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Acute myeloid leukemia (AML) and T cell acute lymphoblastic leukemia (T-ALL)

are two of the most prevalent hematological malignancies diagnosed among

adult leukemia patients, with both being difficult to treat and associated with high

rates of recurrence and mortality. In the present study, bioinformatics

approaches were used to analyze both of these types of leukemia in an effort

to identify characteristic gene expression patterns that were subsequently

validated via Raman spectroscopy. For these analyses, four Gene Expression

Omnibus datasets (GSE13204, GSE51082, GSE89565, and GSE131184) pertaining

to acute leukemia were downloaded, and differentially expressed genes (DEGs)

were then identified through comparisons of AML and T-ALL patient samples

using the R Bioconductor package. Shared DEGs were then subjected to Gene

Ontology (GO) enrichment analyses and were used to establish a protein-protein

interaction (PPI) network analysis. In total, 43 and 129 upregulated and

downregulated DEGs were respectively identified. Enrichment analyses

indicated that these DEGs were closely tied to immune function, collagen

synthesis and decomposition, inflammation, the synthesis and decomposition

of lipopolysaccharide, and antigen presentation. PPI network module clustering

analyses further led to the identification of the top 10 significantly upregulated

and downregulated genes associated with disease incidence. These key genes

were then validated in patient samples via Raman spectroscopy, ultimately

confirming the value of these genes as tools that may aid the differential

diagnosis and treatment of AML and T-ALL. Overall, these results thus highlight
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a range of novel pathways and genes that are linked to the incidence and

progression of AML and T-ALL, providing a list of important diagnostic and

prognostic molecular markers that have the potential to aid in the clinical

diagnosis and treatment of these devastating malignancies.
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Introduction

Acute myeloid leukemia (AML) is a form of hematological

malignancy developing as a result of abnormal bone marrow cell

proliferation. Affected patients exhibit the accumulation of high

levels of immature, dysfunctional bone marrow cells in the blood

and bone marrow. AML incidence rates rise with age and account

for 15-20% of all childhood leukemia cases, in addition to being the

most prevalent form of acute leukemia in adults (1). Despite the

extensive morbidity and mortality associated with this form of

cancer, AML patient survival rates have remained largely

unchanged in recent years. Systemic chemotherapy has remained

the primary treatment for AML for five decades, yet the high rates of

AML tumor cell heterogeneity necessitate more robust targeted

treatment strategies in order to achieve durable anticancer efficacy.

The high rates of AML recurrence and associated difficulties

eradicating this disease have been ascribed to leukemia stem cells

(LSCs), which can proliferate indefinitely and give rise to large

numbers of heterogeneous immature leukocytes in affected patients.

In an effort to more reliably target AML cells, researchers have

recently sought to identify patterns that are specifically activated in

AML cells including the apoptosis, receptor tyrosine kinase (RTK)

signaling, hedgehog (HH), mitochondrial function, DNA repair,

and c-Myc signaling pathways (2). Further preclinical research

focused on AML cells thus has the potential to aid efforts to more

reliably diagnose and treat this form of hematological cancer.

T cell acute lymphoblastic leukemia (T-ALL) is a highly invasive

form of hematological cancer resulting from the unrestrained

proliferation of immature T cell progenitors that have undergone

malignant transformation. T-ALL patients often exhibit a high

tumor load, persistent cellular proliferation, extramedullary

involvement, pleural effusion, and a large thymic mass. T-ALL

accounts for 10-15% and ~25% of ALL cases in children and adults,

respectively (3). While T-ALL tends to be a heterogeneous disease,

cases are broadly grouped into those stemming from mutations or

deletions that alter gene expression and those caused by

chromosomal translocations that impact cell cycle progression or

signal transduction activity (4). T-ALL tumor cells exhibit

transcriptional profiles distinct from those of normal circulating

blood cells, with abnormalities related to the cell cycle regulation,

tumor suppressor gene expression, epigenetic regulation, RNA

processing, ribosomal function, ubiquitination, Ras signal
02
transduction, JAK-STAT signaling, PI3K-AKT-mTOR signaling,

and Notch1 signaling pathways, among others. Research focused on

these signaling pathways is ongoing and has the potential to inform

the development of novel targeted treatments for T-ALL. the

research and treatment of targeted T-ALL.

The Gene Expression Omnibus (GEO) database (http://

www.ncbi.nlm.nih.gov/geo/) is an international and publically

accessible database that incorporates microarray and high-

throughput gene expression datasets that can be leveraged to

analyze particular cancers and other diseases. GEO dataset

analyses can enable the integration of data from multiple

independent studies, thereby yielding a more robust dataset for

clinically meaningful analyses. While heterogeneity among samples

and microarray platforms can constrain to complete integration of

different datasets, a range of bioinformatics strategies have been

designed to facilitate large-scale cross-platform analyses of high-

throughput data.

In the present study, shared differentially expressed genes

(DEGs) were initially identified by comparing AML and T-ALL

samples across multiple microarray and RNA-seq datasets in the

GEO database, after which Gene Ontology (GO) enrichment

analyses were performed and these DEGs were used to establish a

protein-protein interaction (PPI) network. Raman spectroscopy

was then used to verify the expression of these key genes in

patient bone marrow samples, providing a robust foundation for

efforts to support the differential diagnosis and treatment of AML

and T-ALL.
Materials and methods

Data sources

Data for this study were downloaded from the NCBI GEO

database. Downloaded datasets included GSE13204 (species: Homo

sapiens, 716 samples, GPL570 Affymetrix HG-U133_ Plus_ 2 Array

platform), GSE51082 (species: Homo sapiens, 49 samples, GPL96

Affymetrix HG-U133A Array platform), GSE89565 (species: Homo

sapiens, 100 samples, GPL570 Affymetrix HG-U133_ Plus_ 2 Array

platform) and GSE131184 (species: Homo sapiens, 125 samples,

GPL570 Affymetrix HG-U133_ Plus_ 2 Array platform).
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Data processing and DEG identification

Expression data were downloaded in the CEL format and were

processed with R v3.6.2 to correct for background expression values

and normalize expression patterns, in addition to supplementing

missing values. Background correction was performed using the

MAS method, and data standardization was performed

using quantiles.

A Gene expression matrix was used to screen for DEGs after

separating samples into T-ALL and AML groups. The limma

package and unpaired T-tests were used to identify DEGs based

on a Benjamini and Hochberg (BG)-corrected P-value < 0.05 and a |

logFC| > 1. A heatmap of these DEGs was constructed with the R

pheatmap software package.
GO enrichment analyses

GO enrichment analyses were performed using the DAVID

database, assessing DEGS enriched in biological process (BP),

cellular component (CC), molecular function (MF), and KEGG

pathways with P < 0.05 as the significance threshold.
PPI network construction

The STRING database (v 10.0, http://www.string-db.org/) was

used to assess interactions among proteins encoded by identified

DEGs using the following settings: species = Homo sapiens, PPI

parameter = 0.4 (corresponding to medium confidence). The

resultant PPI network was displayed using Cytoscape v3.6.0.

Node scores in the established network were analyzed based on

the degree centrality topological parameter, with a higher score

indicating that a given node is more important in the overall

network such that it is more likely to represent a key node. The

possible functions of the top 10 genes identified when comparing

the T-ALL and AML groups were analyzed in further detail.
Sub-network module analyses

In a complex biological system, individual proteins function

through complex regulatory interactions with other targets rather

than functioning in isolation, However, proteins included in a given

module often engage in similar or related functions. Accordingly,

the Cytoscape ClusterONE plug-in was used to analyze significantly

clustered modules within established PPI networks.
Sample collection

Samples of bone marrow were collected from acute leukemia

patients (8 male, 2 female; 0-58 years of age) hospitalized in the

Blood Diseases Hospital of the Chinese Academy of Medical
Frontiers in Immunology 03
Sciences (Institute of Hematology of the Chinese Academy of

Medical Sciences) between January and June of 2016. All of these

patients had undergone bone marrow puncture, bone marrow cell

morphology, flow cytometry, histochemistry, chromosome, gene

fusion, and electron microscopy analyses. Patients had been

diagnosed in accordance with the results of histochemistry,

morphology, and other examinations, with confirmation based on

FAB. These patients included 3 T-ALL patients and 7 AML patients,

including 2 patients with AML M7 and 1 each with AML M1, M2,

M3, M5, and M6. The Ethics Committee of the Blood Diseases

Hospital of the Chinese Academy of Medical Sciences provided

approval for this study (KT2020016-EC-2). All included patients

underwent routine serum biochemical testing that was obtained

from patient medical records.
Raman spectroscopy

In total, 5 mL bone marrow supernatant samples were applied to

quartz slides, followed by analysis with a confocal Raman

spectrometer XploRA Raman microscope. A 785 nm excitation

laser was utilized with a 40x objective lens and an output power of

10 mW. Samples were fixed to a three-dimensional XYZ platform.

Imaging was achieved with a 40x 0.6 NANikon lens, with a spot size

of 2x2 mm and a measurement range of 600-1800 cm-1. In total, 6

sites were measured per sample at a resolution of 1 cm-1. The

Raman spectrum of quartz was additionally analyzed to assess the

background signal. Data smoothing, background signal removal,

and baseline correction were performed using Labspec 6. Spectral

normalization was achieved using 1450 cm-1 Raman peaks as

internal standards.
Raman spectrum data analyses and
diagnostic model development

The Raman spectrum data from acute leukemia patients

generated above were subjected to OPLS-DA analyses performed

using SIMCA14.1. OPLS model performance was evaluated based

on the R2 and Q2 goodness of fit parameters. Model resampling was

performed 200 times through the random modulation of the y

matrix to validate model results. Cluster analyses and receiver

operating characteristic (ROC) curve analyses were performed.

Significant Raman peaks in the classification model were

identified as potential biomarkers through a V+S analytical

approach. Briefly, peaks with a variable importance in projection

(VIP) value > 1.5 and a correlation coefficient (distance from the

center of the V+S diagram) in the same range as a potential

biomarker were selected, with those biomarker candidates

exhibiting a P-value < 0.05 being considered significant. Data

processing was performed with the Origin software, while

statistical analyses were conducted using SPSS 20.0 (IBM, USA),

and figures were constructed using GraphPad Prism 5.
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Results

Identification of genes differentially
expressed in AML and T-ALL
patient samples

After initial preprocessing of data from four GEO datasets

(GSE13204, GSE51082, GSE89565, and GSE131184), 54675,

22283, 54675, and 54675 probes were identified, respectively, with

average values being calculated when multiple probes corresponded

to a given gene symbol. Following probe annotation, 20174, 12402,

20174, and 20174 genes were obtained from these respective

datasets, of which 940, 565, 834, and 879 were significantly

differentially expressed between AML and T-ALL samples

(Supplementary Tables 5-12). These included 348, 236, 268, and

277 significantly upregulated DEGs as well as 592, 329, 566, and 602

significantly downregulated DEGs.

DEGs shared among these four datasets are shown in Figures 1A,

B. Of the identified DEGs, 43 significantly upregulated genes and 129

significantly downregulated genes were shared across all four

independent datasets. These upregulated (log2FC > 1, P < 0.05)

and downregulated (log2FC < -1, P < 0.05) genes are listed in

Supplementary Tables 3, 4, respectively. Distributions of gene

expression between T-ALL and AML patient samples in these

different datasets were further displayed using Volcano plots

(Figure 1C), with red and green dots respectively representing

genes that were significantly upregulated and downregulated.

Heatmaps were also generated to display patterns of DEG

expression in these four datasets, with columns corresponding to

samples and rows corresponding to genes while coloration

corresponds to the relative expression of the indicated gene in the

indicated sample. In the DEG heatmap, the red and blue colors

indicate the upregulation and downregulation, respectively, of DEGs,

while the yellow and green colors indicate T-ALL and AML samples,

respectively (Figure 1D).
Functional enrichment analyses

Next, the DAVID database was used to conduct GO enrichment

analyses for the identified DEGs. These genes were enriched in 87

GO-BP pathways that were primarily related to the immune

response, inflammation, antigen processing and presentation,

lipopolysaccharide responses, and the T cell receptor signaling

pathway. These genes were further enriched in 30 GO-CC terms

including the extracellular exosomes, extracellular spaces MHC

class II protein complex, and cell surface terms. These DEGs were

also enriched in 19 GO-MF terms including the cytokine receptor

activity, MHC class II receptor activity, cytokine binding, peptide

antigen binding, and protein binding pathways (Figure 2).

Significantly upregulated DEGs were enriched in 11 GO-BP

terms including the T cell receptor signaling pathway, adaptive

immune response, and intracellular signal transduction pathways.

They were also enriched in a single GO-MF pathway (protein kinase

C activity) and four GO-CC terms including the plasma membrane,
Frontiers in Immunology 04
cell-cell junction, T cell receptor complex, and mast cell granule

terms (Figure 3). Moreover, significantly downregulated DEGs were

enriched in 84 GO-BP terms that were primarily associated

with the immune response, inflammation, antigen processing

and presentation, and lipopolysaccharide responses. These

downregulated genes were also enriched in 30 GO-CC terms

including the extracellular space and extracellular exosome terms,

as well as 17 GO-MF terms including the MHC class II receptor

activity, cytokine binding, protein binding, peptide antigen binding,

and cytokine receptor activity pathways (Figure 4). The top 5 most

significantly enriched GO terms in each of these categories are

presented in Supplementary Tables 13-15.
PPI network and network clustering
module analyses

The identified DEGs were used to establish a PPI network

consisting of 122 nodes and 512 interaction pairs (Figure 1B). Those

nodes with high topological degree values were identified as key

nodes in the overall network, and corresponding degree values for

the top 10 genes are shown in Supplementary Table 16. The 10 key

DEGS screened from this network were TLR4, MPO, MNDA,

CSF1R, CD44, C3AR1, FCER1G, CTSS, LYN, and FOS. The

majority of these DEGs were significantly downregulated,

indicating that they were significantly overexpressed in AML.

The ClusterONE Cytoscape plug-in was further used to analyze

DEGs, leading to the identification of five significant module

clusters consisting of 21, 18, 12, 13, and 11 nodes, and 106, 79,

36, 64, and 28 interaction pairs (Figures 5–7). Module 1 was

primarily associated with the inflammatory response, immediate

response, and the positive regulation of ERK1/2 signaling

(Figure 5A). Module 2 was primarily associated with proteolysis,

the negative regulation of growth, and bacterial defense responses

(Figure 5B). Module 3 was primarily associated with T cell receptor

signaling and antigen processing and MHC class II presentation

(Figure 6A). Module 4 was primarily associated with proteolysis, the

negative regulation of growth, and bacterial defense responses

(Figure 6B). Module 5 was primarily associated with the positive

regulation of MAPK activity, myeloid cell differentiation, and the

positive regulation of gene expression (Figure 7A).

When the upregulated DEGs were specifically subjected to

module analyses, three significant modules comprised of 7, 7, and

3 nodes, and 12, 12, and 3 interaction pairs were established

(Figure 7B). Similarly, two significant modules were identified

when analyzing downregulated DEGs consisting of 20 and 13

nodes, and 99 and 64 interaction pairs, respectively (Figure 7C).
Raman spectrum analyses of bone marrow
samples from acute leukemia patients

In an effort to validate the above results, 18 and 40 Raman

characteristic spectra were respectively obtained from 3 T-ALL

and 7 AML patients, including 5 spectra from AML-M1 patients,
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6 spectra from AML-M2 patients, 6 spectra from AML-M3 patients,

6 spectra from AML-M5 patients, 6 spectra from AML-M6 patients,

and 11 spectra from AML-M7 patients. Peak assignments for these

Raman spectra are shown in Supplementary Table 1 for the

analyzed bone marrow supernatants in the 600~1800 cm-1 range.

These samples exhibited similar morphological characteristics, and
Frontiers in Immunology 05
the resultant spectra can thus effectively reflect the content of the

bone marrow supernatants from these different subsets of acute

leukemia patients (Figure 8A). Based on these spectral patterns

alone, however, it is not possible to differentiate between T-ALL and

AML patients. Accordingly, multivariate statistical methods are

necessary to establish reliable classification models.
A B

DC

FIGURE 1

(A) Identification of significant DEGs between T-ALL and AML patient samples in the GSE13204, GSE51082, GSE89565, and GSE131184 datasets.
(B) A protein-protein interaction network for the identified DEGs. (C) Volcano plots highlighting gene expression in each dataset, with individual
points corresponding to specific genes and red and green colors indicating significantly upregulated and downregulated genes, respectively
(P < 0.05, FC > 1). (D) Heatmaps were generated to display DEG expression profiles in individual patient samples.
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Development of a method for the Raman
spectroscopy-based classification of acute
leukemia patient samples

The 58 characteristic Raman spectra obtained from these AML

and T-ALL patients were used as two separate sets of data to

conduct a supervised orthogonal partial-least-squares discriminant

analysis (OPLS-DA). This OPLS-DA model was able to distinguish

between AML and T-ALL bone marrow samples with 100%

accuracy based on a cluster analysis approach (Figure 8B).

Permutation analyses revealed a negative Q2 intercept on the Y-

axis consistent with the absence of overfitting (Figure 8C). ROC

curve analyses of this model yielded area under the curve values of 1

for both AML and T-ALL when conducting this tumor-type

comparison (Figure 8D), suggesting a high degree of reliable

discriminative performance.
Potential biomarker identification

To better screen for biomarkers capable of differentiating

between AML and T-ALL patient bone marrow supernatant

samples, this OPLS-DA model was used for further analyses.
Frontiers in Immunology 06
In the OPLS-DA score plot shown in Figure 8E, the x-axis and y-

axis respectively correspond to the score values for the main

orthogonal signal correction (OSC) components and the score

values for the orthogonal OSC components, with differences

between samples in a given group being evident based on the

direction of the ordinate. The T-ALL and AML samples were

effectively separated from one another in the generated score plot,

confirming the ability of a supervised OPLS-DA method to

differentiate between these two forms of cancer. The OPLS-DA

loading plot was utilized for a preliminary analysis of those Raman

peaks that contribute to this AML vs. T-ALL classification model

(Figure 8F), with red, pink, green, blue, and yellow peak numbers

respectively relating to cholesterol, collagen, nucleic acids, proteins,

and carbohydrates. Correlations were evident between the loading

and score plots pertaining to the levels of different materials in

samples from these two patient groups. The intensity of the peak

corresponding to collagen (859 cm-1) in the T-ALL group was

elevated as compared to the AML group, whereas the intensity

values for peaks corresponding to proteins (1003, 1230, 1548, 1603,

and 1616 cm-1) and nucleic acids (1573 and 1579 cm-1) were lower

than those in the AML group (Figure 8F).

An OPLS-DA V+S plot integrating VIP and correlation

coefficient parameters corresponding to the contributions of peak
A B

FIGURE 2

(A) GO enrichment analysis results for DEGs between AML and T-ALL patient samples. (B) Enrichment results for the pathways most closely
associated with the differentiation between AML and T-ALL.
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position to the classification model is shown in Figure 8G.

Individual points in this figure represent peak positions, with red

corresponding to a higher correlation coefficient indicative of a

greater contribution of the corresponding peak to the classification

model. In contrast, blue indicates a weaker correlation coefficient

and a less significant contribution of that peak position to the

established classification model. The further a given peak position

point is from the center of the established V+S plot, the greater its

contribution to the established classification model. To better

evaluate the contributions of peak positions to this classification

model, the V+S plot was used for biomarker screening and

significance analyses of characteristic peak positions capable of

effectively discriminating between AML and T-ALL samples

(Figure 8G). Corresponding VIP values for the Raman peak

positions in this classification model enable the assessment of the

contributions of the corresponding peaks for the established model,

with those peaks exhibiting a VIP > 1.5 being screened as possible

biomarkers. Based on analyses of factors including VIP values,

correlation coefficients, load, and distance from the center of the

V+S plot, the key peaks contributing to T-ALL vs. AML sample

classification were thus identified. Those Raman peaks that did not

exhibit any significant differences in these analyses were excluded

from further biomarker analyses.
Frontiers in Immunology 07
Biomarker validation

To validate the candidate biomarkers identified when

differentiating between AML and T-ALL patient bone marrow

samples, statistical analyses of all Raman data involved in the

established model were conducted (Figure 8H). The intensity of

the peak position corresponding to collagen (859 cm-1) was

significantly higher in the T-ALL group as compared to the AML

group, whereas the intensity values for the peak positions

corresponding to nucleic acids (1573, 1579 cm-1) and proteins

(1616 cm-1) were significantly lower in the AML group

(Figure 8H). These findings are consistent with the results of

serum biochemical analyses (Figure 8H). T-ALL is associated with

the excessive proliferation of leukemic cells, significantly impacting

the hematopoietic microenvironment and resulting in pronounced

changes in the degradation and synthesis of collagen in the

extracellular matrix. T-ALL patients are more susceptible to liver

damage, resulting in elevated serum ADA levels and decreased

nucleic acid content (Figure 8H). The high rates of metabolic

activity observed for bone marrow cells in T-ALL patients also

contribute to the consumption of large quantities of amino acids

and proteins such that the total protein levels in the peripheral

blood of these patients were decreased as compared to patients with
A B

FIGURE 3

(A) GO enrichment analysis results for upregulated DEGs between AML and T-ALL patient samples. (B) Enrichment results for the pathways most
closely associated with the differentiation between AML and T-ALL based on the identified upregulated DEGs.
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AML (Figure 8J). Conversely, AML patients exhibited higher levels

of serum total protein relative to T-ALL patients while their ADA

content was decreased (Figure 8I). The better prognosis observed

for AML patients may be related to these biochemical results,

suggesting that analyses of serum total protein content and ADA

levels may offer value in the prognostic evaluation of AML and T-

ALL patients.
Discussion

AML and T-ALL are highly prevalent forms of hematologic

malignancies. Despite marked advances in the treatment of these

diseases using a range of antibody-drug conjugates, small molecule

kinase inhibitors, hypomethylating agents, and allogeneic

hematopoietic stem cell transplantation (HSCT), over half of

patients do not meet the requirements of pre-intensive

chemotherapy. HSCT and chemotherapy-induced remission can
Frontiers in Immunology 08
also lead to a range of severe treatment-related complications, and

both recurrence and mortality rates are high in these cancer patients

(1). As such, further research is needed to improve the diagnosis,

treatment, and prognosis of these forms of hematological cancer.

In the present study, four independent GEO datasets comparing

AML and T-ALL patient samples were screened, leading to the

identification of 172 shared DEGs (43 upregulated, 129

downregulated). Functional analyses revealed these DEGs to be

related to processes including collagen catabolism, cell adhesion,

and extracellular matrix decomposition. Bioinformatics and PPI

network module analyses further led to the identification of 10 key

DEGs including TLR4, MPO, MNDA, CSF1R, CD44, C3AR1,

FCER1G, CTSS, LYN, and FOS. The majority of these genes were

expressed at significantly higher levels in AML samples relative to

T-ALL samples.

Of the DEGs identified in this study, 43 were significantly

overexpressed in T-ALL patient tumor cells. T-ALL tumors are

derived from malignant T cell precursor transformation, and
A B

FIGURE 4

(A) GO enrichment analysis results for downregulated DEGs between AML and T-ALL patient samples. (B) Enrichment results for the pathways most
closely associated with the differentiation between AML and T-ALL based on the identified downregulated DEGs.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1194353
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liang et al. 10.3389/fimmu.2023.1194353
harbor diverse genetic abnormalities. Broadly speaking, these

tumors generally develop as the result of chromosomal

translocation or deletion/mutation events that impact cell cycle

progression or signal transduction activity. Chromosomal

translocations have been confirmed to be present in the precursor

cells of roughly half of all T-ALL patients. These chromosomal

changes generally coincide with T cell receptor (TCR)

rearrangement that drives the overexpression of proto-oncogenes

such as TLX1 (HOX11), MEF2C, HOXA, LMO1, LMO2, and TAL1

(5, 6). LMO1, LMO2, and TAL1 rearrangements are classified as

TCRD rearrangements that impact 9% of patients, while TCRB or

TCRD TLX1 rearrangements affect 10% of patients, and TCRB

HOXA rearrangements affect 5% of patients (7). Other patients

exhibit rearrangements affecting transcription factor genes

including PCIALM-MLLT10, STIL-TAL1, TLX3-BCL11B, and

NUP214-ABL1, which respectively impact 8%, 20%, 15%, and <

5% of patients, respectively (5, 6). Abnormal gene fusion events

such as EML-ABL1 and SET-NUP214 fusions can also arise in some

cases. MLL gene rearrangement affects 5-10% of all patients with T-

ALL, but the ability of these rearrangements to independently

predict patient minimum residual disease (MRD) outcomes at the

end of consolidation therapy has yet to be confirmed (8). Genomic
Frontiers in Immunology 09
analyses of 264 T-ALL patient samples, including full exon

sequencing, copy number analysis, and RNA sequencing, have

confirmed the high degree of heterogeneity exhibited by these

tumors (9). These authors identified over 170 possible

carcinogenic driver genes. These included well-documented

oncogenes including NOTCH1, PHF6, FBXW7, USP7, PTHEN,

DNM2, and BCL11B, as well as novel targets such as CCND3, MYB,

CTCF, MED12, SMARCA4, CREBBP, and USP9X. These genes are

closely related to a variety of dysfunctional signaling pathways

including the Notch, JAK/STAT, PI3K/AKT/mTOR, and

MAPK pathways.

Several genes were herein found to be overexpressed in T-ALL.

These included LAT (linker for activation of T cells), and the LAT

complex can facilitate TCR-mediated signaling that results in the

activation of various downstream pathways that govern TCR-

mediated activity (10). LAT is well established as a key mediator

of signal transduction in T cells, with early studies of Jurkay T cells

lacking LAT revealing an inability to promote Ca2+ mobilization,

CD69 upregulation, ERK activation, Ras activation, and the

transcription of AP-1/NFAT-regulated genes in response to TCR

signaling (11). Reintroducing LAT in these cells can reverse these

defects, underscoring its importance in the context of TCR
A B

FIGURE 5

PPI Module 1 (A) and Module 2 (B) identified through analysis of the interactions of DEGs between AML and T-ALL patient samples, including
information on the functions and regulation of these genes.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1194353
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liang et al. 10.3389/fimmu.2023.1194353
signaling. Studies in mice have also shown that LAT is vital for T

cell development, with the knockout of this gene resulting in

impaired thymocyte development and an absence of mature ab T

cells in the periphery of these animals (12). Following TCR

activation, phosphorylated LAT can serve as an adapter to which

many other signaling proteins can bind (10). These proteins, in

turn, can attract a range of chaperones in the cytosol and trigger

additional tyrosine phosphorylation and protein-protein

interaction. LAT is thus an important regulator of multi-protein

signaling complex formation and associated regulatory activity,

serving as an important nucleation site on the plasma membrane.

ITK (IL-2-induced T cell kinase) is another important mediator

of TCR signaling that is known to be particularly important for Th2

responses and the induction of B cell-mediated humoral immunity

(13). ITK signaling is also vital for the development of T cells (14),

and mice lacking ITK expression or harboring a mutant isoform of

this protein fail to effectively initiate Th2 responses under

conditions that would typically engage a robust humoral immune

response (15, 16). Moreover, the conditional knockout or mutation

of ITK can contribute to increases in Th1-related cytokine

production and T-bet expression (17). Elevated IL-4 levels

observed in the context of the knockout of ITK have been

suggested to be linked to weaker Th2 responses and Th1 cell

expansion in a manner that may contribute to certain parasitic

infections and allergic diseases (18). T cells that lack functional ITK

expression are themselves dysfunctional but may serve as robust
Frontiers in Immunology 10
cytotoxic effectors with the potential to mediate antitumor

responses (19). Studies of ITK signaling in the pathogenesis of

diseases including malignant tumors and autoimmunity are thus an

active area of ongoing clinical and preclinical research.

CD247, also referred to as CD3 z, CD3H, CD3Q, CD3Z,

IMD25, T3Z, and TCRZ, is primarily expressed by T cells and

natural killer (NK) cells. The CD3 z protein contains 6 tyrosine

phosphorylation sites in its cytoplasmic domain that are

phosphorylated in response to TCR activation (20). These

phosphorylated tyrosine residues form an ITAM domain. While

the z chain is not essential for the development of T cells, it is

nonetheless required for TCR selection and preventing

autoimmunity (21). Appropriate and sustained z chain

phosphorylation is dependent on TCR ligand binding. When an

ab TCR recognizes a ligand that differs slightly from its cognate

ligand, z phosphorylation is blocked in the middle stage such that

downstream signal transduction is disrupted. Appropriate z
phosphorylation can also protect against inappropriate T cell

activation, with multi-stage phosphorylation being integral to the

kinetics of T cell activation. TCR signaling can trigger a range of

intracellular signaling events including inositol phospholipid

hydrolysis, increased intracellular calcium levels, and MAPK

signaling that ultimately promotes lymphokine upregulation and

the proliferation and differentiation of these cells. TCR-CD3 z chain
proteins are important for initiating signaling events following the

activation of T cells. ITAM phosphorylation in the context of T cell
A B

FIGURE 6

PPI Module 3 (A) and Module 4 (B) identified through analysis of the interactions of DEGs between AML and T-ALL patient samples, including
information on the functions and regulation of these genes.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1194353
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liang et al. 10.3389/fimmu.2023.1194353
activation enables the generation of signaling diversity in response

to TCR activation (22).

The PRKCQ/PKC q serine/threonine kinase is expressed at high
levels by various hematopoietic cell types including T cells, NK cells,

mast cells, and platelets, in addition to being expressed in the

liver, nervous system, thymus, and skeletal muscle. PRKCQ is

known to exhibit a range of immunological functions, with

PRKCQ-deficient mice exhibiting impaired T cell activation as a

consequence of the disruption of normal Ca2+ signal transduction

activity and associated suppression of NF-kB and NFAT activation

(23, 24). PRKCQ can further influence the expression of pro- and

anti-apoptotic members of the Bcl-2 protein family to shape the

survival of T cells, and it serves as an essential mediator of immune

response to bacterial and viral pathogens (25). PRKCQ expression

in certain gastrointestinal stromal tumors has similarly been shown

to govern the ability of these cells to proliferate, and in breast

epithelial cells it can enable survival, proliferation, and migration

independent of growth factor signaling via the kinase-dependent

activation of ERK/MAPK signaling (26). PRKCQ can also facilitate

the growth of triple-negative breast cancer (TNBC) cells in vitro

and in vivo, directly inhibiting ER expression in breast cancer cells.

By stabilizing Fra-1 expression, PRKCQ can also stimulate the

migration of TNBC cells while promoting the epithelial-
Frontiers in Immunology 11
mesenchymal transition in these breast tumor cells through the

phosphorylation and activation of LSD1, thus supporting breast

cancer growth and dissemination (27).

TRAT1 (TCR-related transmembrane junction 1) is a key TCR

regulatory gene associated with tumor progression (28). IL-4 is

capable of triggering cytotoxic responses in IL-17-producing CD8+

T cells (Tc17 cells), with IL-4/AKT signaling inducing TRAT1

upregulation and TCR stabilization in these Tc17 cells, thus

enhancing their cytotoxic activity (29). TRAT1 expression is

closely related to immune activity and the degree of infiltration

by a range of immune cell populations including CD8+, cytotoxic,

Th1, Th17, and Treg cells (30).

Roughly 20% of patients with T-ALL will develop recurrent

disease, and prognostic outcomes in these individuals are

poor. Genome-wide analyses of leukemia-associated genes in

cases of recurrence have revealed that recurrent tumor cells

generally express genes associated with resistance to cytotoxic

chemotherapeutic treatment such as NT5C2 and MSH6 together

with changes in the activation of many pathways such as the JAK/

STAT and MAPK pathways. Accumulating genetic changes

generally contribute to the incidence of recurrence after initiating

treatment. Tzoneva et al., for example, found that NT5C2

mutations were present in 19% of individuals with T-ALL and
A B

C

FIGURE 7

(A) PPI Module 5 identified through analysis of the interactions of DEGs between AML and T-ALL patient samples, including information on the
functions and regulation of these genes. (B) Four modules identified when specifically analyzing upregulated DEGs between AML and T-ALL samples.
(C) Three modules identified when specifically analyzing downregulated DEGs between AML and T-ALL samples.
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related to resistance to treatment with nucleoside analogs such as

mercaptopurine and thioguanine (31). Jones et al. additionally

confirmed that MAPK pathway activity was altered at the time of

recurrence (32), and they found these changes to be linked to
Frontiers in Immunology 12
corticosteroid resistance such that MAPK inhibitor treatment was

sufficient to restore corticosteroid sensitivity in preclinical model

systems. Inhibiting MAPK activity may thus be a means of treating

ALL recurrence. In the present study, genes expressed in T-ALL
A

B DC

E GF
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FIGURE 8

(A) (from bottom to top) the average spectra of the AML and T-ALL groups. (B) OPLS-DA cluster plot for the comparison of AML and T-ALL groups.
(C) OPLS-DA permutation plots for the comparison of AML and T-ALL groups. (D) ROC curves for the OPLS-DA model when comparing the AML
and T-ALL groups, AUC (AML) =1, AUC (T-ALL) =1. (E) OPLS-DA score plot for discrimination between the AML and T-ALL groups drawn with
Hotelling’s 95% confidence ellipse, R2X = 0.548, R2Y = 0.959, and Q2 = 0.756. (F) Loading line plot corresponding to discrimination between the AML
and T-ALL groups. (G) V+S plot corresponding to discrimination between the AML and T-ALL groups. The red, pink, green, blue, and yellow numbers
are associated with cholesterol, collagen, nucleic acids, proteins, and carbohydrates, respectively. (H) Statistical analysis of potential biomarkers
identified from OPLS-DA models comparing AML and T-ALL samples. (I) Comparisons of ADA between the AML and T-ALL groups. (J) Comparisons
of ALB between the AML and T-ALL groups. *P < 0.05, **P < 0.01.
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cells were associated with TCR pathway signaling, adaptive

immunity, intracellular signaling transduction, the plasma

membrane, cell-cell junction, and protein kinase C activity,

suggesting the importance of these pathways and compartments

in this form of cancer. Raman spectra from T-ALL patients

additionally confirmed that these pathways are significantly

activated in T-ALL, supporting their potential value as diagnostic

or prognostic biomarkers. These results also confirmed that

collagen synthesis was significantly enhanced in T-ALL,

accumulat ing in the extracel lular space. Intercel lular

communication may thus represent an important area of future

research focus in preclinical and clinical fields.

Advances in high-throughput sequencing technologies have led

to a deeper understanding of the pathogenesis of AML and other

myeloid tumor types. AML cases are characterized by the

acquisition of multiple somatic mutations affecting various genes

such that the disease evolves over time. In general, AML-related

mutations tend to occur in an ordered manner, with mutations in

epigenetic modifier-encoding genes including DNMT3A, ASXL1,

TET2, IDH1, and IDH2 most often occurring early in the diseases.

These mutations can persist even following treatment such that

mutates cells can undergo clonal expansion while patients are in

remission, eventually leading to recurrent disease. Mutations

affecting NPM1 or signaling molecules including RAS and FLT3,

in contrast, are generally secondary and arise during the more

advanced stages of this disease (33). The resultant mutations and

alterations in gene expression ultimately contribute to the

differences in the functionality of AML cells relative to healthy

hematopoietic stem progenitor cells. Large volumes of

transcriptomic data can thus be leveraged to guide disease

classification, risk stratification, and patient care.

Genes identified as being significantly overexpressed in AML in

this study included TLR4, MPO, MNDA, CSF1R, and C3AR1. The

pattern recognition receptor TLR4 (Toll-like receptor 4) is capable of

binding to endogenous or exogenous ligands, and it is expressed by

AML cells as well as a range of cells in the bone marrow stroma and

inflammation-regulating cell subsets. Various endogenous ligands

can bind TLR4 within the bone marrow microenvironment, and it

is also expressed on the surface of non-leukemic bone marrow cells

including mesenchymal cells, endothelial cells, differentiated bone

marrow cells, and inflammatory or immunologically active cells.

Osteoblasts serve as important supporting cells found within the

stem cell niche that can enable the ongoing survival and proliferation

of primary AML cells. This support is facilitated by bilateral cytokine-

mediated crosstalk between osteoblasts and AML cells. TLR4 is

involved in defense mechanisms in neutropenic patients suffering

from infections, and it can regulate immune response induction and

inflammation in individuals undergoing allogeneic stem cell

transplantation. TLR4 can thus directly impact primary AML cells,

in addition to indirectly influencing these cells through the regulation

of proximal cells in the bone marrow stroma. TLR4 is also capable

of regulating inflammatory activity and anti-leukemic immune

responses in allograft recipients.

Myeloperoxidase (MPO) is a heme-containing peroxidase

protein that is expressed at high levels in a range of immune cell

types such as neutrophils, monocytes/macrophages, and activated
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microglia, in addition to being present in neurons and astrocytes

(34). Genetic variations in MPO are associated with a higher risk of

ischemic stroke (35). The activation and degranulation of

neutrophils is also particularly important for MPO induction,

serving as the primary source of MPO found in the plasma.

Neutrophil-derived MPO activity reaches peak levels on days 1-3

after a stroke, while macrophage/microglia-derived MPO activity

peaks on days 5-7. An anti-neutrophil monoclonal antibody (RP3)

is capable of inhibiting the activity of MPO within 24 h of injection,

thereby decreasing brain edema and cerebral infarction in ischemic

brain tissue. The extent of neutrophil-mediated MPO activity is

thus a key determinant of ischemic stroke-related inflammatory

activity and brain damage.

MNDA (myeloid nuclear differentiation antigen) is expressed at

high levels in granulocytes, monocytes, and certain subsets of B cells

including those lymphocytes present in marginal regions of the

spleen (36, 37). Mechanistically, it serves to regulate type I

interferon signaling in cells of the bone marrow. MNDA, unlike

IFI16, is not a sensor for dsDNA, but it is required for the induction

of type I IFN responses through its ability to induce IRF7. MNDA is

also required for appropriate enhancer formation on the IRF7

promoter in humans, being recruited to this gene promoter in

response to signaling through the interferon receptor. MNDA thus

serves as a vital regulator of type I interferon signaling activity in

human bone marrow cells (36).

CSF1R (colony-stimulating factor 1 receptor) serves as an

essential regulator of the survival and differentiation of

macrophages and other mononuclear phagocytes. As a type III

protein tyrosine kinase receptor, CSF1R can homodimerize upon

interaction with IL-34 or CSF1, thereby triggering downstream

signaling activity (38). The presence of macrophages expressing

CSF1R within tumors is linked to low survival rates in a variety of

cancers, indicating that efforts to target these CSF1R+ tumor-

associated macrophages may aid in tumor clearance. CSF1R is also

expressed by other tumor-associated myeloid cells including

neutrophils, dendritic cells, and myeloid-derived suppressor cells

(MDSCs). Holgaard et al. demonstrated that following treatment

with the CSF1R small molecule inhibitor PLX3397, MDSCs

underwent reprogramming and differentiation to yield pro-

inflammatory cells capable of killing tumor cells (39). Owing to

phenotypic heterogeneity, further research is needed to clarify the

functions of MDSCs in the context of inflammation in humans and

mice. Additional studies of CSF1/CSF1R-mediated signal

transduction in non-macrophage humanmyeloid cells are warranted.

The transmembrane G-protein-coupled receptor C3aR1 serves

as a receptor for the activated C3a complement protein (40). C3aR1

expression has been observed in the pancreatic, brain, and adipose

tissue, and its expression is increased in obese rodents consuming

high-fat diets (41). C3aR1 expression is primarily observed in

immune cells including macrophages, but it is also expressed by

adipocytes and a range of other stromal cell types. When activated

by C3a binding, protein activation and b Arrestin1/2 recruitment

trigger the downstream activation of diverse signaling pathways,

leading to a net increase in intracellular calcium ion levels (41). At

present, 3D structural information pertaining to C3aR1 is not

available. The sequence homology between human C3aR1 and
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C5aR1 is ~57%, and X-ray crystallography has been successfully

applied to clarify the structure of C5aR1, offering a tool for use in

C3aR1 homology modeling (42).

In this study, we analyzed the differential expression of several

important genes identified in previous studies, finding that there

were indeed significant differences in the expression of these genes

in AML and T-ALL. The results of the bioinformatics analysis were

verified using Raman spectroscopy. The results indicated that the

results of the analyses were both detailed and reliable. Furthermore,

our findings were consistent with those of other research and

experimental results. Svojgr et al. analyzed the mRNA levels and

cell surface expression of LAT using RT-PCR and flow cytometry,

and the results showed significant increases in LAT with the

maturation of both malignant and non-malignant precursors in

T-ALL cases (43). Dombroski et al. demonstrated that ITK has

signaling potential independent of its kinase activity, while

Wenchang Guo et al. reported that inhibiting ITK can reduce the

proliferation and growth of malignant T cell tumor cells (44, 45).

Although there are no reports showing significant associations

between CD247 and the occurrence and progression of T-ALL,

TCR-CD3 z chains have been shown to play a crucial role in the

initiation of proximal signaling events after T cell activation, which

may provide new directions for future research. Schmitt et al.

analyzed differences in the mRNA and protein expression of

TLR-4 in DC cells from AML patients and normal donors using

qRT PCR, Western blotting, and flow cytometry (46). The results

showed that both AML and normal cells expressed TLR-4 at high

levels without no significant difference between them. These

findings are consistent with our experimental results, namely, that

TLR-4 is significantly overexpressed in the cells of AML patients.

According to the classification of the World Health Organization

(WHO, 2008), AML can be evaluated and differentiated from ALL

using flow cytometry (FCM)/immunohistochemistry (IHC)/

cytochemistry techniques, with myeloperoxidase (MPO) being

one of the clear markers for differentiation (47). The various data

in the above literature further verify that the key genes identified in

the present study are consistent with our bioinformatics analysis

and experimental verification results in terms of their

protein expression.

The present Raman spectroscopy results revealed that the

hematopoietic microenvironment associated with T-ALL

incidence was significantly impacted by excessive leukemic cell

proliferation, resulting in the altered degradation and synthesis of

collagen in the extracellular matrix. As T-ALL patients may face an

elevated risk of liver damage and consequent increases in levels of

serum ADA, the nucleic acid levels in their bone marrow samples

were reduced. This may be related to the expression of important

genes including FOS, TLR4, and CD44. Increased metabolic activity

in the bone marrow of T-ALL patients may also contribute to higher

levels of amino acid and protein utilization such that the peripheral

blood protein levels in these patients were decreased as compared to

patients with AML, potentially indicating that these patients may

face a poorer prognosis. Owing to the limited number of samples

available for this study, the analyzed biochemical parameters did

not differ significantly when comparing patient peripheral blood

samples. In contrast, the Raman spectroscopy results were able to
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highlight differences between these two groups of cancer patients,

emphasizing the enhanced sensitivity of Raman spectra-based

analyses of bone marrow supernatant samples and their ability to

reflect relatively subtle differences not evident in peripheral blood

samples, thus enabling the more reliable identification of

biomarkers of interest. Other factors such as patient disease

history, drug history, smoking and drinking history were not

analyzed in depth in this study yet may have influenced the

resultant data. Accordingly, future large-scale analysis with

standardized approaches to data collection will be necessary to

achieve enhanced sampling accuracy.

ADA is an adenosine deaminase that plays a unique and

important role in the differentiation and maturation of the

immune system. The activity of ADA in the thymus is much

higher than that in other organs. In lymphocytes, the ADA

activity in cortical thymocytes is higher than that in medullary

thymocytes and peripheral lymphocytes, while its activity in T cells

is higher than that in B cells (48, 49). Studies have found that the

immunoreactive ADA protein and translatable ADA mRNA in T

lymphoblastic cell lines are 6-8 times higher than those in B

lymphoblastic cell lines, which corresponds to the higher ADA

catalytic activity and protein ratio observed in T cells compared to B

cells (50). These observations indicate that there may be

fundamental differences in the degradation rate of ADA protein

and nucleotide metabolism between T cells and B cells, as well as

among members of the thymic cell lineage at different stages of

maturation. In lymphocytes, cell surface ADA not only degrades

extracellular adenosine, but also regulates the action of adenosine

mediated by A2B subtype adenosine receptors (51). Our research

results showed that the expression of ADA protein in T-ALL tumor

cells was higher than that in tumor cells from AML patients,

suggesting a specific difference in ADA-mediated signal

transduction and cytokine secretion between the two types of

leukemia. Human serum albumin (HSA, ALB) is the most

abundant protein in plasma, and is the main determinant of

plasma swelling pressure and the main regulator of fluid

distribution between various parts of the body (52). ALB is the

main carrier of fatty acids (FA), and can affect the pharmacokinetics

of many drugs and metabolically modify several ligands, as well as

rendering potential toxins harmless. It is a source of the plasma

antioxidant capacity (53). HSA is a biomarker for many diseases,

including cancer, rheumatoid arthritis, local ischemia,

postmenopausal obesity, severe acute graft versus host disease,

and diseases that require the monitoring and control of blood

glucose (54). Therefore, the concentration of albumin is a very

important clinical indicator. From our test results, it can be seen

that both T-ALL and AML patients have elevated albumin

expression in their cells, indicating that many biological reactions

requiring albumin such as inflammation have occurred in the

patient’s body, although the difference between the levels in T-

ALL and AML patients was not found to be significant.

AML is a highly heterogeneous disease such that even with

ongoing advances in the clinical treatment of this disease, most

AML patients still face a poor prognosis. AML-focused research to

date has largely centered around the characterization of signaling

pathways and metabolic processes that may yield a foundation for
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novel forms of anti-leukemia treatment in the future. The design of

novel therapeutic agents targeting the apoptosis, RTK signaling, HH

signaling, DDR, transcriptional regulation, and mitochondrial

metabolism pathways has the potential to improve patient

outcomes. LSCs are also thought to be major drivers of the

progression and persistence of this devastating disease. In the

present study, AML cells were found to express a range of genes

associated with inflammatory activity, immune response induction,

antigen presentation, MHC class II activation, and cytokine

production, potentially offering a foundation for the clinical

efforts to treat affected patients. Raman spectroscopy was

employed to validate the present results based on an analysis of

primary AML patient-derived cells. These results confirmed that

relative to T-ALL patients, patients with AML exhibited higher

levels of nucleic acid and protein synthesis pathway activity related

to the high levels of immune-related activity, inflammation,

mitochondrial respiration, and cytokine-associated activities

engaged by tumor cells in AML patients. Overall, these data

demonstrated that AML-related gene expression profiles are

complex and dynamic such that combination treatment strategies

may ultimately yield the greatest degree of therapeutic efficacy.
Conclusions

Advances in molecular research have helped enable the design of

small molecule drugs targeting a range of pathways for the treatment

of AML and T-ALL, yet the prognosis of patients with these

hematological malignancies remains relatively poor. In the present

study, a bioinformatics approach was used to compare the

transcriptomic profiles of AML and T-ALL patients, ultimately

revealing clear differences in signal transduction pathway activity

and PPI networks for these two cancer types. Raman spectra were

further used to validate these bioinformatics results, confirming

important regulatory roles for genes including LAT, ITK, CD247,

TLR4, and MPO when differentiating between these two diseases,

revealing a higher demand for nucleic acid and protein synthesis in

AML patient cells. As such, efforts to target these genes and pathways

may offer a basis for the development of novel pharmacological

interventions aimed at more effectively treating affected patients.

While future in-depth experimental analyses will be essential to

validate these results, they nonetheless provide a promising pathway

toward the improvement of prognostic outcomes in leukemia patients.
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