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Porcine reproductive and respiratory syndrome virus - animal virology,
immunology, and pathogenesis
Porcine reproductive and respiratory syndrome (PRRS) is one of the most important

pig diseases causing huge economic losses worldwide. The causative agent, PRRS virus

(PRRSV), is an enveloped, single-stranded, positive-sense RNA virus which is classified

into the genus Betaarterivirus, subfamily Variarterivirinae, family Arteriviridae along with

equine arteritis virus (EAV), lactate dehydrogenase-elevating virus of mice (LDV), and

simian hemorrhagic fever virus (SHFV). Its genome is about 15 kb in length and contains at

least 11 open reading frames (ORFs) with 5´ cap and 3´ polyadenylated tail (1–3). The

nonstructural proteins (nsp1-12), owning the functions of protease, replicase and

regulation of host cell gene expression and responsible for the synthesis of viral RNA,

are encoded by ORF1a and ORF1b which occupy approximately two-thirds of the genome

(4). The structural proteins including glycoprotein 2 (GP2), GP3, GP4, GP5, envelope

protein (E), matrix protein (M), and nucleocapsid protein (N), expressed by a series of

subgenomic RNAs, are encoded by ORFs 2-7 at the 3´ terminus of the genome (5). Due to

the lack of proofreading ability of PRRSV RNA-dependent RNA polymerase (RdRp), the

viral genome is highly susceptible to mutation and recombination, which causes the

emergence of novel PRRSV isolates worldwide (6). At present, PRRSV can be divided into

two species: PRRSV-1 (European genotype, Betaarterivirus suid 1) and PRRSV-2 (North

American genotype; Betaarterivirus suid 2). Both species show high genetic diversity and

share approximately 60% nucleotide sequence identity, and each one can be further divided

into several clades, substrains or lineages. In China, the dominant strains are PRRSV-2 and

the outbreaks of highly pathogenic variants lead to concerns in the pig industry (7). PRRSV

infection causes severe reproductive failure in sows and respiratory disease in pigs of all

ages, which often leads to secondary bacterial infections (such as Haemophilus parasuis

and Streptococcus suis) with greater clinical manifestations and higher mortality (8).
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PRRSV has an extremely narrow tropism for cells in vivo and in

vitro and porcine alveolar macrophages (PAMs) are the main cells

for the study of PRRSV pathogenesis in vitro (9, 10). Therefore, the

virus is known to specifically infect pigs and other species are not

susceptible to it. Since PRRSV mainly infects PAMs and destroys

the immune system, the virus causes cytokine storm and

immunosuppression thus inducing poor innate and acquired

immune responses in pigs. In addition, due to the antibody-

dependent enhancement (ADE) induced by the virus, some

antibodies such as non-neutralizing antibodies or antibodies at

sub-neutralizing levels might have undesirable effects to promote

virus invasion and exacerbate virus-induced damage (11–14). In

PRRSV-infected animals, the virus leads to persistent infection

resulting in long viremia lasting for more than four weeks.

During persistent infection, although pigs may show no clinical

symptoms the virus is capable of maintaining replication in tonsils

and lymph nodes for several months, keeping shedding in the

environment (15).

Collectively, due to the above six characteristics of PRRSV,

PRRS prevention and control remain a worldwide issue.

Commercial vaccines including modified-live vaccines (MLV) and

inactivated vaccines are available but provide only partial or no

protection against PRRSV infection (16). Currently, vaccines have

many flaws such as recombination with field strains, potential risk

of virulence reversion, and destroying or interfering with the

immune responses (17). New strategies are required to mitigate

the devastating consequences of this disease. The molecular

mechanisms of PRRSV pathogenesis and pathogen-host

interactions are not fully clear.

The humoral immune responses play important roles in the

clearance of pathogens. Kick et al. investigated the local and

systemic humoral immune responses in pigs inoculated with one

of three types of PRRSV-2 (one MLV vaccine strain and two lineage

1 isolates) via quantifying local immunoglobulin A (IgA) and

systemic IgG and homologous and heterologous neutralizing

antibodies (NAs). They found that the local IgA response closely

follows viral shedding and the systemic IgG response also starts

shortly after viremia but keeps high until the end of this study.

Additionally, the two lineage 1 strains used in this study almost

cannot induce NAs within 1-2 weeks after infection and the

antibodies show only a shortly delayed within lineage cross-

reactivity. The study improves our understanding of the

relationships between local and systemic infections and the

humoral immune responses induced by PRRSV or MLV

vaccination and suggests a potential to develop novel vaccines

against PRRSV infection using these strains. Previous studies have

shown that a small proportion of serum containing broadly reactive

NAs is capable of recognizing and neutralizing heterologous strains

(18). Nevertheless, it remains unknown whether the cross-reactivity

in seroneutralization experiments carried out in vitro correlates

with the protection in vivo. Therefore, Martı´nez-Lobo et al.

explored whether the strains that induce broadly reactive NAs in

vitro have the ability to confer better protection in vivo after

exposure to heterologous isolates than the viruses which induce

strain-specific NAs. The data demonstrated that PRRSV-1 strains

differ in their capacity to induce cross-reactive NAs and confer
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protection against heterologous reinfections. This research suggests

that broadly reactive NAs play a vital role in the protection against

heterologous infections.

The understanding of PRRSV epitopes related to protection

contributes to the development of optimized PRRSV vaccines.

Young et al. stated that exposure to various PRRSV isolates

enhances and improves the possibility of the generation of broadly

NAs. As a result, a reverse vaccinology approach is taken, andmemory

B cells from two pigs, which are exposed to both the PRRSV vaccine

and field isolate several times and whose serum neutralizes a broad

range of PRRSV isolates, are immortalized. The results showed that

antibodies from the above B cells have the ability to bind all the

PRRSV-2 isolates used in the study but neither of the PRRSV-1

isolates. Further, the antibodies against the GP5 protein which is

considered to have dominant neutralizing epitopes are found to be

highly abundant as four out of five B cells are GP5-specific. However,

only one antibody is determined to neutralize homologous but not

heterologous strains. This research confirms that the GP5 protein of

PRRSV contains neutralizing epitopes and broad binding, non-

neutralizing antibodies may precede those that are broadly

neutralizing. Future-designed vaccines that possess diverse PRRSV

strains or genetically distinct epitopes are more effective in cross-

neutralizing a broad range of PRRSV isolates. The thymus, a primary

lymphoid organ, plays a key role in T-cell development and

maturation. It is reported that the highly pathogenic PRRSV strains

such as the Lena strain show a higher thymus tropism than low

virulent isolates and cause severe thymus atrophy thus affecting

immune responses in pigs. To investigate the role of immune

checkpoints in the thymus of piglets upon PRRSV infection,

Ruedas-Torres et al. outlined the expression of selected immune

checkpoints (PD1/PDL1, CTLA4, TIM3, LAG3, CD200R1 and

IDO1) in the thymus of animals during the early stage of two

different PRRSV strains infection. The checkpoints of PD1/PDL1,

CTLA4, TIM3, LAG3 and IDO1 are significantly up-regulated in the

thymus of infected pigs, especially in those challenged with the

virulent isolate. The up-regulation may be involved in disease

progression and viral load and shedding. This study contributes to

the interpretation that why the highly pathogenic PRRSV strains cause

more severe pathological and tissue damage than the low virulent

isolates. PRRSV infection usually results in a delayed response of the

production of NAs, indicating that the virus may suppress or deceive

the immune system. The interaction of the virus with dendritic cells

(DCs), specialized in antigen presentation, could be one of the

molecular mechanisms of deception. Li and Mateu explored the

influence of a moderately virulent PRRSV strain on the maturation,

production of cytokine, and antigen presentation capacity of the three

DC populations: conventional DCs (cDC1 and cDC2) and CD14+

DCs. They found that exposure to PRRSV-1 does not induce the

maturation of cDC1, cDC2, or CD14+ DCs. However, it may affect

toll-like receptor-associated responses except for cDC1, which may

interfere with the development of acquired immune responses during

PRRSV infection. The molecular mechanisms that why PRRSV

infection leads to a poor and delayed immune response remain to

be further addressed.MLV have been widely used in pig farms and can

indeed reduce clinical symptoms and economic losses mainly in the

context of PRRS outbreaks. However, these MLV have many side
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effects and the reasons for this remain unclear. Bocard et al. revealed

the relationships between innate and adaptive immune responses

upon PRRSV infection or vaccination. Intramuscular MLV

vaccination in pigs often leads to an opposite regulation of blood

transcriptional modules (BTMs) when compared to intranasal

inoculation with highly pathogenic field isolates. This study may

contribute to the explanation of the complexity of the innate and

acquired immune responses against PRRSV infection and suggests a

fundamentally different immune response to less immunogenic MLV

compared with field isolates. In the design of safer and more efficient

vaccines, it is a crucial challenge to address the balance between

immunogenicity and attenuation of the field viruses. The cell cycle,

consisting of gap 1 (G1), synthesis (S), gap 2 (G2), and mitosis (M), is

a complex physiological process involved in the cell genome

replication and growth as well as cell division. The relationships
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between PRRSV and cell cycle and how the virus exploits cell cycle

to promote its proliferation are largely unknown. Wen et al. reported

that PRRSV infection results in Marc-145 cells entry into S stage,

therefore contributing to virus proliferation. Mechanistically, PRRSV

nsp11 is capable of degrading p21 thus leading to the promotion of

cells entry into S phase. Moreover, the endoribonuclease activity but

not the deubiquitination activity of viral nsp11 mediates the

degradation of p21. The study lays the foundation for further

understanding of pathogen-host interactions.

It is critical to address PRRSV pathogenesis and the molecular

mechanisms of virus-host interactions, which is a key prerequisite

and basis for preventing and controlling the disease. Since PRRSV is

an immunosuppressive pathogen, the development of novel

vaccines that induce higher NAs and are safer (especially vaccine

virulence reversion) is a major challenge. PROteolysis-TArgeting
A

B

FIGURE 1

Ideas and strategies for PRRSV prevention and control in future. (A) PROteolysis-TArgeting Chimeras (PROTACs), consisting of three structures: a
ligand for binding with the protein of interest (POI), a ligand for recruiting an E3 ligase and a linker, have been developed to exploit and hijack host
cellular ubiquitin-proteasome system (UPS) to specifically mediate the highly selective degradation of POIs. We can use this technique to develop a
novel PRRSV replication-deficient vaccine candidate. A certain protein of the virus (namely protein A) is specifically degraded by the host UPS thus
the production of progeny viruses fails, suggesting that the vaccine candidate is indeed safer than current modified live vaccines. (B) A genome-wide
CRISPR/Cas9 screening has great potential for the study of PRRSV-host interactions and the identification of the key regulators mediating virus entry
and infection. The key host genes could be used as targets for the development of antivirals and the breeding of disease-resistant pigs.
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Chimeras (PROTACs), consisting of three structures: a ligand for

binding with the protein of interest (POI), a ligand for recruiting an

E3 ligase and a linker, have been developed to exploit and hijack the

ubiquitin-proteasome system (UPS) of the host cell to specifically

mediate the highly selective degradation of POIs (Figure 1A). Until

now, this technique has achieved remarkable results in the fields of

cancer treatment and overcoming drug resistance. PROTACs also

show huge potential in the development of new vaccines. Si et al.

engineered a conditionally removable proteasome-targeting

domain (PTD) onto the matrix fragment of influenza A virus

(19). The viral matrix protein is specifically destroyed by the host

UPS, thereby the proliferation of the virus is dramatically

attenuated while maintaining the ability to induce broad and

robust humoral and cellular immune responses. The novel

PROTAC influenza virus vaccine can elicit efficiently protection

against homologous and heterologous challenges. As a result, the

PROTACs technique also can be used in the production of MLV

against other pathogens such as PRRSV. As shown in Figure 1A, the

ligand for recruiting an E3 ligase is specifically inserted into a

certain protein of PRRSV (designated as protein A), which is then

degraded by host cellular UPS to attenuate the virus replication

(replication-deficient). This PRRSV vaccine candidate is very

promising for clinical applications since it is indeed safer than

current commercial MLV used in pig farms. Although a number of

PRRSV receptors and the functions of the viruse-encoded proteins

have been extensively studied, little remains clear concerning the

requirements of host factor of the virus. The identification of crucial

host cellular factors involved in the different phases of the virus life

cycle contributes to the development of countermeasures and

increases preparedness for potential future PRRS outbreaks. It

represents the objective of intense efforts. CRISPR (Clustered

Regularly Interspaced Short Palindromic Repeats) screens have

become a powerful source of biological discovery as they offer a

powerful platform for screening in diverse fields such as drug

development and identification of potential host factors essential

for virus replication (20, 21). It is reported that the CRISPR/Cas9-

based screen approach using lentiviral single-guide RNA libraries

enables the pooled loss of function screens with high specificity and

sensitivity (22–26). This strategy to investigate pathogen-host

interactions is to globally disrupt individual genes of the whole

host cellular genome and identify those whose disruption leads to

resistance to viral invasion. Based on it, several genome-wide

knock-out CRISPR screens for the identification of the regulators

of SARS-Coronavirus-2 or other viruses especially the potential
Frontiers in Immunology 04
receptors have been studied (27–30). Similarly, as shown in

Figure 1B, we can perform a genome-wide CRISPR/Cas9 loss of

function screening to identify potential host proteins required for

PRRSV infection. After screen, the key genes promoting virus

infection need to be further confirmed which could be used as

targets for the development of antiviral drugs disrupting the

synthesis of host factor mRNA or protein. More importantly,

several key factors like CD163 receptor (31; Guo et al.), essential

for the virus entry into host cells, have great potential for the

breading of disease-resistant pigs by CRISPR/Cas9 technology.
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