

groups. However, the group of 50–65 year olds who could have first

encountered A(H2N2) had higher pre-existing immunity, while the

elderly (≥65 years old) showed unexpected results with lower

baseline anti-stalk antibody levels against this group and like

those against HA group 2 levels. These findings could be

explained by immunosenescence in the elderly population.

However, further studies should be performed to understand the

effect of imprinting on age.

To conclude, our results show that, in general, modest responses

are elicited against both HA groups 1 and 2 and that consecutive

exposures to substantially different strains drive responses against the

HA stalk domain. This concept is already being used for universal

vaccine approaches that aim at eliciting broad, long-lasting, cross-
Frontiers in Immunology 06
reactive protection with chimeric HA designs (35). However, our

findings suggest that immunosenescence, especially in older patients,

could drive lower responses to seasonal vaccination. Therefore,

strategies that aim to enhance immune responses in the elderly

should be considered for future vaccine designs (36).

Our study has several limitations. First, it was designed as a

sero-epidemiological study of vaccine responses, and only serum

samples were available. Second, the cohorts analyzed differed in the

type of vaccine recommended by the Spanish health agencies and

sometimes were not strictly followed. Third, the lack of information

on previous exposures to influenza virus makes it difficult to

interpret results, although the likelihood of priming could be

inferred from the year of birth.
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