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The SARS-CoV-2 pandemic and the COVID-19 disease have affected everyone

globally, leading to one of recorded history’s most significant research surges. As

our knowledge evolves, our approaches to the virus and treatments must also

evolve. The evaluation of future research approaches to SARS-CoV-2 will

necessitate reviewing the host immune response and viral antagonism of that

response. This review provides an overview of the current knowledge on SARS-

CoV-2 by summarizing the virus and human response. The focuses are on the

viral genome, replication cycle, host immune activation, response, signaling, and

antagonism. To effectively fight the pandemic, efforts must focus on the current

state of research to help develop treatments and prepare for future outbreaks.
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Introduction

SARS-CoV-2 emerged in November 2019 in Wuhan, China, from multiple zoonotic

cross-species transmission events in humans. The subsequent COVID-19 pandemic -

declared by the WHO on March 11, 2020 - is ongoing, and has seen substantial viral

evolution and new variants (1–9). Between November 2019 and November 2022, over 632

million cases of COVID-19 were confirmed globally, with more than 6.6 million confirmed

deaths and models predicting nearly 20 million deaths (10, 11).

Our understanding of the host immune response to SARS-CoV-2 is constantly

growing, as are the discoveries related to immune modulatory effects related to the virus

and viral proteins. This review will cover the SARS-CoV-2 genome, virion structure, viral

entry and replication, the host immune response, and SARS-CoV-2 immune antagonism.

Understanding the host immune response and viral immune antagonism is crucial - as the

current state of research - as this knowledge can guide novel treatment strategies and

inform public health measures.
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SARS-CoV-2 genome and
virion structure

SARS-CoV-2 is an enveloped, positive-sense RNA virus of the

family coronaviridae (12). Within the coronaviridae family, SARS-

CoV-2 is part of the betacoronavirus genera, also known as genus

sarbecoviruses (13). The 29.903 kilobase SARS-CoV-2 genome was

published in January 2020 (3, 5, 14). The ancestral lineage A and B

genomes are ~80% similar to SARS-CoV and 96.2% similar to the

Bat RaTG13 virus (4, 14, 15). From 5’ to 3’, the genome is organized
Frontiers in Immunology 02
as 5’-cap structure, 5’ UTR, ORF1ab, S, ORF3a-d, E, M, ORF6,

ORF7a-b, ORF8, ORF9b-c, N, ORF10, and 3’ UTR (Figure 1A) (13,

16–19). The genome contains coding for four structural proteins, 11

accessory proteins, and 16 nsps (12). The four structural genes are S,

E, M, and N. The structural proteins and the genome form an

enveloped virion able to infect cells (15). The 11 accessory genes and

proteins are ORF3a-d, ORF6, ORF7a and b, ORF8, ORF9b and c,

and ORF10, and serve various functions from host interaction to

immune modulation (18–20). The 16 nsps are identified

numerically as nsp1-16 (12). All the nsps are synthesized from
B

A

FIGURE 1

(A) Genomic Organization of SARS-CoV-2 and SARS-CoV-2 Viral Entry and Replication Cycle. This figure demonstrates the genome of SARS-CoV-2,
a positive-sense RNA virus, and the proteins produced from each genome segment. The 29.903 kilobase genome was first identified in Wuhan,
China, in December 2019. From 5’ to 3’, the genome is organized as 5’-cap structure, 5’ UTR, ORF1ab, spike (S), ORF3a-d, envelope (E), membrane
(M), ORF6, ORF7a-b, ORF8, ORF9b-c, nucleocapsid (N), ORF10, 3’ UTR, and 3’-poly-A tail. Nsps 1-16 are translated from ORF1ab. Structural and
accessory proteins are translated from their corresponding segment. Nucleotide annotations acquired from GenBank Accession NC_045512. (B) This
figure represents the overview of SARS-CoV-2 viral entry and the replication cycle. aSARS-CoV-2 entry begins after binding the S protein S1 domain
to the ACE2. The S1/S2 site on the S protein will then be cleaved by TMPRSS2, resulting in the removal of S1. bFollowing, the S2’ site is cleaved by
TMPRSS2, furin, and cathepsins, priming the S protein by allowing S2 to form a pre-hairpin in the cellular membrane. cThe pre-hairpin forms a six-
hairpin bundle that pulls the viral membrane and cellular membranes together, fusing them and allowing the viral RNA to release into the cytosol.
dUpon release into the cytosol, translation of the viral RNA will begin to be translated. eThe non-structural proteins (nsps) polyproteins pp1a and
pp1ab will be translated from ORF1ab. Autoproteolysis and post-translational processing will form the replication transcription complex (RTC) and
the RNA-dependent-RNA-polymerase (RdRp) within the endoplasmic reticulum (ER). fWithin the ER, in specialized double-membrane vesicles
(DMV), the RTC will synthesize the complementary negative-strand genomes and negative-strand subgenomic RNAs. gThe negative strands will
serve as the template for progeny genomes and subgenomic RNAs. hThe subgenomic RNAs are translated as structural and accessory proteins. The
structural proteins S, E, and M are translated into the ER membrane and the N into the cytoplasm to encapsulate the viral genome. iThe N-coated
viral genome will bud into the ERGIC complex containing S, E, and M proteins. jThe virion will be budded into a vesicle bound to the cellular
membrane. kThe vesicle will fuse with the cellular membrane, and exocytosis will release the fully-formed virus into extracellular space.
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ORF1a and ORF1ab (12, 15–17). The change from ORF1a to

ORF1ab is facilitated by the ribosomal frameshift of a stop codon

at the end of ORF1a (16, 17).

The structural proteins form the virus’s envelope and hold the

RNA genome. The N protein coats the genome, whereas S, M, and E

are embedded in the lipid bilayer membrane (16). The N protein is

composed of positively charged amino acids and binds the

negatively charged backbone of genomic RNA (12). The S protein

is a 1273 amino acid protein divided into S1 and S2 portions (21),

and domains (17, 22). S1 contains the NTD and the RBD (22).

Juxtaposed is the S1/S2 furin cleavage site. S2 includes the S2’

cleavage site, FP, HR1, CH, HR2, TM, and the cytoplasmic tail (22,

23). Spike proteins complex into trimers that protrude from the

viral envelope surface. On the viral envelope is an average of 15-30

of these S protein trimers (12, 24). Cellular entry by SARS-CoV-2

relies on S protein binding to ACE2 and S protein priming by

TMPRSS2 (25). Cathepsin B and L can also serve the same function

as TMPRSS2 but within the endosome (15, 21, 26). The E protein, a

single-span transmembrane protein, facilitates viral assembly and

release, and is an important component in pathogenesis (27). In

addition to being transmembrane, the E protein contains channel

activity, forming pores and allowing ion transport (28). The M

protein is the most abundant structural protein, and spans the

membrane three times and interacts with both the E and the S

proteins to facilitate the structure of the lipid envelope (12, 27).
Viral entry and replication cycle

The replication cycle (Figure 1B) begins after SARS-CoV-2

binding to ACE2 via the S1 subunit of the S protein (16, 25). The

spike protein S1 ectodomain changes conformation from open to

closed, and in the open conformation, the RBD interacts with ACE2

in humans (12, 14, 29). The S2 subunit of the S protein then

facilitates membrane fusion (16). Two cleavage sites in the S protein

are responsible for the pre-fusion to post-fusion conformational

change (30, 31). The S1/S2 site, consisting of the polybasic furin

motif, separates the S1 and S2 domains (4, 26, 32, 33). The S2’

cleavage site drives the fusion of the virus with the cell membrane

(16, 34). The S1/S2 site is cleaved by TMPRSS2 and results in the

removal of the S1 subunit (16, 35). The S2’ site is cleaved by

TMPRSS2, furin, and cathepsins, inducing an irreversible

conformational change in the S protein (16, 36). Removing the S1

subunit and activating S2 allows S2 to form a pre-hairpin that

embeds into the target cellular membrane. The pre-hairpin folds

back and creates a six-hairpin bundle that pulls the viral and cellular

membranes together.

The genomic vRNA will release into the cytosol and uncoat

(21). Immediately, the polyproteins pp1a and pp1ab will be

translated from ORF1ab (21). These proteins are required for

replication and viral survival. The majority of the replication

machinery is in the ORF1b portion of the genome and are

produced with the ORF1a to ORF1ab -1 frameshift, which occurs

at a ~20-50% rate (16). These polyproteins are co- and post-

translationally processed into the RTC by nsp3 (PLPro) and nsp5

(3CLpro) (13, 16, 21, 37). The RTC is responsible for replication,
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transcription, RNA processing, and formation of within the ER to

serve as replication factories (15, 16). The viral RTC will replicate

the viral genome and subgenomic mRNA for the assembly of new

viruses (21).

The RTC will synthesize negative-strand full-length genomes

from the positive-strand RNA genome for the subsequent

generation of positive-strand progeny genomes (16). Additionally,

the RTC will generate subgenomic mRNA via discontinuous

transcription utilizing transcription regulatory sequences located

at the 5’ end of each ORF (16). The negative-strand subgenomic

mRNAs then facilitate the generation of positive-strand

subgenomic mRNA. These positive-strand subgenomic mRNA

then serve as translation templates for viral protein production.

Replication occurs in specialized ER structures known as DMV (16,

38). Structural proteins are processed through the endoplasmic

reticulum to the Golgi apparatus. Here the S, E, and M structural

proteins are retained at the budding ERGIC, where interaction with

N-encapsidated genomic vRNA results in the formation of

secretory vesicles (21). The M protein incorporates viral

components into the virions. The N protein interacts with both

the genome and the E protein to enable packaging into the virion.

The E protein participates in viral assembly by functioning as an ion

channel and participating in membrane curvature (16). Virions are

released from the cell via exocytosis.
Host immune response

Innate response

Upon infection with SARS-CoV-2, a cell and host will begin a

robust innate immune response (Figure 2). PRRs such as RIG-I,

MDA-5, and TLRs will recognize SARS-CoV-2 within the infected

cell (28, 39–42). Beginning with TLR2, it senses the SARS-CoV-2

envelope protein to initiate an immune response before viral entry

and replication, causing the release of TNF-a and IFN-g (28). TLR2
also activates the assembly of the NLRP3 inflammasome (28). TLR1

is predicted to form a heterodimer with TLR2 and has significantly

higher RNA counts in severe and critical COVID-19 (28). Shifting

our focus to TLR3, this receptor interacts with viral PAMPs and

dsRNA (43). The TLR3 response induces both the IRF3 and NF-kB
response via the TRIF-dependent pathway and increases NLRP3

expression, enabling recognition of SARS-CoV-2 and formation of

an inflammasome alongside other proteins. The inflammasome

results in the maturation and release of IL-1b and IL-18,

triggering pyroptosis (40, 41, 44, 45). In the case of TLR4, its

response is to DAMPs and PAMPs resulting from SARS-CoV-2

infection and upregulates IL-6 production via NF-kB and MAPK

(44, 46, 47). TLR1, TLR4, and TLR5 have been proposed - and in-

silico predicted - to respond to the SARS-CoV-2 spike glycoprotein

(44, 45, 47), which activates the MyD88 and TRIF innate immunity

signaling pathways (48). Turning to TLR7, TLR8, and TLR9, these

endosomal receptors play distinct roles. TLR7 and TLR8 sense

ssRNA and causes a release of IL-6, TNFa, and type I and III IFNs

(42, 45). TLR9 detects viral RNA and DNA with unmethylated

CpG, and mtDNA released due to SARS-CoV-2-induced cellular
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damage. TLR9 causes the release of cytokines, including IL-1b, IL-6,
IL-10, IL-17, TNFa, and type I IFN (45).

As the immune response develops, RIG-I and MDA5, upon

activation by dsRNA, interact with MAVS, which initiates the

phosphorylation of IRF3 (38, 49, 50). In parallel, TLRs activate

MyD88, which initiates NF-kB (16, 41). These activated responses

stimulate the production of many cytokines, including types I

(IFNa and IFNb) and III IFN (IFNl), via several pathways (39–

42). As such, the IFN antiviral pathway is one of the most important

innate mechanisms against viral infections (38, 51). Notably, the

suppressed IFN response is a major determinant of COVID-19

clinical severity (52). Meanwhile, the host cell also produces

cytokines and chemokines such as IL-6, IP-10, and TNF, resulting

in the cytokine storm (28, 39, 40, 53).

In the next stage of the immune response, in autocrine and

paracrine manners, type I IFNs bind to IFNAR, and type III IFNs

bind to IFNLR. The binding of IFNs to IFNAR and IFNLR activates

the JAK/STAT pathway, inducing the expression of MHC class I

and ISG via the ISRE (16, 41, 42). ISGs repress viral replication and

activate RNase L, which degrades both viral and host ssRNA,

leading to cell death without allowing the virus to spread (38).

Moreover, SARS-CoV-2 infection also leads to activation of

cGAS-STING signaling via cell death, cell fusion, mitochondrial

stress, and DNA damage, which mediates recognition of the

genome DNA from fused cells and the activation of NF-kB and

subsequent upregulation of TNF and IL-6 (39, 54). cGAS-STING

also stimulates the IRF3 signaling pathway (39). Lastly for the

innate response, proteasomes will degrade viral proteins and
Frontiers in Immunology 04
present them on MHC class I proteins to facilitate cytotoxic T-

cell destruction of the infected cell. The dysregulation caused by the

many avenues of cytokine release ultimately damages tissues and

organs (28). Inflammatory cells are also activated and migrate to the

lungs, producing a compounded cytokine response to add to the

cytokine storm (40).
Adaptive response

The pro-inflammatory cytokine response recruits immune cells

and begins the adaptive response (39). There are several essential

facets of the adaptive immune response against SARS-CoV-2,

which include plasma cells, CD4+ T helper cells, and CD8+ Killer

T cells (55, 56). This section will discuss the adaptive response

specific to SARS-CoV-2 infection. All three of these arms

(antibodies, CD4+, and CD8+) work together to combat infection

with SARS-CoV-2, and follow the recognition of the virus by

dendritic cells, and migration of those activated dendritic cells to

lymph nodes (57). nAbs are the most common route to immunity

against SARS-CoV-2 progression to COVID-19 and are therefore

essential, and a focus for vaccines elicited responses (56, 58, 59).

nAbs bind the virus to prevent the virus from entering cells. Long-

term protection from antibodies is facilitated by memory B cells.

Memory B cells, both circulating and in bone marrow, are

detectable up to 6 months after SARS-CoV-2 mRNA vaccination

and a year following SARS-CoV-2 infection (24, 60). B cells

differentiate into plasma cells, which produce nAbs (IgG, IgA,
FIGURE 2

Host Immune Response to SARS-CoV-2 Infection. SARS-CoV-2 activates and antagonizes several arms of the immune response to infection. In
total, SARS-CoV-2 will activate and proliferate an immune response (red arrows) through cellular damage (dysfunctional mitochondria), single-
stranded RNA (ssRNA), double-stranded RNA (dsRNA), cytosolic DNA, open-reading frame 8 (ORF8), the envelope (E) protein, the spike (S)
glycoprotein, and the nucleocapsid (N) protein (shown in red). These parts of the virus initiate the response to induce the production of type I
interferons (IFN), type III IFN, and inflammasomes (red lines). These cytokine responses will act in autocrine and paracrine manners to activate IFN
receptors (IFNAR, IFNLR) to induce interferon-stimulated genes (ISGs), interferon regulatory factor 1 (IRF1), and NOD-like receptor family CARD
domain-containing five (NLRC5) (black lines). IRF1 and NLRC5 induce major histocompatibility complex (MHC) class I expression. ISGs will inhibit
viral replication as well as activate RNase L, which will cleave all cellular and viral ssRNA and induce cell death (black lines). The cytokine responses
will also recruit dendritic cells, CD8+ killer T cells, and initiate the adaptive immune response. The adaptive immune response to SARS-CoV-2
includes CD8+ T cells, CD4+ T cells, and B cells (plasma cells) to produce antibodies. At least 26 SARS-CoV-2 proteins (shown in blue with blue
lines) antagonize some part of the immune response.
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and IgM) within severals days after infection or vaccination (24).

This differentiation can occur either in the extrafollicular region

during the EF phase or in the germinal centers during the GC phase.

Following the EF phase, the B cells undergo somatic hypermutation

and selection in germinal centers during the GC phase and

compartmentalize in the bone marrow (24). However, a unique

finding in acute COVID-19 is the lack of germinal centers in lymph

nodes. Germinal centers are essential for developing and

differentiating memory B cells and plasma cells with high-affinity

antibodies (61). During COVID-19 disease, there is an absence of

Bcl-6 transcription factor expressing B cells, a critical transcription

factor for B cell development in germinal centers (62). This absence

correlates with the lack of germinal centers in acute COVID-19,

which results in “disease-related” extrafollicular B cells. The

“disease-related” B cells result from class-switching and not

selection in germinal centers. This class of B cells does not impart

long-lasting protection. Thus, the development of B cells

underscores the importance of vaccination in generating a high-

affinity nAb response and protecting against COVID-19 (62).

CD4+ T helper cells are vital to the antibody responses through

interactions with B cells, and are part of almost all infections with

SARS-CoV-2 (55, 56). CD4+ T cell responses are more prominent

than CD8+ in SARS-CoV-2 infection, are strongly associated with

lessened disease severity, and have been demonstrated against 21

SARS-CoV-2 proteins; prominently S, M, N, nsp3, nsp4, nsp12,

ORF3a, ORF7a, and ORF8 (55, 63–65). Memory CD4+ T cells

persist and can generate a response on secondary challenge,

circulate by 30 days post-symptom onset and have a half-life of 94

days (64). There are several cell functions for CD4+ seen in COVID-

19 (55). The specialized subset of CD4+ T cells known as TFH are

important for helping generate nAbs and help B cells. TFH are

detectable and durable for more than six months post-symptom

onset (24, 64). However, Bcl-6+ GC-TFH, a requirement for inducing

germinal centers, are decreased in COVID-19. Instead, there is a

robust TH1 response in COVID-19 (62). The TH1 response is involved

in cytokine secretion (IFNg) and innate cell recruitment (55). Even so,

the host humoral immune response evolves continuously via affinity

maturation with CD4+ T cells in germinal centers after viral

resolution (66). Additionally, slower decay rates of antibodies and a

higher-affinity antibody response correlate with a higher frequency of

CD4+ T cells (66). TRM are those memory T cells that are non-

recirculating and persist in tissues, and serve to limit re-infection (67).

TRM in the respiratory tract exists for ten months post-infection (67).

IL-22 secreting CD4+ T-cells play a role in mucosal wound

healing (55).

CD8+ T cells play an essential role in many viral infections and

are responsible for destroying infected cells (56). CD8+ T cell

responses have been recognized against SARS-CoV-2 S protein,

M protein, N protein, nsp6, and ORF3a (63–65). Memory CD8+ T

cells circulate by 20-50 days post-symptom onset and have a half-

life of 225 days. The preponderance of these circulating CD8+ T

cells are TEMRA, with lesser amounts of TEM and TCM. TEMRA plays a

role in protection against severe disease, as shown in other viral

infections (64).

Upon infection with SARS-CoV-2, those able to generate

immune responses using B cells, CD4+ cells, and CD8+ cells are
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able to limit disease severity (56). Further, developing a robust

response with these three arms was inversely correlated with age

(56). The broad spectrum of all three responses defines the adaptive

immune response to SARS-CoV-2 infection and lessens the disease

severity (56). An important consideration and implication for

vaccine design is the inclusion of M and N to better mimic

natural SARS-CoV-2 CD4+ T cell and CD8+ T cell responses

(65). In vaccinated individuals, regardless of vaccine platform,

memory CD4+ T cells and memory CD8+ T cells are preserved

and not impacted by evolving variants. Whereas memory B cells

recognition of spike proteins, and antibody reactivity, are

significantly reduced against variants in both vaccinated and

naturally infected persons (68, 69).
Viral modulation of the
innate response

We are now delving into the role of SARS-CoV-2 modulation or

antagonism of the immune system, which SARS-CoV-2 is very

effective at (55). Firstly, we will cover the structural proteins. Inside

the cell, the Spike protein will antagonize the immune response by

interacting with IRF3 (70). In the case of the M protein, it

antagonizes innate immunity by inhibiting the TRAF complex,

which is involved in the promoter activation of NF-kB and

subsequent IFN transcription (16, 71). Additionally, the M

protein interacts with MAVS, impairing the IFN downstream

response, and further, blocks phosphorylation of STAT1, an

element responsible for inducing ISG (72, 73). Lastly, the M

protein triggers cell apoptosis with the N protein as a cofactor

(74). Switching to the N protein, it targets the initiation of RIG-1

pathway via blocking TRIM25, and additionally prevents

phosphorylation of STAT1, STAT2, and IRF3, blocking the entry

of all three into the nucleus and inhibiting the IFN and ISG

responses (16, 51). The N protein is also shown to prevent the

aggregation of MAVS, as well as promote the activation and

assembly of the inflammasome (75, 76).

Now moving on to the non-structural proteins. Nsp1 blocks the

phosphorylation of IRF3, IRF7, STAT1, and cJun. Nsp1 additionally

directly inhibits the IFN and NF-kB promoters and interacts with

host 40S ribosomal subunits via 18S rRNA to inhibit host protein

translation. Further, nsp1 degrades transcripts lacking a 5’ viral

leader sequence (16, 38, 52, 77–80). Regarding nsp3, it blocks

cytokine production (81). Nsp3, like N protein, also block the

phosphorylation of IRF3, preventing nuclear translocation, and

antagonize type I IFN activity (16, 81, 82). Transitioning to nsp5,

it proteolytically cleaves RIG-I and induces the degradation of

MAVS, thus preventing detection of viral dsRNA and inhibiting

the IFN pathway (83). In the case of nsp8 and nsp9, they bind to the

SRP and disrupt protein trafficking, suppressing the type I IFN

response (52). As for nsp10, it impairs the activity of IRF3 and NF-

kB binding sites (81). Exploring nsp6 and nsp13, they bind to an

intermediary between MAVS and IRF3 signaling; thus limiting

IRF3 activation (63, 73, 77, 84). Nsp6 and nsp13 also inhibit

phosphorylation of STAT1 and STAT2 (73). Additionally, nsp13
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limits nuclear translocation of NF-kB (77). Nsp13, nsp14, nsp15,

and ORF6 prevent nuclear translocation of IRF3 (85). Turning to

nsp14, nsp15, and nsp16, they modify the viral RNA and prevent

recognition by RIG-1 and MDA-5 (38). Nsp14 additionally targets

the IFNAR receptor for lysosomal degradation (81). Lastly, nsp16

additionally binds to the spliceosome and interrupts mRNA

splicing, further suppressing the IFN response (52).

Now we move on to the ORFs. ORF3a blocks the

phosphorylation of STAT1, activates the NLRP3 inflammasome,

prevents phagosome and lysosome fusion, and induces cell death

via the extrinsic apoptosis pathway (18, 20, 73, 81). ORF3b

antagonizes type I IFN activity (86). Regarding ORF6, it blocks

the translocation of IRF3 and the STAT1 complex into the nucleus

and inhibits the MHC class I pathway (16, 73, 87). ORF6 also binds

to the interferon-inducible nuclear export complex of Nup98 and

Rae1, preventing the nuclear release of mRNA (63, 84). Moreover,

ORF6, ORF3b and ORF8 inhibit the ISRE to type I IFN production

(38, 88). Focusing on ORF7a, it inhibits the translocation of STAT2

to the nucleus, reduces phagolysosome acidity, and binds to

monocytes, decreasing their ability to present antigens (18, 73, 81,

89). In the case of ORF7b, it suppresses STAT1 and STAT2

phosphorylation (73). Turning to ORF8, it directly interacts with

MHC class I proteins on the ER membrane and facilitates their

degradation via autophagosome degradation (90). Additionally,

ORF8 is a secreted protein that mimics IL17A and interacts with

IL17 receptors on monocytes. This interaction of monocytes

upregulates gene expression in fibrosis signaling, coagulation

dysregulation, and inflammation (91). Examining ORF9b, it

interacts with Tom70, thereby interfering with MAVS and type I

IFN expression (84, 92). As for ORF9c, it upregulates IL-6 signaling

while impairing IFN signaling (93). Lastly, ORF10 induces

mitophagy and thereby causes the degradation of MAVS (94).
Conclusions

The rapid emergence and spread of SARS-CoV-2 worldwide

has vastly changed research over the past years. This dynamic has

included more than 10,000 new SARS-CoV-2 articles released per

month (95). This review aims to summarize some of the most

relevant and referenced immune response resources into a

comprehensive summary of the current state of the host immune

response to SARS-CoV-2. This amalgamation of information

represents the background and current state of understanding in

an ever-evolving and dynamic field. Understanding the virus-host

immune interactions can provide valuable insights for developing

targeted therapeutics, such as antivirals and immunomodulatory

drugs, which can mitigate the severity of the infection and limit viral

spread. Furthermore, this knowledge can inform pandemic

preparedness by helping to identify potential therapeutic targets

and designing effective pre-emptive interventions.

The topics covered herein require constant reevaluation as

more evidence is published worldwide. Such reflection will
Frontiers in Immunology 06
allow for refining the selection of drug targets and elucidating

and understanding the molecular basis of pathogenesis.

Understanding the molecular pathway of SARS-CoV-2 viral

inhibition of IFN production and signaling for drug targets and

pathogenesis can point to other prospective treatments, such as IFN

mimicry, small molecules, solubilizable ACE2 in place of

monoclonal antibodies (96), prophylactic RIG-I agonists (97), or

nanobody-fusions targeting specific ORFs. There are many

currently available and approved IFN receptor agonists that

clinical trials could further explore (ropeginterferon alfa-2b,

peginterferon alfa-2b, etc). These points of continuous assessment

allow for the most effective management of SARS-CoV-2, COVID-

19, and future pandemics.
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Glossary

3CLpro chymotrypsin-like protease

ACE2 the angiotensin-converting enzyme 2

Bcl-6 B cell lymphoma 6

CD4 cluster of differentiation 4

CD8 cluster of differentiation 8

cGAMP cyclic guanosine monophosphate-adenosine monophosphate

cGAS cGAMP synthase

CpG cytosine-phosphate-guanine

CH central helix

COVID-
19

Coronavirus Disease 2019

DAMPs damage-associated molecular patterns

DMV double-membrane vesicles

DNA deoxyribonucleic acid

dsRNA double-stranded RNA

E envelope

EF extrafollicular

ER endoplasmic reticulum

ERGIC endoplasmic-reticulum-Golgi intermediate compartment

FP fusion protein

GC germinal center

HR1 heptad repeat 1

HR2 heptad repeat 2

IFN interferon

IFNAR interferon alpha/beta receptor

IFNLR interferon lambda receptor

IL interleukin

IP-10 interferon-g-inducible protein 10

IRF interferon regulatory factor

ISG interferon-stimulated gene

ISRE interferon-stimulated response element

JAK Janus kinase

M membrane

MAPK mitogen-activated protein kinase

MAVS mitochondrial antiviral-signaling protein

MDA-5 melanoma differentiation-associated protein 5

MHC major histocompatibility complex

mtDNA mitochondrial DNA

MyD88 myeloid differentiation primary response 88
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N nucleocapsid

nAbs Neutralizing antibodies

NLRP3 nucleotide-binding and oligomerization domain-like receptor
family pyrin domain containing 3

NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells

Nsps nonstructural proteins

NTD N-terminal domain

Nup98 nucleoporin 98

ORF open reading frame

PAMPs pathogen-associated molecular patterns

PLPro papain-like protease

PRR pattern recognition receptor

Rae1 ribonucleic acid export 1

RBD receptor-binding domain

RIG-I retinoic acid-inducible gene I

RNA ribonucleic acid

RNase L ribonuclease L

RTC replication transcription complex

S spike

SARS-
CoV-2

severe acute respiratory syndrome coronavirus-2

SRP signal recognition particle

ssRNA single-stranded RNA

STAT signal transducer and activator of transcription proteins

STING stimulator of interferon genes

TCM central memory T cells

TEM effector memory T cells

TEMRA terminally differentiated effector memory T cells

TFH T follicular helper cells

TLRs toll like receptors

TM transmembrane domain

TMPRSS2
Transmembrane Serine Protease 2

TNF tumor necrosis factor

Tom70 translocase of outer membrane 70

TRAF TNF receptor-associated factor

TRIF toll/IL-1 receptor protein domain-containing adapter-inducing
interferon-b

TRIM tripartite motif-containing protein 25

TRM Resident memory T cells

UTR untranslated region

vRNA viral RNA.
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