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Objective: There is an unmet need for optimizing hepatic allograft allocation

from nondirected living liver donors (ND-LLD).

Materials and method: Using OPTN living donor liver transplant (LDLT) data (1/1/

2000-12/31/2019), we identified 6328 LDLTs (4621 right, 644 left, 1063 left-

lateral grafts). Random forest survival models were constructed to predict 10-

year graft survival for each of the 3 graft types.

Results: Donor-to-recipient body surface area ratio was an important predictor

in all 3 models. Other predictors in all 3 models were: malignant diagnosis,

medical location at LDLT (inpatient/ICU), and moderate ascites. Biliary atresia

was important in left and left-lateral graft models. Re-transplant was important in

right graft models. C-index for 10-year graft survival predictions for the 3 models

were: 0.70 (left-lateral); 0.63 (left); 0.61 (right). Similar C-indices were found for

1-, 3-, and 5-year graft survivals. Comparison of model predictions to actual 10-

year graft survivals demonstrated that the predicted upper quartile survival group

in each model had significantly better actual 10-year graft survival compared to

the lower quartiles (p<0.005).

Conclusion: When applied in clinical context, our models assist with the

identification and stratification of potential recipients for hepatic grafts from

ND-LLD based on predicted graft survivals, while accounting for complex donor-

recipient interactions. These analyses highlight the unmet need for granular data

collection and machine learning modeling to identify potential recipients who

have the best predicted transplant outcomes with ND-LLD grafts.
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Introduction

In the past decade, the number of living donor liver transplants

(LDLTs) in the United States, along with the number of transplant

centers performing LDLTs, have both increased (1–3). Over the

course of 2010-2018, the mean annual number of LDLTs performed

was 264; however, from 2019-2020, that mean annual number

increased to 507 (1). Although the majority of living liver donors

in the U.S. are ‘directed’ living donors (i.e., the living liver donor

and intended recipient have a known affiliation or relationship pre-

transplant), the number of nondirected living liver donors (ND-

LLD, living liver donors who are willing to donate anonymously to

anyone in need) has been steadily increasing in the U.S. over the

past several years (Figure 1) (1, 4–6).

Living donors interested in nondirected liver donation

frequently express desire for their donation to affect the

greatest good from the graft. ND-LLD grafts offer transplant

centers the opportunity to help patients who may be underserved

by the current deceased donor Model for End-Stage Liver

Disease (MELD)-based allocation system, for example,

individuals with small stature or low MELD patients with

portal hypertensive complications. Additionally, ND-LLDs

enable liver transplant centers to consider more novel

undertakings such as living liver donor chains. Despite the

recognized importance of ND-LLDs, there is no standardized

evidence-based approach to help guide liver transplant centers in

ND-LLD graft allocation. Currently, individual centers develop

their own internal preferences and policies regarding how to

internally allocate liver grafts from ND-LLDs, with all U.S.

programs abiding by the the National Organ Transplant Act

that was implemented in 1984, making it illegal to buy or sell

human organs and tissues in the U.S. United Network for Organ

Sharing (UNOS) policy 14.6.B allows for utility-based allocation

processes, and guidance from the Organ Procurement and

Transplantation Network (OPTN) recommends that liver

transplant centers ‘make an effort to match donors and
Frontiers in Immunology 02
candidates appropriately’ and ‘maximize the potential good’

that will emerge from ND-LLD grafts (7). We therefore aimed

to develop analytic models predicting graft survival to help

inform ND-LLD graft allocation.
Materials and methods

Data source and variables

We conducted a retrospective analysis of the OPTN liver

dataset. The dataset contained information on U.S. recipients who

underwent liver transplant from living liver donor grafts from 1/1/

2000 to 12/31/2019, with follow-up to 3/20/2020. Data from both

directed and nondirected living liver donation was collected. Donor

and recipient data were recorded from the transplant candidate and

transplant recipient forms. We excluded recipients of deceased

donor grafts, whole liver grafts, and multiorgan transplants.

The donor data collected included: age at donation, sex, race,

history of cigarette smoking, ABO blood type, height (cm), weight

(kg), and calculated donor body surface area [BSA, m (2)] using the

formula by Mosteller (8). Although graft-to-recipient weight ratio

(GRWR) is not included in the OPTN dataset, BSA was included in

our analyses since prior studies have demonstrated an increased risk

of graft failure when donor and recipient BSA are mismatched (9,

10). Transplant factors recorded included: type of hepatic graft

(right [segments 5-8], left [segments 2-4], and left-lateral [segments

2 and 3]) and cold ischemia time in hours (CIT, length of time from

when the donor organ is flushed with cold solution until it is

removed from ice just prior to anastomosis in the recipient). The

majority of living liver donor grafts (75%) in the OPTN data had

CIT > 1 hour. We used a cut-off of 6-hours based upon our

statistical analyses demonstrating that living liver donor grafts

with >6 hours of CIT had a worse survival compared to all the

other CIT cut-offs (for example, 0-1 hours, 1-2 hours, 2-3

hours, etc).
FIGURE 1

Nondirected living liver donor transplant in the U.S. (2010-2021).
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Recorded recipient factors included: age at time of transplant

(adults defined as >/=18 years; children defined as <18 years), sex,

height (cm), weight (kg), calculation of recipient BSA, etiology of

underlying liver disease, calculated MELD score or Pediatric End-

Stage Liver Disease (PELD) score at transplant, serum albumin level

at transplant, presence of ascites (absent, slight, or moderate, as

recorded in the OPTN database), encephalopathy (none, grade 1-2,

or grade 3-4, as recorded in the OPTN database), presence of portal

vein thrombosis, previous abdominal surgery, transjugular

intrahepatic portosystemic shunt, diabetes mellitus diagnosis,

location at time of transplant (intensive care unit [ICU], inpatient

[non-ICU], outpatient), need for mechanical ventilation and/or

pressor support, on dialysis the week prior to transplant, Epstein-

Barr virus serostatus, and Cytomegalovirus serostatus.

The dataset used to develop the analytic models described in

this study is available through the OPTN.

All data obtained from human participants were obtained in

accordance with the ethical standards of the institutional and/or

national research committee and with the 1964 Helsinki

Declaration and its later amendments or comparable

ethical standards.

The interpretation and reporting of these OPTN data are the

responsibility of the authors and in no way should be considered an

official policy of, or interpretation by, the OPTN or the U.S.

Government. The University of Washington Human Subjects

Division deems that the OPTN database is de-identified and

publicly available, and thus this study was exempt from human

subjects review.
Statistical analyses

Continuous variables were depicted as median and

interquartile ranges (IQR). Categorical variables were presented

as percentages. For all data, if <1% of the categorical values were

missing, the majority value was given. For the 305 donors and 66

recipients with missing body weight, values were imputed with

linear regression using age, sex, and race. For the 66 donors and 16

recipients with missing height, values were imputed with linear

regression using age, sex, and race. For the 111 recipients missing

albumin level, the median albumin value of 3.1 was given. For 107

recipients with missing values for ascites, the value of ‘absent’ was

given. Sensitivity analyses revealed no change in the final results

by imputing any of the values. Chi-square analysis was used to

compare categorical variables. One-way ANOVA was used to

compare continuous variables. Donor-to-recipient BSA ratio (D-

R-BSA) was calculated for each donor-recipient pair. Determining

the critical ratio (or cut-off) for D-R-BSA for each graft was

performed using multiple methods (11, 12). Multiple ranges were

compared with Cox proportional hazard models and many chi-

square analyses to determine the best critical ratio for D-R-BSA

with significant graft loss. Through these methods, we determined

the critical ratios for D-R-BSA, with increasing graft loss

occurring below 2.0, 1.5, and 1.0 for the left-lateral, left, and

right grafts, respectively.
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Model development

Machine learning survival models are increasingly being

utilized in the field of transplantation (13). These models are not

restricted by the rules of the Cox proportional hazard model, like

the assumption that variables must have hazards functions that are

proportional over time, or the relationship between the log hazard

and each variable being linear, or collinearity between variables, or

finding numerous interactions. We used the machine learning

survival model of Random Forest Survival (RFS). It is an

ensemble model (averaging of many models) of tree-based

learners. Tree-based learners, also known as decision trees,

develop many splits or decision rules of the data to determine

which characteristics influence survival. After performing many

trees, the ensemble method averages all the trees to determine the

best splitting rules for the data. A formula is not created with an RFS

model, but rather variables of importance can be given for each

model. The importance measure of a variable is calculated by how

much the accuracy decreases when the variable is excluded in

reference to other variables in the model (14, 15). The specific

value of the variable importance is not intrinsically meaningful and

depends on the number of variables in the algorithm and the

number of trees evaluated in the model. Therefore, the value of

the variable is interpreted relative to the values of other variables.

For example, a variable with an importance value of 0.20 is two

times more predictive than a variable with the value of 0.10. Despite

increasing use of machine learning in the medical field, the actual

machine learning models may be perceived by readers to be ‘black

boxes’ that appear to be difficult to interpret unless the model is

explained and interpreted correctly. Therefore, to explain the model

and to increase model transparency and interpretability of the

results, we graphed LIME (Local Interpretable Model-agnostic

Explanation) plots, where the output of LIME is a list that reflects

the contribution of each variable to the prediction of a data sample.

In our LIME plots, values for variable importance that are graphed

as negative numbers connote a decrease in graft failure risk, whereas

values for variable importance that are graphed as positive numbers

connote increased graft failure risk (16). In this model, when

comparing negative and positive important values, the absolute

values are to be used.

In our analyses, RFS models were used to predict 10-year graft

survival, and variable selection was constructed to optimize the

concordance index (c-index), which is the proportion of

observations that the statistical model can order correctly in

terms of survival times and, for binary outcomes, may be

considered conceptually similar to the area under the receiver

operating characteristic curve (AUC) (17, 18). Due to the marked

difference in characteristics between the three graft types, a separate

RFS model predicting 10-year graft survival was constructed for

each graft type. Importantly, it is not the intention of the model to

determine which hepatic lobe should be donated, since that is a

transplant surgical clinical decision that is based upon the surgeon’s

assessment of the donor’s vascular and biliary anatomies, hepatic

volumes, and discussions with the donor. Rather, the intention of

the model is to help liver transplant programs identify potential
frontiersin.org
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recipients for specific grafts, based on maximizing graft utility, for

the non-directed allograft donation. Data for each graft type was

split (70%/30%) into a training set and test set, respectively, while

maintaining the same percentage of graft failures in each

proportion. Survival for predicted groups were calculated by

Kaplan-Meier survival analysis and compared by log-rank test.

All results were considered significant with a p-value <0.05. We

also modeled 5-year, 3-year- and 1-year graft survivals, and found

similar c-indices as for 10-year graft survival (data not shown). The

Chi-square, ANOVA, Kaplan-Meier, and Cox proportional hazard

analyses were performed using JMP-Pro Version 15.1.0 (SAS

Institute, Inc., Cary, NC, USA). The RFS analyses were performed

using R version 4.0.0. and the randomForestSRC and the random

package (19).
Results

Descriptive statistics by graft type

We included data on all 6328 living donor liver transplant

recipients from 1/1/2000 to 12/31/2019. LDLT from non-directed

donors accounted for 5% of total LDLDs during the study period.

There were 1063 left-lateral, 644 left, and 4621 right grafts. Of the

left-lateral grafts, 1001 (94%) were transplanted into recipients aged

0-12 years, and 62 (6%) transplanted into older recipients (> 12

years). Of the left grafts, 213 (33.0%) were transplanted into
Frontiers in Immunology 04
recipients aged 0-17 years, while 431 (67%) were transplanted

into older recipients (>17 years). Of the right grafts, 100 (2%)

were transplanted into recipients aged 0-17 years, compared to 4521

(98%) transplanted into older recipients (>17 years). More females

received left grafts (61%), whereas more males (58%) received right

grafts. Patients with cholestatic liver diseases (primary biliary

cirrhosis [PBC] and primary sclerosing cholangitis [PSC])

accounted for 24% of left and 24% of right graft recipients. The

D-R-BSA ratio was significantly different (p<0.001) between all

graft types, with D-R-BSA ratios (median and IQR) of 4.3 (3.1-5.3),

1.21 (1.1-1.5), and 1.0 (0.9-1.1) for the left-lateral, left, and right

grafts, respectively. Other donor and recipient characteristic

comparisons by graft type (left-lateral, left, and right) are

provided in Table 1. Due to the large difference in recipients’ ages

at transplant, and given that the majority of left lateral grafts are

transplanted into young, pediatric recipients and the majority of

right grafts are transplanted into adult recipients, most of the other

recipient characteristics were significantly different between

graft types.
Kaplan-Meier graft survivals

The Kaplan-Meier graft survival curves comparing the three

graft types are shown in Figure 2. The 10-year post transplant graft

loss was significantly different (p<0.001) between graft types, with

194 (18%) losses for the left-lateral graft, compared to 188 (29%)
TABLE 1 Donor and recipient characteristics of living donor liver transplants performed 1/1/2000-12/31/2019.

Type of Hepatic Graft

Characteristic
Left-Lateral
(N=1063) Left (N=644) Right (N=4621) P Value

Donor

Age, years (median, IQR) 32(26-37) 34.5(27-43) 36(29-45) <0.001

Donor Age Groups, years

18-35 741(69.7%) 340(52.8%) 2160(46.7%) <0.001

36-50 302(28.4%) 240(37.3%) 1939(42.0%) <0.001

51+ 20(1.9%) 64(9.9%) 522(11.3%) <0.001

Race

Asian 60(5.6%) 38(5.9%) 103(2.2%) <0.001

Black 100(9.4%) 23(3.6%) 176(3.8%) <0.001

Hispanic 188(17.7%) 86(13.4%) 514(11.1%) <0.001

Other 17(1.6%) 5(0.8%) 64(1.4%) 0.30

White 698(65.7%) 492(76.4%) 3764(81.5%) <0.001

Female Sex 617(58.0%) 285(44.3%) 2425(52.5%) <0.001

(Continued)
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TABLE 1 Continued

Type of Hepatic Graft

Characteristic
Left-Lateral
(N=1063) Left (N=644) Right (N=4621) P Value

Cigarette History

No 609(57.3%) 398(61.8%) 2331(50.4%) <0.001

Unknown 295(27.8%) 116(18.0%) 805(17.4%) <0.001

Yes 159(15.0%) 130(20.2%) 1485(32.1%) 0.02

Cold Ischemia Time Groups, hours

0-6 873(82.1%) 533(82.8%) 3681(79.7%) 0.06

6+ 30(2.8%) 20(3.1%) 105(2.7%) 0.27

Unknown 160(15.1%) 91(14.1%) 835(18.1%) 0.005

Recipient

Age, years (median, IQR) 1(0-2) 42(13-58) 53(45-60) <0.001

Recipient Age Groups, years

0-12 1001(94.2%) 160(24.8%) 54(1.2%) <0.001

13-17 14(1.3%) 53(8.2%) 46(1.0%) <0.001

18-40 8(0.7%) 98(15.2%) 777(16.8%) <0.001

41-55 20(1.9%) 138(21.4%) 1770(38.3%) <0.001

56+ 20(1.9%) 195(30.3%) 1974(42.7%) <0.001

Female Sex 545(51.3%) 393(61.0%) 1941(42.0%) <0.001

Diagnosis

AHF 112(10.5%) 39(6.1%) 112(2.4%) <0.001

AIH 8(0.8%) 26(4.0%) 170(3.7%) <0.001

Biliary Atresia 591(55.6%) 94(14.6%) 41(0.9%) <0.001

Benign Tumor 5(0.5%) 3(0.5%) 27(0.6%) 0.85

Cancer (HCC and others) 65(6.1%) 87(13.5%) 627(13.6%) <0.001

Cholestasis (PBC/PSC) 73(6.9%) 152(23.6%) 1095(23.7%) <0.001

Alcohol 5(0.5%) 40(6.2%) 468(10.1%) <0.001

Metabolic 78(7.3%) 27(4.2%) 123(2.7%) <0.001

NASH/Cryptogenic 15(1.4%) 53(8.2%) 689(14.9%) <0.001

Other 56(5.3%) 42(6.5%) 102(2.2%) <0.001

Re-transplantation 39(3.7%) 9(1.4%) 57(1.2%) <0.001

Viral 16(1.5%) 72(11.2%) 1110(24.0%) <0.001

Any Type of Diabetes Mellitus 46(4.3%) 97(15.1%) 1008(21.8%) <0.001

Medical Condition

Home 585(55.0%) 504(78.3%) 4009(86.8%) <0.001

In Hospital 253(23.8%) 90(14.0%) 490(10.6%) <0.001

(Continued)
F
rontiers in Immunology
 05
 frontiersin.org

https://doi.org/10.3389/fimmu.2023.1194338
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bambha et al. 10.3389/fimmu.2023.1194338
TABLE 1 Continued

Type of Hepatic Graft

Characteristic
Left-Lateral
(N=1063) Left (N=644) Right (N=4621) P Value

ICU 225(21.2%) 50(7.8%) 122(2.6%) <0.001

Mechanical Ventilation and/or Pressor
Support 117(11.0%) 28(4.4%) 67(1.5%) <0.001

PELD/MELD Groups

11 to 14 374(35.2%) 301(46.7%) 1832(39.6%) <0.001

15 to 22 214(20.1%) 191(29.7%) 1579(34.2%) <0.001

23 to 30 161(15.2%) 65(10.1%) 395(8.5%) <0.001

31 to 40 314(29.5%) 87(13.5%) 815(17.6%) <0.001

Serum Albumin Level 3.09 ± 0.75 3.18 ± 0.71 3.1(2.6-3.5) <0.001

Ascites

Absent 692(61.1%) 345(53.6%) 1552(33.6%) <0.001

Slight 178(16.8%) 193(30.0%) 2025(43.8%) <0.001

Moderate 193(18.2%) 106(16.5%) 1044(22.6%) <0.001

Dialysis Week Before Transplant 14(1.3%) 10(1.6%) 35(0.8%) 0.07

Encephalopathy Grade

None 715(67.3%) 388(60.3%) 1811(39.2%) <0.001

1-2 94(8.8%) 179(27.8%) 1978(42.8%) <0.001

3-4 43(4.1%) 19(3.0%) 175(3.9%) 0.47

Unknown 211(19.9%) 58(9.0%) 657(14.2%) <0.001

Portal Vein Thrombosis 44(4.1%) 48(7.5%) 331(7.2%) <0.001

Previous Abdominal Surgery 617(58.0%) 336(52.2%) 2000(43.3%) <0.001

TIPS 11(1.0%) 49(7.6%) 402(8.7%) <0.001

EBV Positive 287(27.0%) 321(49.8%) 3052(66.0%) <0.001

CMV Positive 313(29.4%) 288(44.7%) 2430(52.6%) <0.001

Combination Donor to Recipient

Donor to Recipient BSA Ratio (median,
IQR) 4.3(3.1 - 5.3) 1.21(1.1-1.5) 1(0.9 - 1.1) <0.001

Critical Ratio (CR) for Donor to Recipient
BSA

CR <2
102(9.6%)

CR < 1.5
475(73.8%)

CR < 1
2401(52.0%) <0.001

ABO Match

Identical 826(77.7%) 518(80.4%) 3624(78.4%) 0.39

Compatible 216(20.3%) 123(19.1%) 962(20.8%) 0.52

Incompatible 21(2.0%) 3(0.5%) 35(0.7%) 0.002

Graft Loss 194(18.3%) 188(29.2%) 1308(28.3%) <0.001
F
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AHF, acute hepatic failure; AIH, autoimmune hepatitis; BSA, body surface area; CMV, cytomegalovirus; CR, critical ratio for donor-to-recipient body surface area ratio; EBV, Epstein Barr virus;
HCC, hepatocellular carcinoma; ICU, intensive care unit; IQR, interquartile range; MELD, Model for End-Stage Liver Disease score; NASH, nonalcoholic steatohepatitis; PBC, primary biliary
cholangitis; PELD, Pediatric End-Stage Liver Disease score; PSC, primary sclerosing cholangitis; TIPS, transjugular intrahepatic portosystemic shunt.
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and 1308 (28%) for the left and right grafts, respectively. There was

no difference in graft survival when comparing left to right grafts.

The Kaplan-Meier graft survival curves confirming the importance

of the critical ratio for D-R-BSA (a surrogate for GRWR, which is

not available in the OPTN data) for each graft type are shown in

Figure 3A (left-lateral, critical ratio 2), Figure 3B (left, critical ratio

1.5), and Figure 3C (right, critical ratio 1.0). Graft survivals were

lower when the D-R-BSA was below the critical ratio. All survival

curves were significantly different when comparing survival above

and below the critical ratio for D-R-BSA (p-value 0.002 for left-

lateral, p=0.001 for left, p>0.001 for right).
Random forest survival models
by
graft type

The importance of the selected recipient and donor-to-recipient

variables using random forest survival models is demonstrated

graphically by LIME plots in Figure 4. As mentioned previously,

the importance measure is calculated by how much the accuracy of

the model decreases when the variable is excluded in reference to

other variables in the model. The specific value of the variable is not

intrinsically meaningful, but rather is interpreted relative to the

values of other variables. The critical ratio for D-R-BSA was

important for prediction in all three graft models, with critical
Frontiers in Immunology 07
ratios above the defined thresholds (i.e., ≥2.0 for left-lateral graft,

≥1.5 for left graft, and ≥1.0 for right graft) being of relatively high

importance in the right graft model, and of lesser importance in the

left and left-lateral graft models, relative to the other variables in

each model. The other variables important in predicting 10-year

graft survival in all three graft models were: malignant diagnosis,

location at time of transplant (inpatient [non-ICU] or ICU), and

having moderate ascites. The diagnosis of biliary atresia was of high

importance in the left-lateral and left graft models, but was of no

importance and not included in the right graft model. A diagnosis

of cholestatic liver disease (PBC or PSC) was important in the right

graft model, but not in the left-lateral and left graft models. The

recipient being a re-transplantation candidate was only important

in the right graft model. The best c-index was 0.70 for the left lateral

graft model. The left and right graft models had c-indices of 0.63

and 0.61, respectively. Modeling of 5-year, 3-year- and 1-year graft

survivals revealed similar c-indices as for 10-year graft survival

(data not shown).

To compare model predictions to actual graft survival, the

models’ 10-year graft survival predictions were divided into

groups consisting of the upper quartile and the lower three

quartiles. The Kaplan-Meier actual graft survival curves for each

model prediction group (upper quartile vs lower quartiles) are

shown in Figure 5A (left-lateral graft), Figure 5B (left graft), and

Figure 5C (right graft). For the left lateral, left and right graft

modeling scenarios, the upper quartile prediction group had
FIGURE 2

Kaplan-Meier actual graft survival curves derived from living donor liver transplants performed 1/1/2000-12/31/2019 by graft type.
B CA

FIGURE 3

Kaplan-Meier actual graft survival curves confirming critical donor-to-recipient body surface area ratio. (A) Left-lateral graft, (B) Left graft, (C) Right graft.
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B

C

A

FIGURE 4

LIME plot of variables included in each graft survival prediction model after controlling for significant† donor variables by importance ‡†Controlled for
donor age (years), race, sex, cigarette history, cold ischemia time, CMV status. Critical Ratio: refers to critical level of donor-to-recipient body
surface area ratio. ICU, intensive care unit. MELD, Model for End-Stage Liver Disease score. ‡The importance of a variable was determined by leaving
the variable out of the model and evaluating how this removal influenced the accuracy of the model compared to other variables. The intrinsic value
has no specific meaning, but the ratio of values between variables determines the relative importance of that variable to other variables. (A) Left-
lateral graft, (B) Left graft, (C) Right graft.
B

C

A

FIGURE 5

Kaplan-Meier actual graft survival curves by graft survival prediction quartiles. (A) Left-lateral graft, (B) Left graft, (C) Right graft.
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statistically significantly better 10-year graft survival than the lower

three quartiles group (p<0.05), indicating that the model

predictions have good discrimination for identifying which

recipients will maximize long-term graft survival.
Real-world implementation of our
utility-based nondirected living liver
donor graft allocation model

At the University of Washington, we began using this utility-

based model in 2020 to assist our team in making evidence-based, less

subjective decisions regarding allocation of hepatic allografts from

nondirected living liver donors. Our process is not intended to be

based solely upon the modeling results, making the actual values of

the modeling c-indices less intrinsic to the selection process. Our

approach to non-directed donor allocation incorporates our objective

modeling results into our teams’ clinical assessments of potential

recipients. Therefore, our decision-making process proceeds as

follows: (1) using our liver transplant program’s list of patients who

are active on the UNOS waiting list, we run our utility-based

allocation model for the nondirected donor, taking into the lobe of

liver being donated (left lateral, left or right lobe) and accounting for

blood type compatibility between the nondirected donor and

potential recipients. Additionally, our transplant surgeon specifies

body size parameters for potential recipients (i.e., maximum body

weight) based upon the donor’s graft volume; (2) the list of potential

recipients generated from step 1 is rank ordered (descending)

according to predicted probability of 10-year graft survival, with

65% as our lower limit cutoff for 10-year graft survival; (3) separately,

a match run using our nondirected donor is conducted; (4) the rank

ordered list generated from our utility model in step 2 is reviewed in a

thoughtful multi-disciplinary clinical forum attended by our

transplant hepatologists and transplant surgeons to review each

individual potential recipient’s clinical indications for liver

transplant, portal hypertensive complications, and surgical

complexity that might impact suitability for receiving a living

donor hepatic allograft. When there is more than one suitable

potential recipient for the nondirected living liver donor graft, then

the match run sequence is used to prioritize the potential recipients (a

lower match sequence number confers higher priority).

To further characterize the potential recipients identified by our

utility models, we compared these individuals to the potential

recipients identified on the match run list. In this comparison, we

found that potential recipients identified via the utility model had

lower match MELD scores (16 [IQR 13-20] vs 21 [IQR 17-25];

p<0.001), lower BMIs (27.5 [IQR 24.1-32.5] vs 29 [IQR 25-34];

p=0.02), and similar Donor-to-Recipient BSA ratios (1.9 [IQR 1.7-

2.1] vs 2.0 [IQR 1.8-2.3]; p=0.049). There were no significant

differences in recipient characteristics between the utility model

and match run with regards to: age, height, weight, sex, cholestatic

liver disease diagnosis, or diagnosis of HCC (data not shown). Our

nondirected donors have all been right-lobe donors thus far, but a

similar process to that outlined above could be implemented for left

or left lateral segment donors.
Frontiers in Immunology 09
Discussion

Nondirected (also known as ‘anonymous’) living liver donors

present an important opportunity for expanding the donor organ

pool. Currently, there is an array of terminology used in the living

liver donor literature to describe these donors; therefore, to avoid

confusion in this study, we have coined the term nondirected living

liver donor (ND-LLD) to clearly represent the donor population to

which we are referring. We present an original, proof of concept,

evidence-based model to help identify and stratify potential

recipients of ND-LLD livers, based on predicted 10-year graft

survival, while accounting for complex donor-recipient

interactions. We propose that this model is best applied to help

guide thoughtful clinical decision-making, rather than advocating

that any modeling results be used in isolation. Our model best

predicted 10-year graft survival for left-lateral grafts (c-index 0.7)

followed by left grafts (c-index 0.63) and right grafts (c-index 0.61).

Model predictions correlated with actual recipient survival,

indicating good discrimination for predicting which recipients

will maximize liver graft survival. Our models are useful for

objectively guiding ND-LLD graft allocation in the clinical setting.

Our clinical liver transplant team has found this allocation process

to be very efficient and beneficial in ensuring that we are evidence-

based in the selection of a potential recipient, aiming to maximize

the utility of the generous gift of the living liver donor’s graft.

Additionally, our objective allocation process allows us to be

transparent with our non-directed living liver donors when we

discuss how the graft will be allocated, fostering increased trust

between our transplant program and the donor. While we chose our

desired outcome measure to be 10-year graft survival in an effort to

maximize utility of the graft, we also investigated 5-, 3- and 1-year

graft survivals and found similar modeling performances as in our

10-year outcomes models, so only our 10-year data are presented in

detail in this manuscript.

To our knowledge, this is the first model using machine learning

techniques to incorporate objective donor, recipient, and combined

donor-to-recipient characteristics available in the OPTN data to

predict long-term graft survival after LDLT. We present the results

from our RFS models, though we did evaluate several other

machine-based learning models (data not shown). The RFS

models were the best models for the UNOS dataset and the

models with the best validation.

Importantly, our models incorporate donor-to-recipient BSA

ratios, which estimate liver volume more accurately than donor and

recipient body weight and height alone (9, 10, 20). Our models also

predict long-term 10-year graft survival for three different types of

grafts. Although a number of scoring systems such as the MELD score

(21), donor age-MELD (D-MELD) score (22), balance of risk score

(BAR) (23), and the transplant risk index (TRI) (24), have been found

to reasonably predict survival post-LDLT with AUC values of 0.60-

0.70, these scoring systems have been limited to predicting short-term

(up to 1-year) survival (25). Goldberg et al. also described the Living

Donor Risk Index (LDRI), but this score had AUC values of 0.59-0.62

and only predicted graft survival up to 5-years post-LDLT (26). The

LDRI also did not differentiate left from left-lateral grafts, and included
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donor and recipient weight and height, instead of BSA ratios. Our

models have comparable, if not better, discrimination than existing risk

scores in predicting graft survival.

The use of RFS models also allowed us to consider many donor

and recipient characteristics, as well as the complex interactions

between them, in our algorithm. The RFS model was chosen over

the Cox proportional hazard model to improve the generalizability

and accuracy of the model, given the complexity of the data, and

expected interactions between terms, and the potential implications

these interactions can have on candidate selection for liver

transplantation. The Cox proportional hazard model has difficulty

with interactions between terms, making its models less

interpretable and accurate (27). We included 23 different donor

and recipient variables prior to variable selection to optimize the c-

index. Four variables (critical ratio for D-R-BSA, malignant

diagnosis, medical location of the recipient at the time of

transplant, and presence of moderate ascites) were found to

predict graft survival in all three types of grafts (left-lateral, left,

and right). The importance of D-R-BSA ratio is not surprising as

liver size matching reduces the risk of small-for-size or large-for-

size syndromes, which can increase the risk of graft loss (9, 28–30).

We also found that biliary atresia had selective importance in our

left and left-lateral graft models, but not in the right graft model.

This is explained by the majority of left and left-lateral grafts being

transplanted from adult donors into pediatric recipients. Finally,

unlike other risk scores, we did not include recipient age (22, 23) in

our final models. Although ages of the donor and recipient were

included in all 3 models (left-lateral, left, and right graft), donor age

did not reach importance in any of the 3 graft models, likely due to

most living liver donors being younger and healthy, with few donors

being over age 50 years. Similarly, recipient age did not reach

importance in either the left-lateral or left graft models. Recipient

age in the right graft model had very low importance for older age,

conferring a slightly poorer survival (importance of 0.0012, which

was well below our threshold for assigning clinical relevance).

Our model adds to the existing literature that supports the use

of artificial intelligence (AI) and machine learning models to

optimize liver transplant care. Studies have already shown that AI

models can improve the accuracy of predicting waitlist mortality

(31) and post-transplant outcomes in deceased donor liver

transplantation (DDLT). Briceno et al. described an AI model

that outperformed MELD, D-MELD, and the survival outcomes

following liver transplantation (SOFT) scores, in predicting 3-

month liver graft survival after DDLT (32). A systematic review

also found that the use of artificial neural network models better

predicted graft survival after DDLT (33). In this context, our model

is an important first step towards integrating machine learning

techniques to improve allocation of hepatic grafts from ND-LLD.

At our institution, we have successfully used this model to help

guide our clinical decision-making around ND-LLD liver

allocation, utilizing a 10-year graft survival threshold of 65%,

based on the Adult-to-Adult Living Donor Liver Transplant

Cohort Study (A2ALL) data (34).

Our study has several strengths. First, we utilized national LDLT
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data from the U.S. OPTN database to inform our analytic models,

including adult-to-adult and adult-to-child transplants, which allows

for greater generalizability of our findings. Second, in addition to

developing graft survival prediction models, we also confirmed the

models’ abilities to discriminate survival by comparing the accuracy of

predictions to actual graft survival. Third, the use of RFS models

allowed us to account for a large number of donor and recipient

variables, along with their potential interactions.

We acknowledge the limitations of this study. Although our

models were developed using a large, national dataset, this was a

retrospective analysis. In addition, the c-index for our left and right

models were <0.7, suggesting that other factors that are not

currently included in the U.S. OPTN data, may improve the fit of

the models (35, 36). For example, graft weight or volume for

calculation of the GRWR is not available in the OPTN data, so

we included BSA in our analyses since prior studies have

demonstrated an increased risk of graft failure when donor and

recipient BSA are mismatched. Although our c-indices for left lobe

and right lobe graft survivals were in the 0.6 range, there is

precedence for using modeling in transplant with c-indices in the

0.6 range, most notably in the current U.S. lung allocation system

that incorporates a post lung outcome model with a c-statistic in the

0.6-0.7 range. Additionally, although 5% of LDLTs performed

during the study period in the U.S. were from ND-LLDs, our

models were developed using all living liver donor transplant data

during the study period, regardless of whether the donor was non-

directed or directed. However, since our models were developed

using objective, measured factors that were demonstrated to be

predictive of graft survival, it would not be expected that donors in

our modeling data being ‘directed’ vs ‘non-directed’ would impact

our final modeling results.

Finally, within the context of the national data used for these

analyses, we could not account for individual transplant center

experience, such as LDLT volume, frequency of LDLT surgery, or

surgical experience, which have been shown to impact LDLT

outcomes (3, 37, 38). However, our models can be individualized

to each liver transplant program, such that identification of

potential recipients for ND-LLD livers can be tailored to

characteristics of local waiting lists, donors, and center experience.

In conclusion, there is an unmet need for more evidence to help

guide living liver donor programs in the allocation of hepatic grafts

from nondirected ‘anonymous’ living liver donors in the U.S. In this

original, proof of concept study, our models present real world

evidence from real world data to help address this unmet need, and

include complex donor-recipient interactions to accurately predict

10-year graft survival for left-lateral, left, and right grafts. The

model was particularly robust for left-lateral grafts. Therefore, our

results demonstrate that machine learning is useful in the

development and implementation of allocation models that can

guide transplant clinical decision making and help optimize

outcomes for recipients of ND-LLD hepatic grafts. As the

opportunities for LDLT and ND-LLD donation expand, our

findings set the stage for further development of robust allocation

strategies for ND-LLD grafts.
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A2ALL Adult-to-Adult Living Donor Liver Transplant Cohort Study

AUC Area under the curve

AI Artificial intelligence

BAR Balance of risk score

BSA Body surface area

CIT Cold ischemia time

CR Critical Ratio for donor-to-recipient body surface area

DDLT Deceased donor liver transplantation

D-MELD Donor age with Model for End-Stage Liver Disease score

D-R-BSA ratio Donor-to-recipient body surface area ratio

GRWR Graft-to-recipient weight ratio

ICU Intensive care unit

IQR Interquartile range

LDLT Living donor liver transplantation

LDRI Living Donor Risk Index

MELD Model for End-Stage Liver Disease score

ND-LLD Nondirected living liver donor

OPTN Organ Procurement and Transplantation Network

PELD Pediatric End-Stage Liver Disease score

RFS Random forest survival analysis

SOFT Survival outcomes following liver transplantation

TRI Transplant risk index

UNOS United Network for Organ Sharing
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