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Background: Robust immune cell gene expression signatures are central to the

analysis of single cell studies. Nearly all known sets of immune cell signatures have

been derived by making use of only single gene expression datasets. Utilizing the

power of multiple integrated datasets could lead to high-quality immune cell

signatures which could be used as superior inputs to machine learning-based cell

type classification approaches.

Results: We established a novel workflow for the discovery of immune cell type

signatures based primarily on gene-versus-gene expression similarity. It leverages

multiple datasets, here seven single cell expression datasets from six different

cancer types and resulted in eleven immune cell type-specific gene expression

signatures. We used these to train random forest classifiers for immune cell type

assignment for single-cell RNA-seq datasets. We obtained similar or better

prediction results compared to commonly used methods for cell type

assignment in independent benchmarking datasets. Our gene signature set

yields higher prediction scores than other published immune cell type gene sets

in random forest-based cell type classification. We further demonstrate how our

approach helps to avoid bias in downstream statistical analyses by re-analysis of a

published IFN stimulation experiment.

Discussion and conclusion: We demonstrated the quality of our immune cell

signatures and their strong performance in a random forest-based cell typing

approach. We argue that classifying cells based on our comparably slim sets of

genes accompanied by a random forest-based approach not only matches or

outperforms widely used published approaches. It also facilitates unbiased

downstream statistical analyses of differential gene expression between cell types

for significantly more genes compared to previous cell classification algorithms.

KEYWORDS

single-cell RNA sequencing, gene signature discovery, cell type classification, machine
learning, cell clustering, tumor microenvironment
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Introduction

Recent improvements in single cell technologies led to a

multitude of singe cell RNA-sequencing (scRNA-seq) studies to

understand the complex interplay of immune cells in human

tissues (1). The procedures to assign cell types to single cells in

such data are a critical factor for the success of such studies (2). There

are hardly any ‘golden rules’ or generally accepted computational

workflows for assigning cell type labels to cells. Still, cell types are

often annotated manually: after unsupervised clustering of all cells a

manual assignment of cell types to clusters is performed by assessing

expression patterns of author-selected marker genes (3, 4). Manual

cell type assignment after assessment of small sets of markers is error-

prone: it can depend on habits and non-explicit rules and opinions of

researchers. Both steps are major sources of irreproducibility in the

field (5). Many researchers demonstrate that larger sets of genes, gene

signatures with sometimes dozens of genes, can provide more reliable

information for cell type classification since e.g., not all cells express

even the most widely used literature marker genes of their

corresponding cell types (6). Therefore, different sets of immune

cell type gene expression signatures have been proposed (7–11). Most

of these gene sets have been derived by analyses of bulk tissue-based

RNA-sequencing (RNA-seq) datasets, the older studies have used

microarray-derived gene expression data. Most recent signature sets

have been derived by analysis of scRNA-seq data (12–14). However,

only single gene expression experiments have been analyzed to derive

these signature sets. Although it is obvious that utilization of multiple

datasets generated by different labs or technologies could enable the

identification of more robust gene signatures, immune cell type gene

signatures based on the integration of evidence from multiple

published scRNA-seq gene expression studies have not been

described so far.

There is a specific group of workflows for cell type annotation

and downstream analysis that depends on clustering the cells in one

of the initial steps of cell type labeling (15, 16). Such cell type

annotation processes are often strongly affected by clustering results

which heavily depend on the clustering parameters (4). Clustering

and cell type annotation heavily affect downstream analysis. When

clustering and differential gene expression testing has used

information from all genes for cell typing this leads to statistical

biases (2). It is obvious that pre-requisites for statistical analyses are

violated when first information from all gene profiles is used for

establishing groups of cells, and later these same gene expression

data and derived cell groups are used for statistical tests to

determine differential gene expression between the same groups

(5). Similarly, a violation of statistical independence can be

observed in most automatic cell type annotation approaches

which make use of a complete reference dataset plus the data to

be annotated. The problem arises when the focus is set on highly

variable genes in both, the reference, and new dataset, instead of

using only the reference data as information source about gene

variance: the new data is already used for training of the

classification model (17). This method of cell type classification

maybe is not problematic in general, but it becomes problematic

when researchers are interested in the investigation of differential
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expression of HVGs between cell types by statistical testing. Such

bias should ideally be avoided or reduced in all workflows which use

cell type annotation followed by investigation of differences between

cell groups. Automated deterministic approaches that lead to

reproducible cell type annotations would not only be beneficial

for the interpretation of single studies, but they would also facilitate

cross-comparison between single cell gene expression studies. Pre-

trained machine learning models that make use of only expression

information of a small fraction of the genes and leave the majority

of gene expression information untouched for unbiased

downstream statistical analyses could be a significant step forward.

In our study, we established a novel discovery workflow to

identify immune cell-specific gene expression signatures by

leveraging multiple scRNA-seq tumor microenvironment datasets.

Furthermore, to eliminate the sources of analytical bias and increase

reproducibility, we developed a random forest-based cell type

classification approach operating on small sets of genes of our

immune cell type signatures. We extensively tested the performance

of our gene sets and our classification approach against other widely

used cell annotation approaches on two peripheral blood

mononuclear benchmarking datasets.
Data and methods

Single cell RNA-seq datasets and quality
control for genes and cells

We list all datasets used in this study for expression signature

discovery, validation, classifier training and benchmarking purposes

in Table 1, along with quality control metrics and dataset

information. For all discovery datasets, we included only those

immune cell types from tumor microenvironments in our analyses

which were present in at least three discovery datasets. We obtained

log-normalized expression matrices from the TISCH2 database (29)

for the datasets that we used for discovery of signatures. As a

validation dataset, we used the tumor immune cell atlas (24). We

removed all samples from datasets that we had used for discovery

purposes from the Nieto cell atlas that we used for validation.

For all datasets, we removed cells expressing less than 200 genes

and genes expressed in less than three cells and normalized the count

matrices using ‘LogNormalize’ by Seurat (v4.3.0) (16). We used the

cell type annotations published by the original authors to annotate

and validate our expression signatures and to benchmark cell type

classificationmethods. To investigate the statistical bias when cell type

classification uses the same genes that are later subjected to statistical

testing, we used the dataset of Kartha et al. (28): we only included type

II interferon treatment and control samples for this purpose.
Gene sets for comparison to our approach

In addition to our own immune cell signatures, we investigated

the following public immune cell signature repertoires: Abbas (7),

Charoentong (11), Angelova (9), Becht (30), Bindea (8), Newman
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(31), Nirmal (32) and Nieto (24). For comparing our gene signature

collection with other gene set collections in a random forest approach,

we focused on the following studies and cell types: a) Abbas: B cells,

DCs, monocytes, NK, and T cells; b) Charoentong: B cells (general and

memory), DCs (immature and pDC), monocytes, NK and CD4+

(regulatory, effector memory, central memory, and general) and CD8+

T cells (effector memory, central memory, and general); c) Angelova: B

cells (memory and immature), DCs (pDC, immature, mDC and

general), monocytes, NK, and CD4+ (regulatory, effector memory,

and central memory) and CD8+ T cells (effector memory and central

memory); d) Nieto: B and plasma cells, DCs (mDC, cDC and pDC),

monocytes, NK cells, naïve T cells, CD4+ T (effector memory,

transitional memory, memory/naïve and regulatory) and CD8+ T

(effector memory and cytotoxic) cells.
Dataset integration

For the integration of multiple scRNA-seq datasets we used

reciprocal principal component analysis (RPCA)-based integration
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implemented in Seurat (v4.3.0) (16). To find anchors between

discovery datasets and to integrate the datasets, we used

Seurat standard functions (https://satijalab.org/seurat/

articles/integration_rpca.html).
Dimension reduction and spatial clustering

To cluster genes with similar expression profiles in our

integrated expression matrix, we used a density-based

clustering approach. Prior to clustering, we reduced the

dimensionality of the Z-scaled integrated expression matrix

using UMAP from uwot (v0.1.14) (33) on the gene dimension

to the first and second UMAP components. On this spatial

representation of the UMAP space -in which each point

represents a gene- we performed density-based clustering using

dbscan (v1.1-11) (34), thereby clustering genes into gene clusters.

dbscan operated with two parameters: minimum points (minPts)

in a gene cluster and maximum distance between two data

points (epsilon).
TABLE 1 List of datasets used in this study along with their quality control measures.

Dataset Source Cell
source

Sequencing
technology Purpose

Number of cells, average
number of genes per cell

Portion of mito-
chondrial genes [<

%]

Unique
gene
count

GSE176078 (18) BRCA 10X

Discovery

43,140
12,661

5 <10,000

GSE166555 (19) CRC 10X
13,369
12,681

GSE140228 (20) LIHC Smart-Seq2
2,351
39,531

GSE140228 (20) LIHC 10X
16,724
13,751

GSE139555 (21) KIRC 10X
18,120
11,861

GSE131907 (22) NSCLC 10X
25,915
14,051

GSE123139 (23) SKCM MARS-Seq
4,817
8,861

TIC Atlas (24)
13

cancer
types

Various Validation
229,753
1,265

15 <5,000

Hao (25) PBMC CITE-seq Reference
158,783
2,207

15 >500, <6,000

Kotliarov (26) PBMC CITE-seq

Benchmarking

52,849
748

10 <2,500

Zheng (27) PBMC 10X
18,000
562

5 <1,500

Kartha (28) PBMC SureCell Biorad

Differential
gene

expression
(investiagtion

of bias)

23,754
943

– <4,000
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Gene cluster refinement using silhouette
scores and mean signature scores

The silhouette scores were used to evaluate the quality of the

gene elements and refine the gene clusters by considering the

similarity of gene expression profiles within clusters and the

dissimilarity between clusters. We calculated silhouette scores for

individual genes and clusters using cluster (v2.1.1) (35). As inputs

we used the cluster labels from dbscan and the gene-by-gene

correlation distance matrix for genes x and y: dx,y = 1 - r(x,y),

where r(x,y) represents the Pearson correlation calculated from Z-

scaled integrated expression profiles of genes x and y. The silhouette

scores range from -1 to +1, with higher values indicating better

clustering results and values closer to negative suggest that the

sample is likely to be assigned to the wrong cluster.

To evaluate the expression strength of each signature in each

cell type, we employed the “Average Z-Score method.” This method

allows us to measure the relative expression level of a signature in a

cell by considering the expression values of all genes associated with

that signature. We averaged the Z-scaled expression values (mean-

centered and standardized across cells) for each gene within the

signature in each cell to obtain mean signature score for a cell.

Subsequently we represented average mean signature scores for

each cell type by averaging mean signature scores coming from the

cells belonging to a given cell type.
Quantifying gene set similarities

Wemeasured the similarity of the gene sets (overlap of sets) by

calculating the Jaccard index using bayesbio (v1.0.0) (36) and the

Szymkiewicz–Simpson coefficient (37) between ours and all

published signatures. The Jaccard index calculates the ratio of

the intersection of two sets (our gene set and a published gene set)

to the union of both sets. It provides a measure of the proportion

of shared genes between the sets, indicating the degree of

similarity. Similarly, the Szymkiewicz–Simpson coefficient also

quantifies the similarity between two sets by dividing the

intersection of two sets by the number of elements belonging to

the set with minimum number of elements. This coefficient

provides an alternative measure to assess the overlap between

gene sets considering the differences between set sizes and evaluate

the similarity of the genes identified in our study with those

reported in the literature.
Cell type classification and performance
benchmarking of cell type
classification tools

For our immune cell type classification approach, we applied

our immune cell type gene signatures as features in a random forest

approach. For building random forest models utilizing

randomForest (v4.6-14) (38) we used a ratio of 67:33 for random

sampling of training and test data. We used only common signature
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genes between reference and query datasets as features. Prior to the

training, we harmonized original cell type annotations from

training datasets at medium-depth level shown in Supplementary

Table 1 and only included medium level cell types (monocytes, DCs,

B, NK, CD4+ T and CD8+ T cells). For the assessment of the

performance of other published gene signatures, we applied an

analogous procedure. Further, we used five different cell type

annotation tools with default parameters: Seurat (v4.3.0) (16),

singleR (v1.4.1) (15), scType (39), CellTypist (v1.5.0) (40) and

CHETAH (v1.6.0) (41). Prior to the cell type prediction using

Seurat, we applied the standard pipeline to the query and

reference dataset including log-normalization, finding and scaling

HVGs. The anchors for cell type label transfer were determined

between reference and query datasets and cell type labels were then

transferred to the query dataset based on the PCA projection. For

singleR and CHETAH, predictions were obtained by providing

normalized query and reference dataset along with cell type labels

from a reference dataset. For CellTypist, we utilized the same

reference dataset to train the model and used the default settings

with majority voting option. As input expression matrix, we used

the raw expression values for the reference and query datasets. In

the case of scType, it differs from other algorithms as it does not rely

on any reference dataset to label cells. Instead, it utilizes information

from cell clusters and specific combinations of cell type markers.

We followed the standard workflow of normalization, scaling, and

clustering using Seurat. Additionally, we loaded gene sets from the

built-in ‘Immune system’ database provided by scType. To assign

cell types to clusters, we followed the suggested steps recommended

by scType. In the case of perturbation datasets, we provided RPCA-

based integrated matrix as input to Seurat and singleR as suggested

by the methods.

Prior to the predictions, we harmonized original cell type

annotations from benchmarking datasets at medium-depth level

shown in Supplementary Table 1. To evaluate the performance of

the cell type prediction algorithms, we used six statistical metrics:

accuracy, specificity, sensitivity, negative predictive value (NPV),

positive predictive value (PPV) and F1-score. We reported the

mean of each statistical metric for each algorithm.
Results

Our study is structured into three parts: First, we comprehensively

analyzed gene expression similarities across different single cell

expression datasets of tumor microenvironments to identify

immune cell signatures. We discovered and refined gene modules to

finally obtain robust gene signatures for immune cell types. Second, we

tested the utility of our gene sets as classification features in a random

forest-based (RF) immune cell type classification approach. We

compared our approach with five most widely used methods on two

independent benchmarking datasets. Third, we examined how our

gene sets are compared to other published gene signature sets or

alternative feature selection approaches, and how the way of choosing

genes as features for classification influences the performance of a RF-

based classification approach for cell type annotation.
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Discovery of robust immune cell type gene
expression signatures by leveraging
multiple scRNA-seq datasets

To discover immune cell signatures, we established an

integrated density-based clustering workflow leveraging multiple

scRNA-seq datasets (Figure 1). We integrated seven tumor immune

microenvironment scRNA-seq datasets of treatment-naïve tumors

from six cancer types: skin cutaneous melanoma SKCM, liver

hepatocellular carcinoma LIHC, breast cancer BRCA, kidney

renal clear cell carcinoma KIRC, non-small cell lung cancer

NSCLC and colorectal cancer CRC. Each discovery dataset

contributed differently to the ten medium level immune cell types

(Figure 2A). We applied reciprocal principal component-analysis

(RPCA) based integration based on top 3k highly variable genes

(HVGs) and analyzed the successfully integrated expression matrix

in a UMAP analysis: different studies were harmonized in different

immune cell type clusters and similar cell types with similar

expression profiles clustered together (Figures 2B, C). The

integrated gene expression matrix comprised expression profiles
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of 3k genes for 123,509 cells from seven datasets and subsequently

served us to discover immune cell type-specific gene signatures.

To identify clusters of genes with similar expression profiles in

our integrated dataset, we utilized a density-based clustering

approach (Figure 1). We reduced the dimensions of the Z-scaled

integrated data in the gene space -not the cell space as used for the

integration- to the first and second components of UMAP. We

applied a spatial clustering approach, the DBSCAN algorithm, on

the UMAP space, where each data point corresponds to a gene, to

cluster genes into gene clusters. To determine two DBSCAN

clustering parameters (epsilon and minimum number of points in

a cluster minPts), we examined the optimal epsilon after plotting k-

nearest neighbor distances in ascending order and analyzing the

‘knee’ point where maximum curvature was observed for a

minimum of ten genes (minPts) in a gene cluster. The optimal

epsilon was at 0.3 but since we aimed to obtain more clusters and

have a higher resolution, we considered lower epsilon values as our

epsilon candidates. For the selection of the epsilon value which

captures signatures for all immune cell types, we tried different

values ranging from 0.15 and 0.2 in 0.05 interval. To do so, we ran
A

B

FIGURE 1

Immune cell type gene signature discovery workflow. (A) The workflow comprises the following steps: dataset integration, density-based clustering
using DBSCAN, refinement of gene sets using filtering approaches based on silhouette scores and mean signature expression score and annotating
and validating the signatures. (B) Funnel plot showing the refinement process in each step. The refinement process consists of five filtering steps:
gene filtering based on silhouette scores, selection of gene sets with minimum ten genes, selection of top 50 genes based on silhouette scores and
max-median filter based on mean signature expression scores. Each step is labeled from I to IV. The final number of clusters and genes is shown
after each filtering step.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1194745
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Aybey et al. 10.3389/fimmu.2023.1194745
D

A
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E
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F

G

FIGURE 2

Data characteristics and results of our gene signature discovery. (A) Contribution of discovery datasets to each immune cell type. (B, C) UMAP plots
of integrated expression matrix. Each point represents a single cell, and each cell is colored by cell type (B) or dataset (C). The cell type labels are
taken from the original publications. Cell type labels are placed in the center of the cell type clusters. Note the successful integration and
harmonization of the datasets. DC, dendritic cell; NK, natural killer; pDC, plasmacytoid dendritic cell. (D, E) UMAP plots based on 3 HVGs or final
genes from our gene signatures. The dimensionality of the gene space of expression data is reduced in each step, starting from 3k common HVGs in
the integration step to finally 338 genes of our gene sets. Each point represents a gene. UMAP1 and UMAP2 are plotted for each gene in x and y axis,
respectively. In D and E genes in our gene signatures are annotated in different colors. In D other genes are colored gray. Cluster numbers are
placed in the center of the clusters. Genes from each refined gene set cluster together to the exclusion of other gene sets. (F, G) Mean signature
expression scores per cell type of refined gene signatures shown in the discovery and validation datasets. Red and blue represent high and low mean
signature expression scores, respectively. Rows represent the gene signature cluster numbers along with the manual annotations while columns
represent the cell types defined by the original authors in the datasets. The signature annotation names contain cell type which the signature can
detect. Discovery and validation datasets are shown in F and G, respectively.
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the gene refinement workflow (Figure 1) explained in the following

parts including filtering out genes with negative silhouette scores

and taking only top 50 genes with the highest silhouette scores.

Then, in the given range, we examined the heatmaps showing the

mean signature scores - as calculated using the Average Z-Score

method- for each cell type in each discovery dataset. An epsilon of

0.18 resulted in a better resolution capturing signatures for all cell

types in the discovery datasets. Subsequently, applying DBSCAN

with given parameters (epsilon=0.18 and minPts=10) on the UMAP

gene space we obtained 57 gene clusters, each with a minimum of

ten genes.

To refine the gene content within each cluster, we employed

silhouette scores (Figure 1B I). These served as an evaluation metric

for assessing the quality of gene clusters and individual gene

elements. We calculated the silhouette scores for genes based on

the gene-by-gene correlation distance matrix. We filtered out genes

which did not align well with their respective clusters, specifically

those with negative silhouette scores. Further, we filtered out

clusters with less than ten genes. For all clusters, we only

included the top 50 genes in each cluster based on the gene-wise

silhouette scores (Figure 1B II-II). We assessed how strong the

mean relative gene expression score (averaged Z scores of all genes

in cluster) is in all cell types as they had been annotated in the

original publications. We noticed that some gene clusters might not

define cell types but rather biological programs (e.g., IFN response

and cell cycle) and decided to not further focus on such gene sets.

To filter out those gene sets, we removed clusters when they

exhibited only a small difference (<0.6 Z score units on natural

log scale) between the cell type with maximum expression score and

the cell type with median score in at least three discovery datasets

(Figure 1B IV). We finally assessed the success of our gene selection

strategy by performing an UMAP dimension reduction focusing

only on the genes from our 14 gene clusters (Figures 2D, E). On the

initial UMAP used for clustering (Figure 2D), genes within each of

those 14 gene sets were forming distinct clusters that were separate

to the exclusion of genes not belonging to the gene set. We obtained

a congruent clustering pattern when we re-applied UMAP on the Z-

scaled expression of only those 338 genes from our 14 gene sets

(Figure 2E). These findings show the recurrent segregation of genes

into the same clusters in early and late phases of our gene signature

discovery process.

After gene set refinement, we finally obtained 14 gene sets that

were subjected to a comprehensive annotation and validation

approach. To annotate the signatures, we examined mean gene

expression scores across all cell types (as identified by original

authors) in each discovery dataset (Figure 2F). We manually

annotated the gene sets based on which immune cell type had the

highest expression of a given signature at least in three discovery

datasets in the depicted heatmap: B, DC, macrophages, mast,

monocytes, NK, pDC, plasma and CD4+ and CD8+ T cells. We

also obtained two lineage signatures: myeloid and T cell lineages. To

statistically validate our manual annotations, we tested the

enrichment of each signature in its corresponding cell type using

Wilcoxon rank sum test comparing signature scores of all cells of a

given cell type against cells from other cell types (Supplementary

Figure 1). All of 14 signatures were higher expressed in their cell
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types (uncorrected p<0.01) in at least three discovery datasets. Since

we have aimed to discover immune cell type signatures for unique

cell types, from now on we will only focus only on the twelve

immune cell type signatures and not on the two immune cell

lineage signatures.

To validate our twelve gene sets and prove the correctness of

our immune cell type annotations, we used the scRNA-seq gene

expression dataset from tumor immune cells atlas (24) as a

validation dataset: it has not been used for gene signature

discovery. We established mean signature expression scores for

each cell and assessed these across cell types mentioned in the

original study; we also tested statistical enrichment of the signatures

in each cell type (Figure 2G; Supplementary Figure 1). Finally, we

could validate all our signatures except the S_6 monocyte signature.

We summarize our final validated gene list of eleven immune cell

type gene signatures in Table 2.

It is possible that with our approach we just re-discovered gene

sets that were already known. Thus, we compared our eleven

immune cell type signatures with seven published immune cell

signature repertoires using the Jaccard and Szymkiewicz-Simpson

(S-S) indices. Our immune cell signatures had relatively low

maximum Jaccard indices (0-0.32, median 0.12) (Supplementary

Figure 2A). Four of our immune cell signatures (plasma, pDC,

monocytes and macrophages) had maximum Jaccard indices below

0.1 suggesting that they are potentially novel signatures. Three

highest detected Jaccard indices were found between our mast cell

signature and Bindea mast signature, our B cell signature and the

Nirmal and Newman B cell signatures (Jaccard idx= 0.32, 0.31 and

0.21, respectively. Maximum S-S indices had higher scores and

varied in a range from 0.08 to 0.67 (Supplementary Figure 2B). The

maximum three S-S- indices were between our B cell and Becht B

cell signature (SSidx = 0.67), between our mast and Bindea mast

signature (Ssidx = 0.6), between our B signature and Nirmal B cell

signature Ssidx = 0.5). This shows that we have detected largely

novel gene sets with significant differences in their composition

compared to already published signatures, and that our signature

gene sets were nearly always smaller than other gene sets.

In summary, we obtained eleven gene signatures for ten distinct

immune cell type populations that exhibit high gene expression

signature coherence in our seven discovery datasets and in one

validation dataset.
Using a limited number of cell type-
specific genes combined with a random
forest approach yields higher or
comparable prediction scores in
comparison to commonly used algorithms

Most cell type annotation approaches use information from a very

large number of HVGs (often 2k genes are used) for cell typing. This

might lead to problematic bias in down-stream statistical analyses of

differential gene expression between cell types because most important

genes have been already used up for cell typing (2). We hypothesized

that using a small set of robust cell type signatures we can predict cell

types as well as or better than approaches that use many more genes
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for cell typing and can therefore eliminate biases in the analyses of

those many genes. We applied our immune cell type genes from our

discovery workflow on a random forest cell type classification model

(RF) and predicted cell types from two PBMC benchmarking datasets.

As our gene features, we utilized 167 genes from our signatures for

eight different cell type populations (plasma, monocytes, DC, pDC, B,

NK, CD4+ and CD8+ T cells). Here we did not include genes from our

two macrophage signatures and one mast cell signature since these

were not suitable for PBMC data and we aimed to compare later our

signature genes with published signatures of the same or similar

signature content. For the training and prediction, we used the Z-

scaled expression values only from the common signature genes

between training and benchmarking datasets. As training data, we

used a PBMC reference dataset- Hao dataset (25). We used medium-

level cell types shown in Supplementary Figure 1. We trained RF using

randomly selected 67% of reference data and tested on the left-out

(33%) reference data. We compared our predictions with the most

widely used cell typing tools, Seurat singleR, CHETEAH, scType and

CellTypist on the Kotliarov PBMC benchmarking CITE-seq dataset.

Cell type annotations in the Kotliarov dataset are based on cell surface

marker protein expression which until now still is considered to be the

gold standard for assigning cell types by many researchers (26). For

Seurat and scType, we provided 2k HVGs as input while for

CHETAH, singleR and CellTypist, the input contained all genes.

First, we trained the models using Hao PBMC reference dataset for

all methods except scType since scType relies only on the query

dataset. scType (scores range in 69-83) and Seurat (scores range in 68-

74) used with 2k HVGs yielded the highest prediction scores followed
Frontiers in Immunology 08
by CellTypist (scores range in 67-74) and our RF approach which had

medium-high prediction scores (scores range in 65-74) (Figure 3A).

Of note, relatively higher performance of scType is due to not

considering unconventional T cells and hemopoietic stem cells in

our reference data. CHETAH (scores range in 59-72) and singleR

(scores range in 64-73) had the lowest predictions scores and singleR

had lower or comparable benchmarking results compared to our RF

approach except in sensitivity. CHETAH had lower prediction scores

than RF in each metric.

We further examined the effect of gene choice for those

algorithms which had slightly higher or comparable scores than

our RF model: CellTypist, Seurat and scType. We applied these

approaches using different numbers of HVGs.When using only small

numbers of HVGs (<500) all other methods did not performwell and

had lower performance scores than our model in all six metrics except

PPV and F1 score (Figure 3B). PPV and F1 scores were lower than

our RF when we used <300 HVGs for other methods. This means,

despite only using the info from 167 genes, our RF model showed

comparable results as five commonly used transfer methods and even

better predictions when many HVGs are used for the classification.

We also evaluated all methods on a single cell expression dataset

generated from FACS-sorted immune cells on Zheng dataset (27). The

dataset consists of nine immune cell populations: B cells, CD14

monocytes, naïve CD8+ T cells, cytotoxic CD8+ T cells, NK cells,

memory CD4+ T cells, naïve CD4+ T cells, regulatory CD4+ T cells

and helper CD4+ T cells. For the comparison, we downsampled 2k

cells from each cell type and used the same set-up as previously

described. Our model achieved high prediction scores (scores range in
TABLE 2 Summary of our refined immune cell type signatures.

Cluster
number

Cluster
annotation

Genes Number
of genes

S_13 B

TCL1A, VPREB3, CD22, EBF1, FCER2, STAG3, MS4A1, PARP15, CD79B, KHDRBS2, BANK1, FAM129C, CD79A,
CXCR5, LINC00926, BACH2, AFF3, LY9, RALGPS2, SMIM14, FCRLA, CD37, SPIB, FCRL1, IRF8, CD19, CNR2,
TNFRSF13B, ADAM28, COL19A1, PAX5, ARHGAP24, TCF4, BLK, PKIG, RIC3, IFT57, TNFRSF13C 38

S_14 DC CD1E, HLA-DQB2, CD1B, PKIB, CALCRL, CD1A, FCER1A, S100B, PLD4, CD1C, PPP1R14A, NAPSA, CD207 13

S_10 Macrophage APOE, CTSL, GPNMB, CD9, TREM2, CTSD, APOC1, ADAMDEC1, SPP1, MMP9, PLA2G7, LIPA, ACP5, NUPR1, FN1 15

S_5 Macrophage
CCL13, MS4A4A, SLC40A1, LYVE1, RNASE1, SIGLEC1, C1QA, STAB1, CXCL12, ABCA1, IGF1, GPR34, PLTP, C1QB,
PMP22, A2M, LGMN, FOLR2, SLCO2B1, MRC1, DAB2, NRP1, LILRB5, C1QC, F13A1, PLAU 26

S_1 Mast
TPSAB1, HPGDS, ADCYAP1, CPA3, PLAT, GATA2, CTSG, HPGD, KIT, CLU, IL1RL1, KIAA1549, RSPH9, SYTL4,
HDC, VWA5A, RGS13, TPSB2, LIPC, SLC18A2 20

S_8 Monocytes
LILRA5, SLC25A37, CFP, S100A12, CD300E, TIMP1, APOBEC3A, FCN1, TREM1, SLC11A1, VCAN, S100A9, S100A8,
CDA, THBS1, FGR 16

S_4 NK
GZMB, CD160, TXK, KIR2DL4, TMIGD2, CTSW, KRT86, KLRF1, SH2D1B, GNLY, PRF1, KLRD1, XCL2, CLIC3, XCL1,
HOPX, MATK, PTGDR, KRT81, KLRC1 20

S_9 pDC
SCT, RGS7, IRF4, VASH2, GPM6B, MAP1A, NME8, PTCRA, PTGDS, AEBP1, CLEC4C, SMPD3, TTC39A, PHEX,
MMP23B, PLVAP, PLAC8, RASD1, LILRA4, PTPRS, DNASE1L3, LRRC26, SLC35F3, TPM2, KRT5, TSPAN13 26

S_12 Plasma
IGLL5, FKBP11, ITM2C, XBP1, DPEP1, SEC11C, HSP90B1, TNFRSF17, SDC1, CAV1, SSR4, DERL3, MZB1, JSRP1,
CERCAM 15

S_11 T CD4
FAS, TNFRSF25, PBX4, FAAH2, ICOS, CD28, CCR4, TMEM173, MAL, LTB, ARID5B, PBXIP1, TNIK, NPDC1, LEF1,
FBLN7 16

S_2 T CD8
FASLG, CCL5, RAB27A, CD8B, CPNE7, CST7, OASL, GZMH, GZMA, CHST12, SAMD3, CLEC2B, CD8A, APOBEC3G,
GZMM, SLA2, TNIP3, IFNG, TSEN54, CRTAM, C12orf75, LAG3, GZMK 23
fr
*DC, dendritic cell; NK, natural killer cell; pDC, plasmacytoid dendritic cell.
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94-99) (Figure 3A). CHETAH (scores range in 68-93) and singleR

(scores range in 87-97) again had lower prediction scores than our RF

model. Our RF model had comparable results to other algorithms

(scores range in 95-98, 92-99 and 95-98 for Seurat, scType and

CellTypist, respectively). Like for the Kotliarov benchmarking

dataset, Seurat, CellTypist and scType trained with small sets of

genes (<500) performed worse than our model in all six metrics

(Figure 3B). So, our random forest approach based on a comparably

small set of genes (~170) obtained from our high-quality signature

collection matched the performance or even outperformed the most

widely used cell type annotation procedures (when executed with

small number of HVGs) in both, the Kotliarov dataset (in which cell

types had been annotated based on surface protein expression) and the

Zheng dataset (in which cells had been sorted by FACS).
Utilizing less but more robust immune cell
type-specific genes for cell type
classification reduces bias in
downstream analysis

We further investigated the advantage of using a reduced gene

set for cell typing which inherently minimizes the influence of
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regulated -and thereby variable- genes on cell type assignments as

for individual cells. The utilization of HVGs in cell type

classification in tools like Seurat, scType, and CellTypist can

introduce bias into downstream statistical analyses that can

undermine the accuracy of the results. Bias leading to inflated p

values can possibly be introduced in different ways (see

Supplementary Figure 3 as an example how bias might be

introduced). Briefly, in perturbation experiments on complex

mixtures of single cells, the selection of HVGs for classification

may favor the over-assignment of cells to the specific cell type that

exhibits the strongest response to the stimulus. The erroneous over-

assignment of cells to this specific cell type might lead to a larger

sample size for statistical testing, and consequently to inflated

p values.

To demonstrate the potential bias introduced by using a large

number of genes for cell type classification, we focused on the well-

characterized effect of type II interferon (IFN-gamma, IFNg) on

monocytes and dendritic cells (DCs) (42). It is known that IFNg

response is strongly affecting gene expression in those myeloid cell

populations. We examined the Kartha dataset (28) in which PBMCs

are treated with IFNg and samples were taken at two different time

points, one and six hours after stimulation. We classified cell types

using our RF approach, and using Seurat, scType and CellTypist
A

B

FIGURE 3

(A) Our random forest model shows higher or comparable prediction statistics compared to five commonly used tools in benchmarking datasets.
Mean statistic metrics are displayed for each method. The Hao dataset is used as a reference dataset. The Kotliarov and Zheng datasets are used for
benchmarking. (B) Prediction metrics change with increasing number of HVGs. In an interval of 100 HVGs, we predicted the cell type labels
executing Seurat, CellTypist and scType using Hao reference data on Kotliarov or Zheng benchmarking datasets. We report the mean scores for six
statistical metrics for each HVG set. The prediction scores for our RF approach are shown in red points and dashed lines.
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that depend on many HVGs for supervised or unsupervised

classification. We conducted a comparison between the

assignments of DCs when using our RF approach and those from

other three methods. We observed that our RF method assigned

much less DCs (n=66) compared to other methods (Seurat: n=126,

scType: n=105 and CellTypist: n=115) (Figure 4A). Most cells

classified as DCs by other three methods were classified as

monocytes and DCs in RF. To further examine the monocyte-DC

cell type assignment differences, we compared the cells classified as

DCs by RF (DC_RF) against cells classified as monocytes in RF but

as DCs in other methods (Mono_RF) with regard to the expression

of known cell type markers. Mono_RF cells indeed showed lower

DC markers (FCER1A, CD1C, FLT3, and CD1E) and higher

monocyte markers (CD14, FCGR3A, CTSS, FCN1, S100A9, LYZ,

VCAN, TLR2, ITGB2, ITGAM, CTSD, CTSA, and NLRP3)

compared to DC_RF cells suggesting a possible misclassification

of these monocytes as DCs by other three methods (Figure 4B). To

further delineate the effect of this misclassification on potential bias

in downstream analyses, we examined the results of statistical tests

(Wilcoxon rank sum test) for differential gene expression (control

vs. IFNg) of 2k HVGs on DCs assigned by each method. In scatter

plots of p values of our approach versus p values of the other

approaches, we observed that the curves consistently fell below the

diagonal, a result that was especially pronounced for gene

expression at 6 hours (Figure 4C). This suggests that other

methods may produce overly optimistic p value results. To better

characterize the reason for this bias, we compared IFNg

responsiveness between Mono_RF (misclassified as DCs by other

approaches) and DC_RF (true DCs labeled by RF). We calculated

the mean signature scores for IFNg genes from IFNg Hallmark

signature (43) for each cell comparing RF results with other three

approaches (Figure 4D). In all comparisons, Mono_RF had

significantly higher IFNg scores especially at 6 hours and

marginally higher, yet insignificant IFNg scores after 1 hour.

These results provide additional evidence supporting the notion

that the misclassification of monocytes as DCs by Seurat, scType,

and CellTypist contributes to inflated p values, and suggests as a

reason a potential overcalling of DCs due to the expression of IFNg-

related genes (among HVGs) in the misclassified monocytes.
Using our immune cell type genes yields
higher prediction than using other
published immune cell type
signature repertories

Finally, we assessed how our gene sets performed in RF

classification approach in comparison with four other published

immune cell type signatures (hereafter referred to as the Angelova,

Abbas, Charoentong and Nieto gene sets) (7, 9, 11, 24). We trained

all RF classifiers on subsets of genes (as defined by our or the four

published signature sets) of the Hao reference dataset. We

benchmarked the prediction results on scRNA-seq datasets of

Kotliarov and Zheng benchmarking datasets. The comparator

gene sets have been originally derived or previously utilized in

different ways. The Nieto gene sets have been manually curated and
Frontiers in Immunology 10
hav e be en app l i ed on mu l t i p l e s cRNA- s eq tumor

microenvironment datasets; other three gene sets have been

derived from bulk RNA-seq or microarray datasets. All four gene

sets have been applied to study the tumor microenvironment. To

highlight the lower bound of expected gene set performance we also

assembled random sets of genes with the same number of genes

which we had in our gene set repertoire (167 and 163 genes for

Kotliarov and Zheng datasets, respectively).

The benchmarking results for all gene sets in our random forest

classification approach, i.e., the overall prediction accuracy, F1

score, sensitivity, specificity, NPV and PPV are listed in Figure 5.

As expected, random genes showed the worst prediction scores in

every metric: all gene sets clearly outperformed the randomly

selected gene sets. Overall, the most favorable prediction results

in every metric were obtained with our immune cell gene sets,

followed by the Charoentong gene sets. In Kotliarov and Zheng

datasets, the minimum difference between our gene signature to

Charoentong gene set was in NPV scores (0.6 and 2.1, respectively).

Conversely, we observed maximum differences to the Charoentong

gene set (2.4) in the Kotliarov dataset with regard to sensitivity, PPV

and F1 scores while in the Zheng dataset sensitivity scores from

Charoentong had the highest difference of 8 to our gene set. In

summary, for both benchmarking datasets our random forest

model trained on our comparably small sets of robust immune

cell type marker genes overall showed superior performance when

compared to the classifiers trained on four published

gene repertoires.
Discussion and conclusions

One main objective of our study was to discover and validate

robust gene expression signatures for immune cell populations

based on multiple single cell datasets. To do so, we established a

novel workflow consisting of dataset integration, dimensionality

reduction, density-based clustering, and cluster refinement

methods. In our workflow we solely analyzed similarities between

gene profiles across cells. In contrast to other approaches, we

avoided selecting genes based on differential expression between

cell type clusters, thus avoiding problems related to masking signals

of small but important expression programs when focusing on the

sample (here cell) level and not the gene level (44). Our

benchmarking results show that our approach can yield

reasonably sized sets of marker genes with equal or better

classification potential compared with published gene sets.

Through application of our workflow on integrated single cell

data from six studies we identified gene signatures for ten distinct

immune cell type populations. We detected a relatively low gene

overlap (0.0-0.3 maximum Jaccard indices, 0.08-0.67 for maximum

S-S indices) between our signatures and published signatures. This

confirms the novelty of our approach but is also not astonishing

since each published gene signature had been derived using

different analytical methods, different sequencing technologies, or

stems from investigations of different cell populations. Like our

results about gene set overlap, Nirmal et al. reported low

concordance between their signatures and other published
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FIGURE 4

Possible downstream statistical analysis bias demonstrated in interferon gamma stimulated PBMC Kartha scRNA-seq dataset. Cell types are labeled
using our random forest (RF) model utilizing our immune cell type genes, or using Seurat, scType and CellTypist. Mono_RF cells are cells labeled as
monocytes in RF but as dendritic cells (DCs) in other methods while DC_RF cells are DCs labeled as DCs in RF. (A) Sankey plot showing different cell
type assignments in RF and other methods for cells classified as DCs either by RF or other methods. (B) Dot plots showing expression of monocyte
or DC gene markers in Mono_RF and DC_RF cells. The size of the dots represents the percentage of expression while Z-scaled average expressions
are shown from blue (low) to red (high). (C) P-value-to-p-value scatter plots showing over-optimistic p values for Seurat, scType and CellTypist
compared to RF. We perform differential gene expression analyses for 2k HVGs using the cell types defined as DCs in different cell typing methods,
for each sampling time point separately. P values generated for RF-generated DC cell groups are displayed on the x-axis while DC groups from
other cell typing methods are shown on the y-axis. In each comparison, the comparison line falls below the trend line pointing out over-optimistic
results from other methods compared to RF. (D) IFNg Hallmark scores for DCs annotated by RF DC_RF or misclassified monocytes Mono_RF. For
each condition, mean signature scores for IFNg Hallmark genes are calculated. DCs annotated by RF are compared with those cells classified as
monocytes by RF but as DCs by other approaches. We apply Wilcoxon rank sum tests to compare IFNg Hallmark scores between those two cell
type groups at each time point separately (ns = non-significant (p > 0.05); * = p < 0.05, ** = p < 0.01).
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signatures (32). Interestingly, their B cell signature when compared

to our B cell signature yielded the highest Jaccard and SS indices.

Low Jaccard scores to published signatures highlight the difficulty of

the problem to identify robust signatures on the one hand, and the

novelty of our approach to derive signatures on the other hand.

Finally, our immune cell gene expression signatures yield better cell

type classification results compared to other published signatures.

So, we argue that they are a reasonable choice as feature sets for cell

type classification.

Another aim of our study was to identify cell type classification

approaches that might be competitive when compared to existing

methods for cell typing in complex scRNA-seq datasets. To this end,

we developed a random forest classifier trained only on expression

data for our gene sets. We compared our predictions with five

published cell type annotation algorithms. These algorithms were

shown by others to perform well in different benchmarking studies:

especially Seurat was gaining attention and currently is probably the

most widely used cell type annotation tool (45). On our PBMC

benchmarking datasets, the Kotliarov and Zheng datasets, we showed

that our random forest model trained only using our gene signature

collection achieved comparable prediction scores that are always close

to the best performing approach of Seurat, scType and CellTypist.

However, an important difference between these cell typing methods

and our method is that these approaches use mostly 10-fold more

genes (2000 HVGs instead of ~170 distinct signature genes) for cell

typing. For downstream statistical analyses we therefore leave >90%

of HVGs and their data untouched by classification. This means that

those HVGs can be subjected to downstream differential gene

expression testing without bias. Such bias can arise when the same

gene profiles are first used to establish cell type information (for
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example through clustering-based cell tagging) and later are tested for

differential expression between groups that have already been defined

using the same profiles. This is especially important for more

complex experimental designs since most cell typing approaches

face the problem of downstream analysis bias. The selection of

HVGs might compromise those genes that are affected by

important experimental variables such as a treatment stimulus and

time point. We could clearly show how statistical bias could be

introduced for an experiment with type II interferon treated DCs and

monocytes (Figure 4). In this well characterized stimulation

experiment, the p values obtained with cell type labeled using

Seurat, scType and CellTypist led to an inflation of significance in

the p values from 2k HVGs. We show that one reason for the bias is

the inappropriate labeling of non-DC cells, that respond to the

interferon stimulus, leading to larger numbers of cells with DC

labels, thereby increasing the sample size for “DC cells” and leading

to overoptimistic p values for many interferon-regulated genes.

Especially for such a stimulation experiment, it is important that

results from downstream statistical analyses of the most variable

genes are not biased. Currently, most single cell datasets do not have

multiple experimental variables. In the future, single cell experimental

set-ups could become more complex, especially when complex

perturbations or time courses are to be analyzed. Then, providing

cell types in a way that allows unbiased downstream analysis will

become increasingly important.

Some reports suggest that there are considerable differences in

gene expression profiles of immune cells in different cellular

environments, and that this leads to poor performance when an

approach for cell typing is developed in one tissue context and then

used in another tissue context (32, 46, 47). In our approach, we did
FIGURE 5

Comparison of our immune cell type signature repertoire with other published signatures on random forest approach in benchmarking datasets.
Mean statistic metrics are shown for random forest models trained using our immune cell gene set and different published immune cell type
repertoires (Abbas, Angelova, Charoentong and Nieto). We also include random forest models trained on random genes (with the same number of
random genes as we have in our immune cell gene signature repertoire). Using our gene signatures yields better prediction performance in the
benchmarking data from Kotliarov and Zheng than all approaches.
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not perceive tissue switching as a problem. We obtained our

immune cell type signatures by leveraging multiple tumor

microenvironment and tested their utility in cell type

classification on two benchmarking PBMC datasets with medium

to excellent performance (scores in range 94-99 in Zheng and 65-72

in Kotliarov - high score in Kotliarov despite two cell type

populations being not included in the reference dataset).

In summary, our workflow is a valid approach to discover novel

robust gene sets based on gene similarities from multiple scRNA-

seq datasets. We demonstrated the superior performance of our

immune cell type signatures compared to other gene sets in a

random forest cell typing approach on two benchmarking datasets.

In addition, we showed that random forest classifiers that use our

gene sets as features match the performance of most widely used

approaches for cell typing in scRNA-seq data, even though they do

not make use of expression from many selected highly variable

genes. For these untouched genes this generates opportunities for

unbiased downstream statistical analyses making use of cell type

information. Our results make us confident that our immune cell

type signatures combined with a random forest approach can be

used to analyze further complex single cell data. With even more

data becoming available in a quickly growing universe of scRNA-

seq gene expression data we are sure that our signature discovery

approach can lead to many further cell type signature discoveries,

also in other tissues than the tumor microenvironment or PBMCs.
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