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Background: Studies of liver dysfunction in relation to bone and joint-related

diseases are scarce, and its causality remains unclear. Our objective was to

investigate whether serum liver enzymes are causally associated with bone and

joint-related diseases using Mendelian randomization (MR) designs.

Methods: Genetic data on serum liver enzymes (alkaline phosphatase (ALP);

alanine transaminase (ALT); gamma-glutamyl transferase (GGT)) and six

common bone and joint-related diseases (rheumatoid arthritis (RA),

osteoporosis, osteoarthritis (OA), ankylosing spondylitis, psoriatic arthritis, and

gout) were derived from independent genome-wide association studies of

European ancestry. The inverse variance-weighted (IVW) method was applied

for the main causal estimate. Complementary sensitivity analyses and reverse

causal analyses were utilized to confirm the robustness of the results.

Results: Using the IVW method, the positive causality between ALP and the risk of

osteoporosis diagnosed by bone mineral density (BMD) at different sites was

indicated (femoral neck, lumbar spine, and total body BMD, odds ratio (OR) [95%

CI], 0.40 [0.23–0.69], 0.35 [0.19–0.67], and 0.33 [0.22–0.51], respectively). ALP

was also linked to a higher risk of RA (OR [95% CI], 6.26 [1.69–23.51]). Evidence of

potential harmful effects of higher levels of ALT on the risk of hip and knee OA was

acquired (OR [95% CI], 2.48 [1.39–4.41] and 3.07 [1.49–6.30], respectively). No

causal relationship was observed between GGT and these bone and joint-related

diseases. The study also found that BMD were all negatively linked to ALP levels

(OR [95% CI] for TBMD, FN-BMD, and LS-BMD: 0.993 [0.991–0.995], 0.993

[0.988–0.998], and 0.993 [0.989, 0.998], respectively) in the reverse causal

analysis. The results were replicated via sensitivity analysis in the validation process.

Conclusions: Our study revealed a significant association between liver function

and bone and joint-related diseases.
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Highlights
Fron
• The genetically predicted alkaline phosphatase (ALP) was

positively related to the risk of osteoporosis diagnosed by

bone mineral density (BMD) and rheumatoid arthritis

(RA).

• Genetic evidence of the potential harmful effects of higher

levels of alanine transaminase (ALT) on the risk of hip and

knee osteoarthritis was indicated.

• There was little evidence supporting causality between

gamma-glutamyl transferase (GGT) and diverse bone and

joint-related diseases.
Introduction

Bones and joints play a vital role in supporting weight and

facilitating movement in the human body. However, there has been

a notable surge in the global prevalence of bone and joint-related

diseases, with joint disease ranking as the second most prevalent

cause of disability worldwide (1, 2). Hence, it is crucial to delve into

the unexplored mechanisms underlying bone and joint-related

diseases. Recent research has highlighted the importance of a

signaling axis between the liver and bone, which is critical in

maintaining body homeostasis by interacting with other organs

like the gut, brain, and endocrine organs (3–6). Among patients

with chronic liver disease, 5% to 20% also suffer from bone and

joint-related diseases such as osteoporosis and fractures (7). A large

retrospective study including 931,193 fracture patients found that

fracture patients with chronic liver disease had significantly higher

mortality and hospitalization rates than those without chronic liver

disease. Another cross-sectional study including 17,476 adults

found that the risk of osteoarthritis (OA) was 1.479 times higher

in the presence of metabolic-associated fatty liver disease (8). A

meta-analysis of 30 studies (29 retrospective cohort studies and one

cross-sectional study) demonstrated that liver transplant patients

were at five times greater risk for fractures than patients who had

not received liver transplants (9). Hepatic osteodystrophy is defined

as poor bone metabolism and structure resulting from chronic liver

disease (10), and its underlying mechanisms may be related to

immunity (11), growth factor (12), hormones (13), and

nutrients (14).

Our aim was to comprehensively address aspects of bone and

joint-related diseases within the constraints of our study. However,

it is important to acknowledge that it is unavailable to address all

the genetic bone and joint-related diseases due to the absence of a

comprehensive genome-wide association studies (GWAS) database.

We were unable to incorporate them into our investigation.

Therefore, we opted to focus on six bone and joint-related

diseases (rheumatoid arthritis (RA), osteoporosis, OA, ankylosing

spondylitis (AS), psoriatic arthritis (PsA), and gout) for which there

is publicly available high-quality GWAS data. The selection of these

six bone and joint-related diseases with a high incidence rate was
tiers in Immunology 02
primarily driven by the objective of investigating the potential

causal relationship between bone and joint-related diseases and

liver enzymes. Existing reports indicate that genetics might

contribute to this association (15, 16).

Liver enzymes such as alanine aminotransferase (ALT), alkaline

phosphatase (ALP), and gamma-glutamyl transferase (GGT) are

major biomarkers that reflect liver function, and the levels of blood

liver enzymes are usually significantly elevated in patients with

hepatic impairment (17–19). Notably, liver enzyme levels have also

been found to be elevated in patients with bone and joint-related

diseases. For example, serum ALP is elevated in patients with AS

and RA, and serum ALT is elevated in patients with PsA (20–22).

Thus, elevated blood liver enzymes may be considered a potential

risk factor for bone and joint-related disease. However, little is

known about the causal relationships between liver enzymes and

bone and joint-related diseases.

Well-designed randomized controlled trials (RCTs)—the gold

standard to imply causality—can effectively deal with potential

confounders. However, RCTs take considerable time and might

be impractical due to ethical concerns and financial limitations. As

an important complementary causal research approach, Mendelian

randomization (MR) uses genetic variants associated with the

exposure as instrumental variables to robustly assess the causality

between exposure and outcome, given that certain assumptions,

including the absence of pleiotropy are valid (23). Against this

background, the purpose of this study was to investigate the causal

relationships between serum liver enzymes and six common bone

and joint-related diseases via MR.
Methods

Study overview

An overview of the study design is shown in Figure 1. Three

liver enzymes (ALT, ALP, and GGT) were regarded as exposure

factors. Six bone and joint-related diseases, namely RA,

osteoporosis, OA, AS, PsA, and gout, with 10 traits were

considered the outcomes. The GWAS data of the exposure and

outcome groups were collected. Using these data, MR analysis was

performed to determine whether the liver enzymes have causal

effects on the different bone and joint-related diseases. Three key

assumptions must be met in a MR study: (1) the genetic variant is

associated with the risk factor; (2) the genetic variant is not

associated with confounders; and (3) the genetic variant

influences the outcome only through the risk factor. All the data

used in this study are published in GWAS databases; thus,

additional ethical approval was not necessary. The study utilized

various methods for statistical and sensitivity analysis, and the

findings indicated that ALP was causally linked to decreased bone

mineral density and a heightened risk of rheumatoid arthritis.

Additionally, ALT was found to be causally associated with an

increased risk of osteoarthritis and gout. However, GGT did not

show any causal relation to the six bone and joint-related

diseases studied.
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Data source

All the data utilized in this study was obtained from publicly

available GWAS studies. The genetic analysis of liver enzymes was

based on GWAS data for 753,010 European people from the UK

Biobank and the Million Veteran Program (24). Osteoporosis was

measured by bone mineral density (BMD). The data of total body

BMD (T-BMD) were derived from a large GWAS meta-analysis

involving about 66,628 European populations from the USA, Europe,

and Australia (25). Femoral neck BMD (FN-BMD), lumbar spine

BMD (LS-BMD), and forearm BMD (FA-BMD) data from a large

whole genome sequencing, including 53,236 populations of European

ancestry (26). BMD measurements were conducted using DXA

according to standard manufacturer protocols. OA data were from

the UK Biobank, including 77,052 cases and 378,169 controls (27). The

diagnosis of OA was based on a radiological examination and clinical

evaluation. The data for AS originates from the IEU OpenGWAS

project database, with 1296 cases and 461,637 controls for the

European population (28), and the data of RA comes from a large-

scale GWAS meta-analysis involving 14,361 RA cases and 43,923

controls of European ancestry populations (29). The diagnosis of AS

was defined by the code M16 in the International Classification of

Diseases, Tenth Revision (ICD-10). All cases of RA met the 1987

criteria for RA diagnosis established by the American College of

Rheumatology or were diagnosed by a professional rheumatologist.

PsA data are from the FinnGen Biobank, involving 1,637 cases and

212,242 controls (30). The diagnosis of PsA also conformed to the

ICD-10 code L40.5. Gout’s GWAS data come from a large GWAS

meta-analysis involving 763,813 people (98.7% are of European

ancestry) (31). Gout was identified based on serum urate levels, self-
Frontiers in Immunology 03
report, intake of urate-lowering medications, or the International

Statistical Classification of Diseases and Related Health Problems

(ICD) codes. The existing publications are listed in Table 1.
Selection of genetic instruments

According to previous research, for each liver enzyme trait, the

single-nucleotide polymorphisms (SNPs) were then filtered using the

following steps (32, 33): (1) A genome-wide significance threshold

p < 5 × 10−8 was used. (2) Linkage disequilibrium (LD) test was

performed using PLINK, and LD r2 < 0.001 was adopted to ensure the

independence of the selected genetic variants. For those variantsmissing

from the outcome dataset, proxy SNPs with LD r2 > 0.8 were used. (3)

The F-statistic of each SNP was calculated, and SNPs with F < 10 were

eliminated to avoid weak instrument bias. The proportion of variation

explained (R2) was also calculated to quantify the strength of genetic

instruments with the following equation: R2 = [2 × Beta2 × (1 − EAF) ×

EAF]/[2 × Beta2 × (1 − EAF) × EAF + 2 × SE2 ×N × (1 − EAF) × EAF],

where Beta indicates the genetic effect of each SNP, EAF is effect allele

frequency, SE is the standarderror, andN is the sample size.Toassess the

strength of the selected SNPs, the F-statistic was calculated using the

following equation for each SNP: F =R2 (N − k − 1)/k(1 −R2), whereR2

represents the exposure variance explained by the selected SNPs,N is the

sample size, and k represents the number of included instrumental

variables.Weak instrumentswith F-statistics less than 10were removed.

The remaining independent instruments were used for subsequent MR

analysis. (4) The SNPs that were incompatible or palindromic with

intermediate allele frequencies were removed in the process of

harmonizing. (5) Mendelian randomization pleiotropy residual sum
FIGURE 1

Overview and analysis process of our research. SNP, single-nucleotide polymorphism; IVW, inverse variance-weighted; MR, Mendelian
randomization; ALT, alanine aminotransferase; ALP, alkaline phosphatase; OA, osteoarthritis; RA, rheumatoid arthritis; T-BMD, total body bone
mineral density; FN-BMD, femoral neck bone mineral density; LS-BMD, lumbar spine bone mineral density.
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and outlier test were performed to detect outliers and adjust for

horizontal pleiotropy. If horizontal pleiotropy was detected among the

instrumental variables, the outliers were removed.
Statistical analyses

Each liver enzyme trait was matched with each bone and joint-

related disease for the causal estimate. The inverse variance-

weighted (IVW) method was first used to evaluate potential

causal effects (34). The weighted median (WM) method (35) and

the MR-Egger method (36) were then applied for sensitivity

analyses. The causal effect estimates reflect the increase in

outcome trait risk per 1-unit-higher standard deviation (SD) of

each liver enzyme in the natural scale and presented as odds ratios

(ORs) with their 95% confidence interval (CI). To correct for

multiple comparisons for multiple hypotheses, the significance of

causal inference (Bonferroni adjusted p-value) was set to less than

0.05/10 = 0.005 in the main IVW MR analyses (37).

Potential heterogeneity was quantified and tested by Cochran’s Q

test (38), and directional pleiotropy was estimated by the MR-Egger

regression test (36). Leave-one-out analysis was conducted to identify

any potential outliers that independently influence the observed causal

relationship. To eliminate the influence of confounding factors, we

searched Phenoscanner (http://www.phenoscanner.medschl.

cam.ac.uk/) to determine whether the selected SNPs are associated

with other confounding risk factors. After excluding the confounder-

related SNPs, we rechecked that the causal relationship remained

significant. The statistical analyses above were mainly completed

using the two-sample MR package (version 0.5.5) of R software

(version 4.0.2). All reported p-values were two-tailed, and p < 0.05

was considered to indicate a significant difference.
KEGG pathway enrichment analysis

To further explore the biological connection between liver

enzymes and bone and joint-related diseases, we performed
Frontiers in Immunology 04
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses using the nearest genes for each lead SNP. Comprehensive

gene list annotation and analysis were performed in Metascape

(http://metascape.org/gp/index.html), a customer-friendly web-

based portal. Enrichment dot bubbles were plotted using https://

www.bioinformatics.com.cn, a free online platform for data analysis

and visualization.
Reverse causal relationship analysis

To investigate the potential reverse causal relationship between

liver enzymes and specific bone and joint-related diseases, we

conducted a reverse causal relationship analysis. Since there

might be significant causality between liver enzymes and these

diseases, we reversed the exposure and outcome. We followed the

standard procedure to select appropriate genetic instruments and

utilized IVW methods for the main analysis. Additionally, we

performed sensitivity analyses to assess the robustness of

our findings.
Results

All the remaining SNPs and their related data, namely beta (b),
standard error (SE), effect allele/other allele, and p-value, utilized to

conduct the subsequent causal analysis are listed in Supplementary

File 1 (Tables S1–S7). Among them is effect size (b) for a SNP by

modeling its association with the trait through a regression model,

such as linear regression for a quantitative trait (each liver enzyme)

or logistic regression for a qualitative outcome trait, assuming a

linear trend per copy of an allele. The regression coefficients for

quantitative traits (each liver enzyme) are presented with per 1-

unit-higher SD, and for qualitative outcome traits, they are

presented with per 1-unit-higher log odds, so that they are

comparable across traits. The F-statistics of all the SNPs were

greater than 10, indicating sufficient correlation strength between

the instrumental variables and exposure traits.
TABLE 1 GWAS information for bone and joint-related diseases was used in this study.

Trait GWAS ID Sample size/cases PMID

Total body bone mineral density/TBMD ebi-a-GCST005348 56,284 29304378

Femoral neck bone mineral density/FN-BMD ie-a-980 32,735 26367794

Lumbar spine bone mineral density/LS-BMD ie-a-982 28,498 26367794

Forearm bone mineral density/FA-BMD ieu-a-977 8,143 26367794

Knee osteoarthritis ebi-a-GCST007090 403,124/24,955 30664745

Hip osteoarthritis ebi-a-GCST007091 393,873/15,704 30664745

Rheumatoid arthritis/RA ieu-a-832 58,284/14,361 24390342

Ankylosing spondylitis/AS ukb-b-18194 462,933/1,296 NAa

Psoriatic arthritis/PsA finn-b-M13_PSORIARTH_ICD10 218,792/1,455 NAa

Gout ebi-a-GCST008970 763,813/13,179 31578528
fron
aGWAS data for ankylosing spondylitis were extracted from the UK Biobank, and GWAS data for psoriatic arthritis were extracted from the FinnGen research project.
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The results of the preliminary analyses of the effects of

genetically predicted liver enzymes on the risk of different bone

and joint-related diseases are listed in Supplementary File 2 (Table

S8; Figure 2). Among them, a genetically predicted higher serum

level of ALP was associated with a higher risk of RA (OR: 6.26, 95%

CI: 1.69 to 23.15, p = 5.97 × 10−3). The positive causality between

ALP and risk of osteoporosis diagnosed by bone mineral density

(BMD) at different sites was indicated (TBMD, OR: 0.33, 95% CI:

0.22 to 0.51, p = 5.53 × 10−7; FN-BMD, OR: 0.40, 95% CI: 0.23 to

0.69, p = 8.44 × 10−4; LS-BMD, OR: 0.35, 95% CI: 0.19 to 0.67, p =

1.31 × 10−3). ALT showed positive causal relationships with the risk

of OA and gout (knee OA, OR: 2.48, 95% CI: 1.39 to 4.41; p = 2.06 ×

10−3; hip OA, OR: 3.07, 95% CI: 1.49–6.30; p = 2.27 × 10−3; gout,

OR: 4.94, 95% CI: 1.98–12.37; p = 6.36 × 10−4). Figure 3 shows a

scatter plot of the causal estimates of the effects of each liver enzyme

trait on the risk of different bone and joint-related diseases. No

causal relationship could be supported based on our estimates

between GGT and these bone and joint-related diseases.

To avoid excessive bias, a series of sensitivity analyses were

conducted to test the reliability of the MR analysis and detect

potential pleiotropy. As shown in Table 2, the intercept of the MR-

Egger regression showed no sign of directional pleiotropy (p > 0.05)

of all causality estimates. Cochran’s Q test indicated that

considerable heterogeneity could not be excluded with confidence.

The leave-one-out analysis conducted between ALP and gout

detected three SNPs (rs174564, rs55714927, and rs6680628) that
Frontiers in Immunology 05
would drive the result, making the causal estimate unreliable. In the

other leave-one-out analyses, no fundamental causal effects were

changed, regardless of which SNP was removed, reflecting the

robustness of our MR analysis (Supplementary File 3;

Supplementary Tables S9–S16). As shown in Table 3, after

removing the SNPs associated with confounding factors detected

on Phenoscanner (listed in Supplementary File 4; Supplementary

Table S17), the positive causal relationships found in primary

analyses remained significant except the estimate between ALT

and the risk of gout (OR (95% CI): 2.38 (0.77–7.34), p = 0.131, after

adjustment), indicating that confounding factors are thought to be

responsible for the finding between ALT and the risk of gout. MR

power calculation showed strong power (100%) to detect a

significant causal effect.

KEGG pathway enrichment analysis indicated significant

enrichment in the 20 most important regulation pathways

(Supplementary Figures S1–S6). Several of these pathways may be

involved in disease pathogenesis and are thus worthy of attention.

Among them, RUNX2 transcriptional regulation and DNA

methylation may be involved in the mechanism by which ALP

reduces BMD and increases the risk of RA. Lipid homeostasis and

circulatory system regulation involve multiple biological processes

and molecular functions that may contribute to the essentiality of

the association between ALT and the risk of OA.

In primary analysis, ALP was found to be causally associated

with a higher risk of osteoporosis and RA, while ALT was associated

with a higher risk of OA. In the reverse causal relationship analysis,

we conducted IVW analyses to explore the potential causal effect of

BMD on ALP and OA on ALT (Supplementary File 5;

Supplementary Table S18). The results showed evidence for a

causal effect of BMD on ALP levels. Specifically, BMD was

inversely associated with ALP levels. The ORs and their

corresponding 95% CIs were as follows: TBMD (OR: 0.993, 95%

CI: 0.991 to 0.995, p = 1.06 × 10−8), FN-BMD (OR: 0.993, 95%

CI: 0.988 to 0.998, p = 4.28 × 10−3), and LS-BMD (OR: 0.993,

95% CI: 0.989 to 0.998, p = 2.57 × 10−3) (Table 4). The estimates

obtained using the weighted median method were consistent with

these results. Furthermore, we conducted a MR-Egger regression

analysis to assess directional pleiotropy. The intercepts of the MR-

Egger regression indicated no evidence of directional pleiotropy for

all causality estimates (p > 0.05) (Table 5). Although Cochran’s Q

test suggested the presence of considerable heterogeneity, the leave-

one-out analysis demonstrated that the fundamental causal effects

remained unchanged regardless of the SNP removed, indicating the

robustness of our MR analysis.
Discussion

The mechanisms underlying the elevated risk of bone and joint-

related diseases in patients with liver disease are complex, and the

precise mechanisms remain unknown. Our study provides strong

genetic evidence in support of potential causal links between liver

enzymes and an increased risk of specific bone and joint-related

diseases based on a validated structured MR analysis. Specifically,

we found that ALP was causally associated with a higher risk of
FIGURE 2

A panorama of all the liver enzyme features and their causal
estimate on diverse phenotypes of bone and joint-related diseases
identified at the nominal significance based on p-value of IVW
methods. T-BMD, total body bone mineral density; FA-BMD,
forearm bone mineral density; FN-BMD, femoral neck bone mineral
density; LS-BMD, lumbar spine bone mineral density; OA,
osteoarthritis; RA, rheumatoid arthritis; AS, ankylosing spondylitis;
PsA, psoriatic arthritis; ALT, alanine aminotransferase; ALP, alkaline
phosphatase; GGT, gamma-glutamyl transferase; IVW, inverse
variance-weighted.
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osteoporosis and RA, while ALT was associated with a higher risk of

OA. However, no causal relationships were observed between GGT

and the diverse bone and joint-related diseases in our study. These

results were significant in the main MR analyses and consistent

across follow-up sensitivity analyses. These findings reveal causal

relationships between liver enzymes and bone and joint-related

diseases, suggesting that liver enzymes may serve as potential

biomarkers for specific bone and joint-related diseases.

Serum ALP mainly comes from the liver and bones, with a

minor amount coming from the intestine (39). Serum ALP is

elevated when liver dysfunction develops (40). A study including

6,334 adults found that total serum ALP was inversely associated

with BMD (41). Experimental high-ALP rat models established

through bile-duct ligation exhibited skeletal fragility and impaired

osteoblastogenesis, resulting in lower bone maximal force and
Frontiers in Immunology 06
stiffness (42). Naylor and Eastell found that increased ALP

activity was associated with increased bone turnover (43).

Interestingly, studies have shown that some liver cell membrane

repair and protective agents can inhibit bone loss and promote bone

formation (44, 45). For instance, ursodeoxycholic acid, another

commonly used clinical drug for improving bile stasis, can promote

mesenchymal stem cells to differentiate into osteoblasts, inhibit

adipocyte differentiation, inhibit the production of inflammatory

factors, and reduce inflammation-related side effects to promote

bone formation (45, 46). These studies suggest that liver function

improvement may regulate bone and joint-related metabolism.

There are only a few clinical reports on the effect of

ursodeoxycholic acid on bone mineral density. One of the studies

pointed out that there was no significant effect on bone mineral

density in patients with primary biliary cirrhosis (47). However,
TABLE 2 Main causal relationships detected by MR analysis with different methods.

Liver enzymes Traits Nsnp IVW Weighted median MR-Egger

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

ALP RA 154 6.26 (1.69, 23.15) 5.97 × 10−3 7.2 (1.02, 50.88) 0.048 2.09 (0.19, 23.47) 0.552

TBMD 176 0.33 (0.22, 0.51) 5.53 × 10−7 0.39 (0.21, 0.72) 2.63 × 10−3 0.27 (0.12, 0.59) 1.24 × 10−3

FN-BMD 166 0.40 (0.23, 0.69) 8.44 × 10−4 0.37 (0.16, 0.88) 0.024 0.66 (0.23, 1.84) 0.424

LS-BMD 171 0.35 (0.19, 0.67) 1.31 × 10−3 0.3 (0.10, 0.85) 0.023 0.84 (0.26, 2.7) 0.765

ALT Knee OA 99 2.48 (1.39, 4.41) 2.06 × 10−3 2.44 (1.13, 5.31) 0.024 1.01 (0.26, 4.03) 0.985

Hip OA 99 3.07 (1.49, 6.30) 2.27 × 10−3 3.93 (1.38, 11.20) 0.010 3.09 (0.54, 17.5) 0.206

Gout 96 4.94 (1.98, 12.37) 6.36 × 10−4 9.12 (2.75, 30.24) 2.98 × 10−4 4.89 (0.64, 37.34) 0.129
B C

D E F G

A

FIGURE 3

Scatter plot showing the effect sizes (beta) of the SNP effects on outcomes (y-axes) and the live enzymes (x-axes) with 95% confidence intervals.
Each dot represents one of the SNPs used as the genetic instrument. The slopes indicate the estimate for each of the three different MR tests. SNP
effects for each live enzyme are presented with per 1‐unit‐higher standard deviation (SD), and for outcome (diverse phenotypes of bone and joint-
related diseases), they are presented with per 1‐unit‐higher log odds. (A–D) The estimated effect sizes of ALP on RA, total BMD, femoral neck BMD,
and lumbar spine BMD. (E–G) SNP effects for estimated effect sizes of ALT on knee OA, hip OA, and gout. IVW, inverse variance-weighted; MR,
Mendelian randomization; SNP, single-nucleotide polymorphism; RA, rheumatoid arthritis; BMD, body bone mineral density; ALP, alkaline
phosphatase; ALT, alanine aminotransferase; OA, osteoarthritis.
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another study pointed out that the therapeutic effect of

ursodeoxycholic acid on patients with primary biliary cirrhosis

was related to the original vitamin D3 level of the patients, and

the ALP level did not improve in patients with low vitamin D3 levels

(48). Therefore, further comprehensive research is needed to

understand the effect of ursodeoxycholic acid on the bone and

joint systems of patients with hepatitis.
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Studies of serum ALP concentration in relation to RA are

scarce. In some observational studies, the ALP levels in the serum

and synovia of RA patients are significantly elevated, and ALP is

positively correlated with RA disease activity (49, 50). Meanwhile,

patients with RA have high bone turnover and a high proportion of

osteoporosis, which may explain the causal association between

ALP and RA to some extent (49, 51).
TABLE 4 Main causal relationships detected by MR analysis with different methods in revise causality analysis.

Exposure:
traits

Outcome: liver
enzymes

Nsnp IVW Weighted median MR-Egger

OR (95% CI) p-value OR (95% CI) p-value OR (95%CI) p-value

RA ALP 28 1.001 (0.999,
1.002)

0.248 1.001 (0.999,
1.002)

0.350 1.000 (0.995,
1.006)

0.882

TBMD 57 0.993 (0.991,
0.995)

1.06 × 10−8 0.992 (0.989,
0.994)

6.09 × 10−13 0.991 (0.985,
0.997)

3.01 ×
10−3

FN-BMD 13 0.993 (0.988,
0.998)

4.28 × 10−3 0.996 (0.992,
1.000)

0.050 0.998 (0.975,
1.022)

0.884

LS-BMD 12 0.993 (0.989,
0.998)

2.57 × 10−3 0.992 (0.989,
0.996)

1.04 × 10−5 0.989 (0.971,
1.007)

0.265

Knee OA ALT 7 1.001 (0.988,
1.014)

0.862 1.003 (0.994,
1.012)

0.534 0.950 (0.894,
1.010)

0.159

Hip OA 19 1.000 (0.995,
1.004)

0.824 1.001 (0.998,
1.004)

0.510 0.998 (0.982,
1.013)

0.782
fro
TABLE 5 Main causal relationships detected by MR analysis with compensated sensitivity methods in revise causality analysis.

Exposure: traits Outcome: liver enzymes Nsnp Cochran’s Q test MR-Egger regression

Q p-value I2 Egger intercept p-value

RA ALP 28 70.187 1.05 × 10−5 61.5% 3.57 × 10−5 0.923

TBMD 57 187.830 3.84 × 10−16 70.2% 1.26 × 10−4 0.441

FN-BMD 13 51.485 7.65 × 10−7 76.7% −3.52 × 10−4 0.638

LS-BMD 12 48.630 1.10 × 10−6 77.4% 2.99 × 10−4 0.660

Knee OA ALT 7 49.048 7.29 × 10−9 87.8% 3.62 × 10−3 0.146

Hip OA 19 69.259 6.03 × 10−8 74.0% 1.72 × 10−4 0.822
n

TABLE 3 Main causal relationships detected by MR analysis with compensated sensitivity methods.

Liver enzymes Traits Nsnp Cochran’s Q test MR-Egger regression IVW*

Q p-value I2 Egger intercept p-value OR (95% CI) p-value

ALP RA 154 184.77 0.041 16.1% 0.004 0.292 9.28 (2.43, 35.48) 1.13 × 10−3

TBMD 176 276.30 1.60 × 10−6 35.9% 8.29 × 10−4 0.509 0.33 (0.21, 0.52) 1.70 × 10−6

FN-BMD 166 222.56 1.88 × 10−3 25.0% −1.74 × 10−3 0.275 0.48 (0.27, 0.86) 0.014

LS-BMD 171 251.13 5.18 × 10−5 31.5% −3.12 × 10−3 0.089 0.39 (0.20, 0.78) 7.36 × 10−3

ALT Knee OA 99 128.95 0.020 22. 5% 4.21 × 10−3 0.166 2.64 (1.29, 5.39) 7.78 × 10−3

Hip OA 99 125.14 0.033 20.1% −3.05 × 10−5 0.994 2.83 (1.20, 6.66) 0.017

Gout 96 155.01 9.97 × 10−5 37.4% 5.39 × 10−5 0.991 2.38 (0.77, 7.34) 0.131
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The results of the KEGG analysis revealed other possible related

mechanisms. RUNX2 is a classical regulatory transcription factor

that promotes the differentiation of mesenchymal cells into

osteoblasts (52–54). Interestingly, treatment with an ALP

inhibitor reduced RUNX2 expression, a master transcriptional

factor in osteoblasts, suggesting that the causal relationship

between ALP and BMD may be driven through the RUNX2-

associated signaling pathway (55). DNA methyltransferases can

catalyze the methylation of DNACpG islands, thereby impairing

genome stability and reducing the activity of gene transcription

(56). DNAmethylation has been shown to play an important role in

the pathogenesis of osteoporosis (57–59). For example, the

methylation of the osteoclast activation signal RANKL gene

promoter region is significantly reduced in patients with

osteoporosis, resulting in increased RANKL expression and

increased osteoclast activity (60). In our study, ALP-related SNPs

were enriched in DNA methylation pathways, suggesting that ALP

may increase osteoclast activity by affecting DNA methylation

levels. Further verified analyses should be applied in the future.

ALT is another important biomarker of liver function. Elevated

serum ALT levels indicate impaired liver function (61). The

relationship between ALT and OA has not been well investigated in

epidemiology. However, our MR analysis suggested a definitive causal

relationship between ALT and OA.We also obtained some hints from

KEGG pathway analysis, suggesting that the mechanism may be

related to circulatory system processes and lipid homeostasis.

Circulation plays an important role in the pathogenesis of OA.

Subchondral vascular hyperplasia, decreased arterial blood flow, and

venous stasis have been reported in patients with knee osteoarthritis

(62–64). Subchondral hyperemia in patients with OA leads to

osteoblast hypoxia, alters the gene expression profile of cytokines,

and ultimately leads to subchondral remodeling and chondrocyte

degeneration, which are recognized as major components of the

pathogenesis of OA (30, 65–68). Epidemiological studies suggest

that ALT may significantly affect an individual’s circulatory system.

For example, a retrospective study of 11,324 patients found that

elevated plasma ALT levels were significantly associated with a

higher risk of abnormal myocardial perfusion and myocardial

infarction (69). The liver is the regulatory center of lipid metabolism

in the body and maintains lipid homeostasis. In addition, serum

desmosterol levels and the desmosterol/cholesterol ratio (a marker of

cholesterol synthesis) were positively associated with ALT in a random

population-based sample of 717 men (70). The concentration of

cholesterol in synovial fluid is significantly elevated in individuals

with OA (71). Choi et al. found that cholesterol and its metabolites

directly activate retinoic acid-related orphan alpha receptors on

chondrocytes, upregulate matrix-degrading enzymes, and increase

the risk of OA (72). Notably, Maximos et al. demonstrated that the

hepatic triglyceride content in patients with liver disease is positively

correlated with the plasma ALT level (73). Based on a cohort study,

Chen et al. found that the risk of new-onset metabolic fatty liver

disease increased concurrently with increasing ALT levels (74).

Hypertriglyceridemia is predominantly associated with worse pain

in OA through central obesity (75). The relationship between ALT
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and the risk of OA could not be well established based on the present

observational studies; thus, sufficient supporting evidence was needed

from mechanical research.

The results of the reverse causal relationship suggested that

BMD was inversely associated with ALP levels, but there was no

reverse causal relationship between OA and ALT. These results

were consistent across follow-up sensitivity analyses. Currently, no

studies have clarified how BMD affects the liver enzyme. However,

it is crucial to note that studies conducted in the last 10 years have

revealed that the skeletal joint system is more than just a simple

load-bearing structure. It is also a significant endocrine organ, and

the cytokines it secretes govern numerous organs throughout the

body, including the liver (76). For instance, a prospective analysis of

2,055 community populations discovered that women with lower

levels of the typical bone-derived cytokine osteocalcin had a higher

risk of nonalcoholic fatty liver disease, and further animal studies

revealed that osteocalcin therapy for mice reduced hepatic steatosis

(77). In addition, bone contains a lot of mesenchymal stem cells,

and it has been discovered that these cells could regulate CD4 T-cell

differentiation to lessen nonalcoholic liver steatosis in mouse

models (78). Even though more direct studies are required, the

aforementioned indirect findings may help partially explain the

weak reverse causality relationship between BMD and ALP.

Our study has several limitations. First, there is an overlap between

our disease GWAS data, like the presence of the UK Biobank in both

the liver enzyme and OA databases. The challenge of resolving sample

overlap across multiple GWAS databases remains unresolved due to

the use of summary-level data that cannot be extracted individually.

Certainly, it is important to exercise caution when drawing conclusions

due to the potential inflation of causal associations resulting from

sample overlap. Nevertheless, the strong instruments used in our study

(i.e., F-statistic >> 10) could minimize potential bias due to the

duplication of samples. Second, given that the summary-level

statistics were obtained from the publicly available GWAS data, we

could not perform other subgroup analyses to address associations with

study-specific factors (e.g., age, gender, and other risk factors). The

detailed characteristics like the effect allele frequency of genetic variants

identified through GWAS study, can vary significantly across different

ethnic backgrounds. These variations can influence the prevalence,

genetic factors, and disease mechanisms of bone and joint-related

diseases. Therefore, findings from a study conducted exclusively on

European populations may not necessarily apply to other populations

with distinct genetic backgrounds. Further research involving diverse

populations is necessary to obtain a more comprehensive

understanding of the genetic factors contributing to bone and joint-

related diseases worldwide. Third, Cochran’s Q test indicated that

considerable heterogeneity could not be excluded with confidence.

However, based on the results of the IVW and weighted median

methods, we believe that the robustness of our study was not biased by

heterogeneity. Moreover, MR-Egger regression ruled out directional

pleiotropy, indicating that heterogeneity did not cause pleiotropy

or bias.

To our knowledge, this is the first study to comprehensively

investigate the causal relationships between liver enzymes and bone
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1195553
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2023.1195553
and joint-related diseases based on publicly available genetic data via

MR analysis. Although earlier studies have demonstrated that the risk

of bone and joint-related illnesses will rise when liver function is poor

for an extended period of time, no studies have yet suggested which

specific liver function markers may raise the risk of certain bone and

joint disorders. As a result, clinical recommendations are ambiguous,

meaning that although medical professionals believe that patients

with liver function impairment have an increased risk of developing

bone and joint disorders, they are unsure of which specific bone and

joint-related diseases the patient is more likely to develop. In this

study, we discovered for patients with liver disease, blood ALPmay be

a potential biomarker of osteoporosis and RA, and blood ALTmay be

a potential biomarker of OA and gout. This finding strongly suggests

the significant role of the liver in regulating bone and joint-related

diseases. In patients with long-term liver disease, it is important to be

mindful of screening for bone and joint-related diseases to facilitate

early detection and treatment. The results may provide a new strategy

to understand the relationships between liver and bone and guide

clinical decisions related to disease management. Certainly,

additional evidence is needed to further support this conclusion.
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SUPPLEMENTARY FIGURE 1

KEGG pathway enrichment analysis of nearest genes for single-nucleotide

polymorphisms used on the causality inference for ALP on the risk of
rheumatoid arthritis. (A) Enriched ontology clusters. Each cluster is

represented in a single color and shown as a circle. (B) Enrichment dot
bubble where count means enriched number of genes.

SUPPLEMENTARY FIGURE 2

KEGG pathway enrichment analysis of nearest genes for single-nucleotide

polymorphisms used on the causality inference for ALP on the risk of total
body BMD. (A) Enriched ontology clusters. Each cluster is represented in a

single color and shown as a circle. (B) Enrichment dot bubble where count
means enriched number of genes.

SUPPLEMENTARY FIGURE 3

KEGG pathway enrichment analysis of nearest genes for single-nucleotide

polymorphisms used on the causality inference for ALP on the risk of femoral
neck BMD. (A) Enriched ontology clusters. Each cluster is represented in a

single color and shown as a circle. (B) Enrichment dot bubble where count
means enriched number of genes.

SUPPLEMENTARY FIGURE 4

KEGG pathway enrichment analysis of nearest genes for single-nucleotide

polymorphisms used on the causality inference for ALP on the risk of Lumbar
spine BMD. (A) Enriched ontology clusters. Each cluster is represented in a

single color and shown as a circle. (B) Enrichment dot bubble where count
means enriched number of genes.

SUPPLEMENTARY FIGURE 5

KEGG pathway enrichment analysis of nearest genes for single-nucleotide

polymorphisms used on the causality inference for ALT on the risk of knee
OA. (A) Enriched ontology clusters. Each cluster is represented in a single

color and shown as a circle. (B) Enrichment dot bubble where count means
enriched number of genes.

SUPPLEMENTARY FIGURE 6

KEGG pathway enrichment analysis of nearest genes for single-nucleotide

polymorphisms used on the causality inference for ALT on the risk of hip OA.
(A) Enriched ontology clusters. Each cluster is represented in a single color

and shown as a circle. (B) Enrichment dot bubble where count means
enriched number of genes.

SUPPLEMENTARY FIGURE 7

Plots of “leave-one-out” analyses (A–C) for MR analyses of the reverse causal

relationship between BMD and ALP.
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