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Diabetic kidney disease (DKD) is a prevalent and severe complications of diabetes

and serves as the primary cause of end-stage kidney disease (ESKD) globally.

Increasing evidence indicates that renal inflammation is critical in the

pathogenesis of DKD. The nucleotide - binding oligomerization domain (NOD)

- like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the

most extensively researched inflammasome complex and is considered a crucial

regulator in the pathogenesis of DKD. The activation of NLRP3 inflammasome is

regulated by various signaling pathways, including NF- kB, thioredoxin—

interacting protein (TXNIP), and non-coding RNAs (ncRNA), among others.

Natural products are chemicals extracted from living organisms in nature, and

they typically possess pharmacological and biological activities. They are

invaluable sources for drug design and development. Research has

demonstrated that many natural products can alleviate DKD by targeting the

NLRP3 inflammasome. In this review, we highlight the role of the NLRP3

inflammasome in DKD, and the pathways by which natural products fight

against DKD via inhibiting the NLRP3 inflammasome activation, so as to

provide novel insights for the treatment of DKD.

KEYWORDS

natural products (NP), diabetic kidney disease (DKD), inflammation, the NLRP3
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1 Introduction

Diabetic kidney disease (DKD) is one of the most prevalent and severe microvascular

complications of diabetes, and is also the main cause of end stage kidney disease (ESKD)

globally. Approximately 30% to 50% of ESKD cases worldwide are attributed to DKD (1).

The pathogenesis of DKD is multifaceted, involving metabolic abnormalities, renal

hemodynamics changes, oxidative stress, and inflammation, among others.
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Initially, metabolic and hemodynamic changes were believed to

be the main factors in the development of DKD. However, it is

gradually realized that inflammation plays an important role in the

development and progression of DKD (2, 3). Chronic exposure to

advanced glycation end products (AGEs) stimulates the release of

chemokines and cytokines, which can be recognized by Toll-like

receptors (TLRs) and nucleotide-binding oligomerization domain-

like receptors (NLRs), leading to heightened inflammatory

responses. Persistent inflammation ultimately results in the onset

of DKD (4).

Natural products include a diverse group of substances

extracted from various natural sources such as plants, bacteria,

fungi, insects, and even animals, they are valuable sources for drug

design and development (5). Accumulative evidence demonstrates

that many natural products could suppress systemic and renal

inflammation by targeting nuclear transcription factor-kB (NF-

kB), NLR family pyrin domain containing 3 (NLRP3)

inflammasome, transforming growth factor-b (TGF-b) signaling

pathway, and exhibit reno-protective effects on DKD (6). The

NLRP3 inflammasome is a critical regulator of inflammation in

DKD and is considered a potential therapeutic target (7). In this

review, we highlight the role of NLRP3 inflammasome in DKD, and

the pathways by which natural products fight against DKD via

inhibiting the NLRP3 inflammasome activation, so as to offer novel

insights for the treatment of DKD.
2 A brief overview of the NLRP3
inflammasome in DKD

As a member of NLR, NLRP3 can assemble into the NLRP3

inflammasome after recognizing danger signals, and exert biological

effects by activating caspase-1 and promoting the maturation and

secretion of interleukin (IL)-1b and IL-18. The NLRP3

inflammasome is a multiprotein complex composed of NLRP3,

apoptosis-associated speck-like protein (ASC), and caspase-1.
Frontiers in Immunology 02
Among them, NLRP3 is the core protein, containing three

different domains. First is the pyrin domain (PYD) or C-terminal

caspase-recruitment domain (CARD), located on the N-terminus. It

can bind to other proteins, and mediate signal transduction. Second

is the NACHT domain located in the middle, responsible for

activating the NLRP3 inflammasome through ATP-dependent

oligomerization. Third is the leucine-rich repeat (LRR) domain,

which located on the C-terminus, and is responsible for identifying

pathogenic organisms and endogenous danger signals. ASC is an

adaptor protein that connects upstream NLRP3 to downstream

caspase-1. Caspase-1 is the effector protein in NLRP3

inflammasome, it induces the production and IL-1b and IL-18,

resulting in inflammation (8).
3 The NLRP3 inflammasome regulator
in DKD

NLRP3 is widely expressed in glomerular and tubular epithelial

cells of DKD patients and mice. Inhibition of NLRP3, ASC, or

caspase-1 can reduce the damage of podocytes, endothelial cells

and mesangial cells, and can also significantly reduce the

inflammatory response of tubulointerstitium. NLRP3 knockout

improved renal pathological changes in diabetic mice (4, 9, 10).

These findings suggest that the NLRP3 inflammasome plays a

significant role in DKD.

The activation of the NLRP3 inflammasome is a two-step

process. The “priming step” is the first phase, involving recognition

of danger signals by TLR and activation of NF-kB, which will up-

regulate the expression of NLRP3, pro-IL-1b and pro-IL-18. The

“activating step” is the second phase, triggered by potassium efflux,

calcium influx, mitochondrial dysfunction, lysosomal disruption and

reactive oxygen species (ROS) overproduction. These danger signals

promote the formation of the NLRP3 inflammasome (11–13). It is

found that multiple signaling pathways can exacerbate DKD by

targeting the NLRP3 inflammasome activation (Table 1).
TABLE 1 Signaling pathways regulating the NLRP3 inflammasome activation in DKD.

Signaling
Pathways

In vivo/in
vitro Model Findings References

NF-kB

In vitro Mouse podocytes TLR4 knockdown inhibited NLRP3 inflammasome (14)

In vivo, in
vitro

Db/db mice
mouse mesangial cell

TLR9 knockdown inhibited NF-kB and NLRP3 inflammasome (15)

In vivo, in
vitro

DKD Patients
HFD/STZ mice
MPC5

FOXM1 activated SIRT4, inhibited NF-kB and NLRP3 inflammasome (16)

In vivo, in
vitro

Db/db mice
STZmice
DKD Patients
HK-2 cells

CXCL1/CXCR2 activated NF-kB and the NLRP3 inflammasome (17)

TXNIP
In vivo, in
vitro

STZ rats
HK-2 cells

TXNIP promoted NLRP3 inflammasome activation (18)

(Continued)
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TABLE 1 Continued

Signaling
Pathways

In vivo/in
vitro Model Findings References

In vivo, in
vitro

DKD Patients
STZ mice
human podocyte cell line

TXNIP activated NADPH oxidase and then triggered NLRP3
inflammasome activation

(19)

In vivo, in
vitro

STZ rats
Rat glomerular mesangial cells

ROS inhibitor down-regulated TXNIP, NLRP3 and IL-1b (20)

In vivo, in
vitro

db/db mice
HK-2 cells

mtROS upregulated TXNIP, NLRP3 and IL-1b (21)

In vivo HFD/STZ Rats IRE1stimulated TXINP and NLRP3 (22)

In vivo, in
vitro

STZ mice
Human podocyte cell line

EZH2/EGR1/TXNIP/NLRP3 pathway contributed to DKD (23)

In vivo, in
vitro

Db/db mice
NRK52E cell line

Sphingosine kinase 2 activated TXINP, NLRP3, and IL-1b (24)

In vitro Human glomerular podocytes NOX4 upregulated NLRP3 (25)

In vivo, in
vitro

STZ rats
Mouse podocytes

Icariin inhibited NLRP3 by Keap1-Nrf2/HO-1 pathway (26)

In vivo Db/db mice Minocycline stabilized Nrf2 and inhibited NLRP3 (27)

In vivo STZ mice Berberine stabilized Nrf2 and inhibited NLRP3 (28)

In vivo STZ rats Zinc Oxide Regulated Nrf2/TXNIP/NLRP3 Inflammasome pathway (29)

In vivo, in
vitro

db/db mice
HK-2 cells

CD36 promoted mtROS and NLRP3 (30)

In vivo, in
vitro

STZ mice
Mouse proximal tubular cells

Activated Protein C inhibited ROS and NLRP3 (31)

In vitro
Mouse glomerular mesangial
cells

RIPK2 inhibited ROS and NLRP3 inflammasome (32)

In vivo, in
vitro

DKD patients
Murine renal tubular epithelial
cells

Optineurin reduced mtROS and inhibited NLRP3 inflammasome (33)

Non-coding RNAs

In vivo, in
vitro

DKD patients
STZ mice& db/db mice
Human podocytes

MiRNA-10 negatively regulated NLRP3 (34)

In vitro Mouse glomerular podocyte line MiRNA-29a inhibited NLRP3 (35)

In vivo, in
vitro

DKD Patients
HK-2 cells

MiR-520c-3p inhibited TXNIP/NLRP3 (36)

In vivo, in
vitro

STZ rats
HK-2 cells

IncRNA-MALAT1 down-regulated miR-23c and up-regulated NLRP3 (37)

In vitro MPC-5 cells Atorvastatin protected podocytes by regulating MALAT1/miR-200c/Nrf2 (38)

Vitro HK-2 cells IncRNA-MALAT1 down-regulated miR-30c and up-regulated NLRP3 (39)

In vivo, in
vitro

STZ rats
HBZY-1 cells

IncRNA-NEAT1 down-regulated miR-34c and up-regulated NLRP3 (40)

In vitro HK-2 cells IncRNA-NEAT2 down-regulated miR-206 and up-regulated NLRP3 (41)

In vivo, in
vitro

STZ rats
HK-2 cells

IncRNA-XIST down-regulated miRNA-15b-5p, upregulated TLR4 and
NLRP3

(42)

In vivo, in
vitro

DKD patients
HK-2 cells

IncRNA-KCNQ1OT1 down-regulated miRNA-506-3p and up-regulated
NLRP3

(43)

In vitro HK-2 cells lncRNA-GAS5 down-regulated miR-452-5p and NLRP3 (44)

In vitro Mouse podocyte cell line
sC5b-9 promoted NLRP3 activation via up-regulating Kcnq1to1and down-
regulating mRNA-486a-3p

(45)

(Continued)
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3.1 NF-kB/NLRP3 signaling pathway

NF-kB is a transcription factor in the form of p50/p65

heterodimer. Normally, NF-kB binds to its inhibitor kappa B

(IkB) and becomes inactive. When stimulus signals activate IkB
kinase, IkB-a is phosphorylated and degraded, allowing NF-kB and

IkB are dissociated and translocated into nucleus, where they

regulate the expression of target genes (62). Liu et al. (14)

revealed that high glucose (HG) promoted the activation of
Frontiers in Immunology 04
NLRP3 inflammasome in mouse podocytes (MPCs). The

expression of TLR4 was also upregulated, which is an important

signaling molecule regulating NF-kB. TLR4 knockdown inhibited

the activation of NLRP3 inflammasome, attenuated HG-induced

cell apoptosis, and increased cell viability. Shen et al (15) found that

TLR9 knockdown would inhibit NF-kB/NLRP3 pathway in HG-

induced Mesangial Cells (MCs). Furthermore, inhibition of TLR9

reduced NF-kB and NLRP3 expression, and decreased

microalbuminuria, renal inflammatory response, and glomerular
TABLE 1 Continued

Signaling
Pathways

In vivo/in
vitro Model Findings References

In vivo, in
vitro

DKD patients
HK-2 cells

lncRNA-ANRIL down-regulated miRNA-497, and up-regulated TXNIP/
NLRP3

(46)

In vitro Mouse mesangial cells IncRNA-Gm4419 knockdown inhibited NF-kB and NLRP3 (47)

In vivo, in
vitro

DKD patients
HK-2 cells

Circ_0004951 down-regulated miRNA-93-5p, and up-regulated NLRP3 (48)

Interleukin

In vivo Db/db mice Blockade of IL-6 receptor inhibited NLRP3 by regulating IL-17A (49)

In vivo, in
vitro

DKD patients
STZ mice
HEK293T cells

IL-22 inhibited NLRP3/caspase-1/IL-1b (50)

In vitro Mouse Podocyte IL-37 inhibited NLRP3 (51)

BTK

In vivo
DKD patients
STZ mice

BTK activated NLRP3 inflammasome (52)

In vivo, in
vitro

HFD mice
Murine bone marrow-derived
macrophages
Human monocyte-derived
macrophages

BTK inhibitor suppressed NLRP3 via regulating IRS-1/Akt/GSK-3b (53)

GSK-3b/HIF-1a In vitro
Mouse renal proximal tubular
epithelial cells

GSK-3b knockdown decreased NLRP3 (54)

HDAC6
In vivo, in
vitro

DKD patients
STZ mice
Mouse Bone Marrow–Derived
Macrophages
HK-2 cells

HDAC6 inhibitor suppressed NLRP3 inflammasome (55)

RIPK3 In vivo STZ mice RIPK3 controls cellular signaling through the formation of NLRP3 (56)

Syk/JNK
In vivo, in
vitro

STZ rats
HK-2 cells
Rat glomerular mesangial cells

Syk/JNK activated NLRP3 (57)

PPARs In vivo
Sugar-induced mice with
diabesity

PPAR-d agonists inhibited NLRP3 (58)

RAC1
In vivo, in
vitro

Db/db mice
HEK293T cells

RAC1 binding to NLRP3 activates the NLRP3 inflammasome (59)

Spop
In vivo, in
vitro

STZ mice
Mice podocytes

Spop promoted NLRP3 degradation (60)

WTAP
In vivo, in
vitro

DKD patients
HK-2 cells

WTAP upregulated NLRP3 (61)
CXCL1, Chemokine (C-X-C motif) Ligand 1 Protein; CXCR2, CXC chemokine receptor 2; EGR1, Early Growth Response Protein 1; EZH2, Enhancer of zeste homolog 2; FOXM1, Forkhead box
M1; GSK-3b, Glycogen synthase kinase-3b; HDAC6, Histone deacetylase 6; HFD, High-Fat Diet; HIF, Hypoxia inducible factor; IRE1, Inositol-requiring enzyme 1; JNK, c-Jun N-terminal kinase;
MPC, mouse podocyte cell; NLRP3, The nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3; NOX4, Nicotinamide Adenine Dinucleotide Phosphate
Oxidase 4; PPARs, Peroxisome-proliferator activated receptors; RAC1,Ras-related C3 botulinum toxin substrate 1; RIPK, Receptor interacting protein kinase; ROS, reactive oxygen species;
SIRT4, sirtuin 4; STZ, Streptozocin; Spop, Speckle-type POZ protein; Syk, Spleen tyrosine kinase; TLR, Toll-like receptors; TXNIP, thioredoxin-interacting protein; WTAP, Wilms tumor 1-
associated protein.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1196016
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1196016
lesion in db/db mice. Xu et al (16) demonstrated that Forkhead box

M1(FOXM1) transcriptionally activated sirtuin 4 (SIRT4) and

inhibited NF-kB signaling and the NLRP3 inflammasome,

thereby alleviating renal injury in vivo and in vitro. Tang et al.

(17) also confirmed that CXCL1/CXCR2 may cause inflammation

in HK-2 cells with HG treatment by phosphorylating NF-kB and

activating the NLRP3 inflammasome. Li et al. (63) found that the

activation of AMPK/SIRT1 pathway promoted the expression of

NF-kB, NLRP3, ASC, Caspase-1, and IL-1b in DKD mice.
3.2 TXNIP/NLRP3 signaling pathway

Thioredoxin-interacting protein (TXNIP) is an alpha-arrestin

protein with a molecular weight of 46 kD. It can bind to thioredoxin

(TRX) and interfere with its expression, which is an essential

regulator of oxidative stress, cell proliferation, and apoptosis (64,

65). It has been revealed that TXNIP is released from oxidized TRX

under oxidative stress, resulting in the activation of NLRP3

inflammasome (66).

There is abundant evidence that TXNIP/NLRP3 signaling

pathway is involved in the inflammatory response of DKD. For

instance, Gu et al. (18) revealed that TXNIP and NLRP3 were

overexpressed in the renal tissue of DKD rats. It is also observed

that HG stimulated TXNIP/NLRP3, promoting inflammation. Gao

et al. (19) found that HG-promoted Nicotinamide Adenine

Dinucleotide Phosphate (NADPH) oxidase activation via TXNIP,

which in turn activated the NLRP3 inflammasome, leading to

podocyte injury. It has also been revealed that HG activates ROS/

TXNIP/NLRP3 inflammasome signaling in glomerular mesangial

cells (20), and mitochondrial ROS(mt ROS)/TXNIP/NLRP3

pathway is involved in tubular oxidative injury in DKD (21).

Furthermore, it has been confirmed that many molecules

participate in the pathogenesis of DKD by regulating TXNIP/

NLRP3 inflammasome pathway. Inositol-requiring enzyme 1a
(IRE1a), an endoplasmic reticulum transmembrane sensor, can

stimulate TXINP/NLRP3 signaling pathway and aggravate DKD in

rat model (22). Enhancer of zeste homolog 2 (EZH2), a subunit of

the polycomb repressive complex 2, contributes to S-

adenosylhomocysteine inhibition-aggravated DKD in mice

through EZH2/EGR1/TXNIP/NLRP3 signaling pathway (23).

Sphingosine kinase 2 (SphK2) is a key enzyme catalyzing the

formation of sphingosine-1-phosphate. Research shows that

SphK2 increases TXNIP, NLRP3 inflammasome and IL-1b levels,

induces inflammation, promotes renal tubular epithelial cell

damage, leading to DKD aggravation (24).

Additionally, there is substantial evidence that many molecules

contribute to DKD progression through the ROS/NLRP3

inflammasome pathway. It is found that NADPH oxidase 4

(NOX4), a major source of ROS, is upregulated in HG-induced

podocytes. Suppression of NOX4 inhibits the activation of NLRP3

inflammasome and alleviates podocytes apoptosis (25). Nuclear

factor E2-related factor 2 (Nrf2) is a transcription factor that

protects cells from oxidative stress (67) and serves as most

sensitive signal of scavenging ROS under oxidative stress (68). It
Frontiers in Immunology 05
is reported that Nrf2 may alleviate DKD by suppressing the

activation of NLRP3 inflammasome (26–29). CD36, a fatty acid

transporter, causes renal tubular epithelial cell injury by activating

mtROS/NLRP3 pathway in DKD (30). Activated protein C (aPC),

an endothelial-dependent cytoprotective coagulation protease,

meliorates tubular mitochondrial ROS and inflammation in DKD

(31). Receptor interacting protein kinase 2 (RIPK2) has also been

confirmed to negatively regulate ROS/NLRP3 signaling in mouse

glomerular mesangial cells treated with HG (32). Optineurin, a

well-recognized autophagy receptor, reduces the activation of

NLRP3 inflammasome by reducing mtROS and mitophagy in HG

-treated renal tubular cells (33).
3.3 Non-coding RNAs

Non-coding RNAs (ncRNAs) are recognized as a class of

ribonucleic acids (RNAs) that are not translated into proteins.

ncRNAs consist of various family members, including

microRNAs (miRNAs), long ncRNAs (lncRNAs), ribosomal

RNAs, transfer RNAs, circular RNAs(circ-RNAs), and others.

Different classes of ncRNAs engage in different cellular processes,

regulating gene expression, RNA maturation, and protein

synthesis (69).

MiRNAs are small ncRNAs that regulate gene expression

through recognizing cognate sequences and interfering with

transcriptional, translational, and epigenetic processes. Many

miRNAs have been shown to participate in the pathogenesis of

DKD by regulating the NLRP3 inflammasome. For example, Ding

et al (34) found that miRNA-10 alleviated inflammation in DKD by

reducing the NLRP3 inflammasome activation. Zhang (35)

demonstrated that miRNA-29a inhibited HG-induced podocytes

pyroptosis and alleviated inflammatory response by directly

targeting NLRP3. Song et al (36) revealed that miR−520c−3p

reduced HK-2 cell pyroptosis induced by HG through inhibiting

TXNIP/NLRP3 inflammasome pathway.

LncRNAs are defined as ncRNAs containing more than 200

nucleotides in length (70). They act through numerous

paradigms and are key regulatory molecules in cells (71). It is

found that in diabetic rats and HG treated podocytes/renal

tubule (HK-2) cells, the up-regulation of lncRNA-MALAT1

promoted the NLRP3 inflammasome activation via inhibiting

miR-23c (37), miR-200c (38) and miR-30c (39). In addition,

many other lncRNAs have also been confirmed to take part in

the development of DKD by targeting NLRP3 inflammasome,

such as IncRNA-NEAT1/miR-34c (40), lncRNA NEAT2/miR-

206 (41) , lncRNA-XIST/miR-15b-5p (42) , lncRNA-

KCNQ1OT1/miR-506-3p (43), lncRNA-GAS5/miR-452-5p

(44), Kcnq1ot1/miR-486a-3p (45), lncRNA-ANRIL/miR-497

(46), and lncRNA-Gm4419 (47).

Circular RNAs(circ-RNAs) are a class of ncRNAs that lack the

5’ or 3’ end. They regulate gene expression by pervading the

transcription, the mRNA turnover, and translation. It is showed

that Circ_0004951 is significantly up-regulated in DKD, where it

can suppress miR-93-5p and activate NLRP3 inflammasome (48).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1196016
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1196016
3.4 Others

Interleukin (IL): ILs are a type of cytokine released by various

cells, playing a crucial role in immune regulation and homeostasis.

Many ILs have been confirmed to be involved in renal damage

caused by diabetes through the regulation of the NLRP3

inflammasome. Wu et al. (49) found that blocking the IL-6

receptor inhibited the NLRP3 inflammasome by restraining IL-

17A. Wang et al. (50) demonstrated that IL-22 has reno-protective

effects on DKD by downregulating renal NLRP3/caspase-1/IL-1b
pathway. Zhang et al. (51) found that IL-37 decreased the

expression of NLRP3, ASC, and caspase-1 in HG-treated podocytes.

Bruton’s tyrosine kinase (BTK): BTK, an intracellular non-

receptor tyrosine kinase, is considered as an vital signal in

immunoregulation (72). It has been observed that BTK activates

the NLRP3 inflammasome and promotes renal inflammation in

diabetic patients and mice (52). BTK inhibitor attenuates NLRP3

inflammasome activation and alleviates DKD (53).

Glycogen synthase kinase (GSK)-3b/Hypoxia inducible factor

(HIF)-a: GSK-3b, a serine/threonine kinase, is crucial for glycogen
synthesis by regulating phosphorylation of glycogen synthase (73).

It is found that HIF-1a is also a direct target of GSK-3b (74).

Inhibition of the GSK-3b/HIF-1a pathway has been shown to

alleviate NLRP3-induced pyroptosis in HG-treated renal tubular

epithelial cells (54).

Histone deacetylase 6 (HDAC6):HDAC6 is a cytoplasmic

enzyme that participates in a variety of cellular processes (75).

Inhibition of HDAC6 has been shown to ameliorate DKD by

suppressing the NLRP3 inflammasome (55).

Receptor-interacting protein kinase-3 (RIPK3): RIPK3 is a

multifunctional regulator of cell death and inflammation. It is

reported that RIPK3 is associated with renal fibrosis in DKD by

activating NLRP3 inflammasome. Blockade of RIPK3 attenuates

tubulointerstitial fibrosis (56).

Spleen tyrosine kinase (Syk)/c-Jun N-terminal kinase (JNK)/

NLRP3 signaling pathway: Syk is a non-receptor protein tyrosine

kinase. Inhibition of Syk has been shown to downregulate JNK

expression and suppress the activation of the NLRP3

inflammasome stimulated by HG, indicating that the Syk/JNK/

NLRP3 pathway may play a role in the inflammatory injury in

DKD (57).

Peroxisome-proliferator activated receptors (PPARs): PPARs

belong to the nuclear receptor superfamily, with three subtypes:

PPAR-a, PPAR-g, and PPARb/d. They regulate glucose and lipid

metabolism and also mediate inflammation (76). It is reported that

PPAR-d agonist attenuates renal dysfunction and inflammation by

preventing activation of the NLRP3 inflammasome in diabesity

mice (58).

Ras-related C3 botulinum toxin substrate 1 (RAC1): RAC1 is a

member of the Rho family of small GTPases and plays a role in cell

proliferation, apoptosis, and inflammation (77, 78). It is revealed

that RAC1 binding to NLRP3 activates the NLRP3 inflammasome

in the kidney and accelerates DKD pathological processes (59).

Speckle-type POZ protein (Spop): Spop, an E3 ubiquitin ligase,

is involved in many cellular processes by promoting the degradation
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of its target proteins (79, 80). It is observed that Spop inhibits the

NLRP3 inflammasome and ameliorates DKD, the possible

mechanism is that Spop may directly contact with NLRP3 and

promote NLRP3 degradation via elevating K48-linked

polyubiquitination of NLRP3 (60).

Wilms tumor 1-associated protein (WTAP): WTAP is a critical

constituent of the classical m6A methyltransferase, which may

cause modification of NLRP3. It has been demonstrated that

WTAP upregulates the expression of NLRP3 by increasing the

m6A methylation of NLRP3 mRNA, leading to inflammatory

response (61).
4 Natural products alleviating DKD via
targeting the NLRP3 inflammasome

Natural products are chemicals extracted from living

organisms, and usually have pharmacological or biological

activities. They are highly beneficial for drug design and

development. Numerous natural products have been found to

alleviate DKD by targeting the NLRP3 inflammasome (Table 2

and Figures 1, 2).
4.1 Flavonoids

Flavonoids refer to a series of compounds formed by two

benzene rings connected to each other by three carbon atoms,

that is, with a C6-C3-C6 structure (129). Natural flavonoids are

classified based on their basic structure into flavones, flavanones,

isoflavones, flavonols, anthocyanins, and flavan-3-ols. They are

widely found in plants.

Naringin is a bioflavonoid mainly found in the fruits of Citrus

paradisi Macfadyen, grapefruit, tangerine, and oranges. It appears

to have antioxidant, anticancer, and anti-atherosclerosis properties.

It is reported that naringin could lower glucose levels (130–132). In

rat glomerular mesangial cells induced by HG, the expressions of

NLRP3 were significantly higher. Pre-treatment with naringin

alleviated the activation of NLRP3 inflammasome, and inhibited

cell proliferation (81).

Quercetin (Qu) is a plant flavonoid widely exist in apples,

grapes, tomatoes, and onions, etc. Its structure contains phenolic

hydroxyl groups and double bonds, which provide strong

antioxidant activity (133). Dihydroquercetin (DHQ), also known

as taxifolin, is the reduced form of Qu. It is a major dihydroflavone

compound derived from Larix sibirica Ledeb. and Pseudotsuga

taxifolia (Lamb.) Britton (134). These two natural compounds

exert numerous biological activities, including antioxidant, anti-

inflammation, antitumor, antiviral effects (135–139). Wang et al.

(82) found that Qu can suppress the NLRP3 inflammasome

activation in kidney, ameliorating kidney lipid accumulation in

STZ-treated rats. A meta-analysis of rodent data (140) also showed

that Qu significantly improved renal function, urinary protein

excretion, and renal pathological changes in DKD. Regarding the

underlying mechanisms, Qu may provide renoprotection in DKD
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TABLE 2 Natural products in alleviating DKD by targeting the NLRP3 inflammasome.

Compounds Resource

In
Vivo/
in
Vitro

Model Signaling Pathways References

Flavonoids

Naringin Grapefruit and citrus fruit
In
vitro

Glomerular
mesangial cells

InhibitedNLRP3 (81)

Quercetin Apples, grapes, tomatoes, and onions In vivo STZ rats InhibitedNLRP3 (82)

Dihydroquercetin
Larix sibirica Ledeb. and Pseudotsuga
taxifolia (Lamb.) Britton

In
vivo, in
vitro

HFD/STZ rats
HBZY-1 and
HK2 cell cells

InhibitedROS and NLRP3 (83)

Fisetin
Vegetables and fruits, apples,
persimmons, grapes, strawberries,
cucumbers, and onions.

In
vivo, in
vitro

STZ mice
Mouse
podocytes

Inhibited NLRP3 inflammasome (84)

Fisetin As above
In
vivo, in
vitro

HFD mice
HK-2 cells

InhibitedRIP3/NLRP3 (85)

Liquiritigenin Glycyrrhizae radix
In
vitro

HBZY-1
Decreased NOX4, NF-kB and
NLRP3

(86)

Isoliquiritigenin As above In vivo STZ rats
Up-regulated Sirt-1 and inhibited
NF-kB/NLRP3

(87)

Icariin Herba epimedii
In
vivo, in
vitro

STZ rats
MPC-5

Inhibited NLRP3 via Keap1-
Nrf2/HO-1 axis

(26)

Calycosin Radix Astragali In vivo STZ rats
InhibitedNF-kB/p65/NLRP3/
TXNIP

(88)

Luteolin Fruits and vegetables
In
vitro

MPC-5 InhibitedNLRP3 (89)

Complanatoside
A

Semen Astragali Complanati
In
vivo, in
vitro

STZ mice
HK-2 cells

InhibitedNOX4 and NLRP3 (90)

Kaempferol Sand ginger In vivo STZ rats InhibitedNLRP3 (91)

Carithamine Safflower In vivo STZ rats Down-regulated NLRP3 (92)

Saponins

Ginsenoside Rg1 Ginseng
In
vivo, in
vitro

STZ rats
Mouse
podocyte cell
line
BNCC337685

Inhibited mTOR/NF-kB/NLRP3 (93)

Ginsenoside Rg5 Black ginseng In vivo STZ mice
InhibitedROS, Nox4, TXNIP,
NF-kB, MAPK, and NLRP3

(94)

Ginsenoside
compound K

Diol-type ginsenosides
In
vivo, in
vitro

STZ mice
HBZY-1

InhibitedROS/NLRP3 and NF-
kB/p38

(95)

Sarsasapogenin Anemarrhena asphodeloides Bunge
In
vivo, in
vitro

STZ rats
Human
mesangial cells

Suppressed NLRP3 and NF-kB
by down-regulating PAR-1

(96)

Sarsasapogenin As above In vivo STZ rats InhibitedNLRP3 (97)

Astragaloside IV Astragalus membranaceus
In
vivo, in
vitro

Db/db mice
Mouse
podocytes

InhibitedNLRP3 (98)

Astragaloside IV As above
In
vitro

Mouse
mesangial cells
(SV40)

Inhibited ROS and NLRP3 (99)

(Continued)
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TABLE 2 Continued

Compounds Resource

In
Vivo/
in
Vitro

Model Signaling Pathways References

Salidroside Rhodiola rosea
In
vitro

HBZY-1 InhibitedTXNIP-NLRP3 (100)

Notoginsenoside
Fc

Panax notoginseng In vivo Db/db mice Inhibited NLRP3 (101)

Phenolics

Tetrahydroxy
stilbene glucoside

Polygoni Multiflori Radix
In
vitro

MPC5 Inhibited NLRP3 (102)

Gastrodin Gastrodia elata
In
vitro

MPC-5 cells
Actived AMPK/Nrf2 and
inhibited NLRP3

(103)

Epigallocatechin-
3-gallate

Green tea In vivo HFD/STZ rats
suppressed endoplasmic
reticulum stress-mediated NLRP3
inflammasome overactivation

(104)

Resveratrol Grape skin and red wine
In
vivo, in
vitro

STZ rats HK-2
cells

Inhibited TXNIP binding to
NLRP3

(105)

Piceatannol
Grapes, sugar cane, white tea, rhubarb,
passion fruit and blueberries

In
vitro

Mouse
podocytes

Upregulated Nrf2 and NLRP3 (106)

Curcumin Rhizome Curcuma longa- turmeric
In
vivo, in
vitro

Db/db mice
HK-2 cells

InhibitedNLRP3 (107)

Punicalagin
Pomegranate, myrobalan, leaves of
yellow wood, and tropical almond

In vivo HFD/STZ mice
Downregulated NOX4, TXNIP,
and NLRP3

(108)

Purple Sweet
Potato Color

Ipomoea batatas In vivo HFD mice
Suppressed VEGFR2/ROS/
NLRP3

(109)

Grape seed
proanthocyanidin

Grape seeds In vivo STZ rats InhibitedNLRP3 (110)

Terpenoids

Pristimerin Celastraceae and Hippocrateaceae
In
vivo, in
vitro

HFD Mice
Mouse Bone-
marrow cells

Disturbed the interaction
between NEK7 and NLRP3

(111)

Geniposide Gardenia jasminoides Ellis
In
vivo, in
vitro

STZ mice
Mouse
podocytes

InhibitedAMPK/SIRT1/NF-kB,
and NLRP3

(112)

Genipin-1-b-d-
gentiobioside

As above
In
vivo, in
vitro

STZ mice
Mouse
Podocytes

Inhibited AMPK/SIRT1/NF-kB,
and NLRP3

(63)

Swietenine Swietenia macrophylla King
In
vivo, in
vitro

Db/db mice
Human
mesangial cells

InhibitedNF-kB/NLRP3/Caspase-
1

(113)

Artesunate Artemisia annua
In
vitro

HBZY-1 InhibitedTLR4/NF-kB/NLRP3 (114)

Catalpol Rehmannia glutinosa
In
vivo, in
vitro

STZ mice
Mouse
podocytes

InhibitedAMPK/SIRT1/NF-kB
and NLRP3

(115)

Andrographolide Andrographis paniculata
In
vivo, in
vitro

STZ mice
HK-2 cells

Inhibited NLRP3 (116)

Triptolide Tripterygium wilfordii Hook F
In
vitro

Mouse
podocytes

Inhibited NLRP3 (117)

Alkaloids Berberine Coptis and Phellodendron In vivo
HFD/STZ
hamsters

Regulated Nrf2/NLRP3 pathway (28)

(Continued)
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through the mtROS-TRX/TXNIP/NLRP3/IL-1b pathways. For

DHQ , i t h a s b e en shown t o s i gn ifi c an t l y r e du c e

microalbuminuria, improve glucose and lipid metabolism

dysfunction, and alleviate renal pathological changes in DKD rats.

In renal cells induced by HG, DHQ significantly inhibits the

activation of NLRP3 inflammasomes and renal fibrosis-associated

proteins, reducing cell proliferation and oxidative stress (83).

Fisetin is a natural flavonol extracted from many fruits and

vegetables, such as strawberries, apples, cucumbers, and onions

(84). Studies indicate that fisetin possesses anti-inflammatory, anti-

oxidant, anti-tumor, and cardiovascular protective effect (141–143).

Dong et al. (84) demonstrated that fisetin ameliorated podocyte

injury caused by HG, and mitigated renal injury in diabetic mice by

suppressing NLRP3 inflammasome. Ge et al. (85) found that fisetin

significantly attenuated the kidney damage in DKD mice,

accompanied by a noticeable reduction in NLRP3 expression in

the kidney. The protective effects of fisetin against DKD were also

confirmed in vitro using palmitate-treated HK2 cells.

Liquiritigenin and Isoliquiritigenin (ISLQ) are flavonoid

compounds extracted from Glycyrrhiza radix. Convincing

evidence has shown that liquiritigenin and ISLQ possess a
Frontiers in Immunology 09
diversity of biological properties, such as anti-inflammatory, anti-

oxidative, anti-hyperlipidemic, anti-tumor, and hepato-protective

efficacity (144–148). Zhu et al. (86) found that liquiritigenin

inhibited HG-induced extra-cellular matrix accumulation in

glomerular mesangial cells. Moreover, liquiritigenin decreased

HG-induced oxidative stress and inflammatory response via

suppressing NF-kB/NLRP3 pathways. Alzahrani et al. (87) found

that in DKD rats, ISLQ protected renal function and attenuated

inflammation and collagen formation in kidney by restoring the

Sirt-1/NF-kB balance, and downregulating NLRP3 expression.

Icariin (ICA) is obtained from Herba epimedii, and exerts quite

a few pharmacological effects, such as anti-fibrosis and anti-

inflammation (149). Ding et al. (26) confirmed that ICA increases

Sesn2-induced mitophagy to inhibit NLRP3 inflammasome

activation by the Keap1-Nrf2/HO-1 signaling pathway in DKD rats.

Calycosin is a representative isoflavone extracted from Radix

Astragali (150). Many animal models have demonstrated that

calycosin has reno-protective property (151). In diabetic SD rats,

calycosin improves the deteriorated kidney functions and

proteinuria. The possible mechanism is by regulating NF-kB/p65/
NLRP3/TXNIP pathway (88).
TABLE 2 Continued

Compounds Resource

In
Vivo/
in
Vitro

Model Signaling Pathways References

Berberine As above
In
vivo, in
vitro

STZ rats
HK-2 cells

InhibitedNLRP3 (118)

Piperine and
Cepharanthine

Black pepper and Stephania cepharantha
Hayata

In vivo STZ Rats
Both decreased p38MAPK, p-
JNK, TNF-a, TXNIP,NF-kB and
NLRP3

(119)

Solasonine Solanummelongena
In
vitro

MPC-5 Regulated Nrf2/NLRP3 (120)

Rutaecarpine Euodia rutaecarpine
In
vivo, in
vitro

Db/db mice
MPC-5

Down-regulatedVEGFR2/NLRP3 (121)

Phenylpropanoids

Schisandrin A Schisandra chinensis
In
vivo, in
vitro

STZ mice
Human renal
glomerular
endothelial
cells

Inhibited NLRP3 via AdipoR1/
AMPK-ROS/NLRP3

(122)

Ferulic acid
Tomatoes, sweet corn, rice grain,
Cimicifuga racemosa, Angelica sinensis,
and ligustici chuanxiong rhizome

In vivo STZ mice Inhibited NLRP3 (123)

Sauchinone Saururus chinensis In vivo
Human renal
mesangial cells

Inhibited NF-kB, ROS, and
NLRP3

(124)

Others

Crocin Saffron In vivo STZ rats InhibitedROS and NLRP3 (125)

Pyrroloquinoline
quinone

Fruits, vegetables, Gram-negative
bacteria, and human breast milk

In
vivo, in
vitro

STZ mice
HK-2 cells

ReducedROS and inhibited NF-
kB/NLRP3

(126)

Apocynin Picrorhiza kurroa In vivo STZ Rats InhibitedNLRP3/XIAP (127)

Diallyl trisulfide garlic In vivo STZ rats InhibitedROS/NLRP3/Caspase-1 (128)
HFD, high-fat diet; MPC-5, mouse podocyte cell-5; NEK7, never in mitosis A-related kinase 7; PAR-1, protease-activated receptor 1; STZ, streptozotocin; XIAP, X-linked inhibitor of apoptosis
protein.
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FIGURE 1

Natural products in alleviating DKD by targeting the NLRP3 inflammasome.
FIGURE 2

Mechanism of natural products alleviating DKD by targeting NLRP3 inflammasome.
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Luteolin is a natural flavonoid present in several fruits and

vegetables. It possesses many pharmacological properties, such as

anti-inflammatory, antioxidant, anti-apoptotic, and anti-cancer

effects (152–154). Yu et al. (89) revealed that luteolin could

reduce cell apoptotic in HG-treated podocyte, and significantly

inhibit the NLRP3 inflammasome activation and IL-1b production

in HG-treated MPC-5 cells, suggesting that the anti-apoptotic effect

was mostly related to NLRP3 inflammasome.

Complanatoside A (CA) is the ethanolic extract of Semen

Astragali Complanati. It exhibits several biological activities, such

as anti-oxidant and anti-apoptosis (155), and is widely used to fight

against renal diseases in China. Ren et al. (90) found that CA

mitigated the pathological lesions of glomeruli and tubular

interstitium in DKD mice, it also reduced epithelial-mesenchymal

transition (EMT) of HK-2 cells via blocking NOX4 expression and

NLRP3 inflammasome activation.

Kaempferol is a natural compound with the formula C15H10O6.

It is mainly derived from the roots and stems of sand ginger, and is

also distributed in plants such as tea, broccoli, and grapefruit. It is

reported that kaempferol has antibacterial, anti-inflammatory,

antioxidant, antitumor and many other pharmacological effects

(156, 157). Studies revealed that kaempferol improved proteinuria

and renal function in DKD rats. It also relieved renal tissue damage

and cell apoptosis. Since the expression of NLRP3, ASC, and

caspase-1 was decreased, it is probable that kaempferol can

alleviate kidney damage in DKD rats by inhibiting the NLRP3

inflammasome (91).

Carithamine is a natural flavochrome extracted from the petals of

safflower that has a variety of pharmacological properties, such as

dilating coronary arteries, protecting myocardium and brain tissue,

antioxidant, and immunoregulation (158). Gao et al. (92) found that

intraperitoneal injection of carithamine alleviated proteinuria in DKD

rats by downregulating the expression of NLRP3 and Caspase-1.
4.2 Saponins

Saponins are a class of glycosides whose aglycones are

triterpenoids or spirostanes. They are mainly found in terrestrial

higher plants but can also be found in marine organisms such as

starfish and sea cucumbers (159). Saponins are generally considered

beneficial for the cardiovascular system and diabetes (160).

Ginsenoside is the major active constituent of ginseng, which

belongs to perennial herbaceous plant and is used as a traditional

herb medicine for many years (161). Ginsenoside owns many

biological activities, including anti-inflammation, anti-tumor, and

anti-diabetes (162–164). Ginsenoside Rg1 and Ginsenoside Rg5 are

the representative monomers of ginsenoside (165, 166). Wang et al.

(93) found that ginsenoside Rg1 inhibited pyroptosis in hyperlipid-

induced podocytes, and this effect was also observed in the kidneys

of rats with DKD. The possible mechanism was by down-regulating

the mTOR/NF-kB/NLRP3 pathway. Zhu et al. (94) demonstrated

that ginsenoside Rg5 reduced oxidative stress and the activation of

NLRP3 inflammasome, thereby mitigated kidney damage in DKD

mice. Ginsenoside compound K(CK) is the final metabolite of diol-

type ginsenosides such as Rb1 and Rb2 by the action of intestinal
Frontiers in Immunology 11
flora (167). Song et al. (95) proved that CK significantly improved

renal function and urinary protein excretion of DKD mice, and the

proliferation of glomerular mesangial matrix was also decreased.

Moreover, the protective effect of CK is possibly due to suppression

of NF-kB/p38 and ROS/NLRP3 signaling pathway.

Sarsasapogenin (Sar) is a steroidal sapogenin isolated from

Anemarrhena asphodeloides Bunge. It is believed to have

antiplatelet, antithrombotic, and anti-inflammatory propertis

(168–171). Tang et al. (96) found that Sar significantly improved

kidney function in DKD rats, and renal histopathology showed that

it reduced mesangial cell proliferation, inhibited the activation of

NLRP3 inflammasome and NF-kB. Liu et al. (97) also found that

Sar can markedly ameliorate DKD in rats via ameliorating the

NLRP3 inflammasome activation and AGEs–receptor for AGE

(RAGE) interaction.

Astragaloside IV (AS−IV) is the primary active ingredient in

Astragalus membranaceus, a traditional herb medicine. It has been

identified to have anti-inflammatory and anti-oxidant effects and is

widely used to deal with diabetes and cardiovascular diseases (172,

173). Feng et al. (98) demonstrated that AS-IV blocked NLRP3

inflammasome activation, and improved renal function and

podocytes damage in db/db mice, exerting a reno-protective

effect. Zhao et al. (99) observed that AS−IV reduced NLRP3

expression in HG exposed mouse glomerular mesangial cells.

Salidroside (SAL) is the predominant component of Rhodiola

rosea, an herbal plant with a wide range of pharmacological effects,

including anti-altitude sickness, anti-oxidant, and anti-diabetes

(174–176). SAL also exerts beneficial effects on DKD (177). Wang

et al. (100) showed that SAL inhibited TXNIP/NLRP3 signaling

pathway in rat glomerular mesangial cells.

Notoginsenoside Fc (Fc) is a novel saponin extracted from

Panax notoginseng with excellent anti-platelet aggregation ability

(178). It is reported that Fc reduced albuminuria, alleviated renal

failure, and relieved podocyte injury in db/db mice by inhibiting the

NLRP3 inflammasomes (101).
4.3 Phenolics

Phenolics are a class of chemicals that contain aromatic rings

and hydroxyl groups. They are widely distributed in nature,

especially in fruits, vegetables, cereals, flowers, spices, and teas

(179). In the past decades, the potential value of phenolics in

healing DKD has been explored.

Tetrahydroxy stilbene glucoside (TSG) is derived from Polygoni

Multiflori Radix. TSG has been shown to reduce blood cholesterol,

protect the liver, possess antioxidant abilities, and exhibit anti-

atherosclerotic properties (180). Li et al. (102) demonstrated that

TSG prevented podocytes apoptosis in HG condition, and it was

partly through the blockade of NLRP3 inflammasome.

Gastrodin is a natural compound isolated from the dried root of

Gastrodia elata (181). It has been found to exert anti-inflammatory,

antioxidative, and neuroprotective effects (182). Huang et al. (103)

proved that gastrodin halted the activation of NLRP3 inflammasome

in HG-treated podocytes, which reduced renal inflammation and

oxidative stress.
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Epigallocatechin-3-gallate (EGCG) is a polyphenolic

component found in tea leaves with strong anti-inflammatory

property. Yang et al. (104) confirmed that EGCG can ameliorate

renal dysfunction and renal histopathological injury in DKD rats.

Furthermore, the reno-protective effects of EGCG are mainly

related to the suppression of endoplasmic reticulum stress-

mediated NLRP3 inflammasome overactivation.

Resveratrol is a polyphenolic compound mainly derived from

plants such as grapes, peanuts, mulberries, and Polygonum

cuspidatum (183). It is reported to be a strong scavenger of ROS

(184), and has the ability to ameliorate hyperglycemia mediated

renal dysfunction (185). Xiao et al. (105) revealed that in diabetic

models with acute kidney injury, the primary mechanism is

attributed to TXNIP/NLRP3 activation stimulated by

oxidative stress.

Piceatannol is a polyphenol compound sharing a similar

chemical structure to resveratrol. It is mainly found in grapes,

sugar cane, white tea, rhubarb, passion fruit and blueberries (186).

Piceatannol is considered to have anticancer, anti-atherogenic, anti-

oxidative, anti-inflammatory, anti-microbial and estrogenic

activities, and is widely used in the treatment of heart disease,

leukemia and cancer (187–190). Yao et al. found that piceatannol

can inhibit apoptosis, inflammation and oxidative stress of

podocytes under HG condition. The possible mechanism is

that it inhibits the activation of NLRP3 inflammation by

promoting Nrf2 nuclear translocation and up-regulating Nrf2

expression (106).

Curcumin, a chief component of Curcuma longa, has been

consumed by humans as a spice. It exhibits powerful anti-

inflammatory and anti-cancer properties (191). The reno-

protective effect of curcumin in DKD rats has been verified (192,

193). Lu et al. (107) found that curcumin inhibited the activation of

NLRP3 inflammasome in db/db mice, similar to that in HG-

induced HK-2 cells, resulting in alleviation of DKD.

Punicalagin (PU) is the main component of pomegranate

polyphenols and is found abundantly in pomegranate, myrobalan,

leaves of yellow wood, and tropical almond (194, 195). PU exhibits

strong antioxidative, anti-inflammatory, and antineoplastic

properties (196, 197). An et al. (108) proved that PU reduced

kidney damage in high-fat diet (HFD)/streptozotocin (STZ) mice,

possibly by downregulating the NOX4/TXNIP/NLRP3 pathway.

Purple Sweet Potato Color (PSPC) is a natural flavonoid leached

from the rhizome of purple sweet potatoes. It has strong anti-

oxidant and anti-inflammatory abilities that can protect the brain,

liver, and kidney (198–200). Zheng et al. (109) found that PSPC

exert renal protection in HFD-treated mice by inhibiting ROS-

Triggered NRLP3 inflammation.

Grape seed proanthocyanidin is a polyphenol compound

extracted from grape seeds, which is one of the most efficient

antioxidants found to date. It has anti-radiation, anti-cancer, anti-

atherosclerosis and anti-diabetic effects (201–203). Qiu et al. (110)

found that in DKD rats with ischemia-reperfusion injury,

intraperitoneal injection of grape seed proanthocyanidin could

improve renal function and alleviate renal oxidative stress,

possibly by inhibiting NLRP3 gene expression.
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4.4 Terpenoids

Terpenoids are olefin compounds with an isoprene unit (C5

unit) as the basic structural unit. They exist widely in nature and are

the main components of some plant fragrances, resins and

pigments. Terpenoids have diverse physicochemical properties

and biological activities, and exhibit promising efficacy in the

management of DKD (204).

Pristimerin (Pri) is a quinonoid triterpene isolated from

Celastraceae and Hippocrateaceae (205). It shows excellent anti-

bacterial, anti-fungal, anti-inflammatory, and anti-tumor abilities

(206, 207), and has been widely used in treating colitis, sepsis, and

neuroinflammation (208, 209). Zhao et al. (111) found

that intraperitoneal injection of Pri in an HFD-induced

diabetic mouse model reversed metabolic disorders by restraining

the activation of the NLRP3 inflammasome. They further

illustrated that this was associated with disturbing the interaction

between never in mitosis A-related kinase 7 (NEK7) and NLRP3

in vitro.

Geniposide (GE) and genipin-1-b-d-gentiobioside (GG) are

active ingredients extracted from the fruit of Gardenia

jasminoides Ellis. Many researches on GE have proved that it can

lower blood glucose and lose weight, it also has anti-inflammatory,

anti-tumor, neuroprotective, and myocardial protective effects

(210–212). Hu et al. (213) revealed that GE can alleviated the

development of STZ-induced DKD. Li et al. (112) confirmed that

GE down-regulated the expression of NLRP3, ASC, IL-1, and

Caspase-1b in DKD mice, possibly through down-regulation of

the AMPK/SIRT1/NF-kB signaling pathway. GG has a chemical

structure similar to that of GE, except for one more glycosidic

group. Li et al. (63) suggested that GG promoted podocyte survival

and attenuated renal damage in DKD mice, with the reno-

protective effect related to the AMPK/SIRT1/NF-kB/
NLRP3 pathway.

Swietenine (Swi) is derived from the Swietenia macrophylla

King plant and possesses outstanding anti-bacterial, anti-

inflammatory, anti-oxidant, anti-tumor, and anti-diabetic

properties (214–216). Duan et al. (113) found that Swi

remarkably improved renal funct ion and suppressed

inflammatory response in DKD mice. The signal pathway that

may be involved is NF-kB/NLRP3/Caspase-1 axis.

Artesunate (ART) is a major derivative of artemisinin isolated

from Artemisia annua (217). Studies have revealed that ART

possesses a wide range of biological activities, including anti-

malarial, anti-oxidative, anti-inflammatory, and anti-tumor effects

(218–220). Sun et al. (114) demonstrated that ART inhibited TLR4/

NF-kB/NLRP3 pathway, thereby ameliorating glomerular

mesangial cell injury under HG conditions.

Catalpol (Cat) is an iridoid glycoside rich in the roots of

Rehmannia glutinosa, exhibiting potent anti-oxidant, anti-tumor,

anti-inflammatory, and anti-diabetic effects (221, 222). There are

accumulating evidence suggesting that Cat can be used to treat

DKD (223). Chen et al. (115) revealed that Cat effectively attenuated

kidney damage in DKD mice, it can reduce oxide stress and

inflammation by targeting AMPK/SIRT1/NF-kB pathway.
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Andrographolide is a labdane diterpenoid isolated from

Andrographis paniculata Nees with numerous biological activities,

including anti-inflammatory, anti-tumor, and anti-diabetic

capacities (224). Li et al. (225) found that andrographolide

attenuated DKD progression by inhibiting oxidative stress and

inflammation in mesangial cells. Moreover, they found that

andrographolide significantly reduced HG-induced apoptosis,

EMT, and fibrosis via blocking NLRP3 inflammasome

activation (116).

Triptolide (TP) is the main active ingredient isolated from

Tripterygium wilfordii Hook F. It exhibits excellent anti-

inflammatory and anti-apoptosis abilities, as well as anti-cancer

and anti-diabetic activities (226–228). Wu et al. (117) discovered

that TP can block the activation of NLRP3 inflammasome and

alleviate EMT in podocytes under HG condition, which may be one

of the mechanisms by which TP alleviates podocytes injury in DKD.
4.5 Alkaloids

Alkaloids are a class of nitrogen-containing basic organic

compounds, which mainly exist in plant. Alkaloids have abundant

medicinal value, possessing anti-arrhythmia, anti-hypertensive,

analgesic, anti-inflammatory, and anti-cancer properties (229, 230).

Berberine (BBR), also known as berberine hydrochloride or

berberine sulphate, is an alkaloid derived from Coptis. It shows

anti-inflammatory, anti-oxidant, anti-diabetic, and hypolipidemic

activities (231). It is reported that BBR relieves DKD by inhibiting

mesangial cell proliferation and ameliorating tubulointerstitial

fibrosis (232, 233). Ding et al. (28) revealed that BBR can reduce

oxidative stress and antagonize inflammation by regulating Nrf2/

NLRP3 pathway. Ma et al. (118) also confirmed that BBR could

inhibit HG induced EMT and renal interstitial fibrosis by down-

regulating the NLRP3 inflammasome in HK-2 cells.

Piperine (Pip) is a bioactive alkaloid mainly present in black

pepper. It has many pharmaceutical effects including promoting

digestion, lowering lipid peroxidation, as well as anti-inflammatory,

anti-cancer, and antioxidant (234–236). Cepharanthine (CEP) is a

natural alkaloid extracted from Stephania cepharantha Hayata, and

possesses anti-oxidative, anti-inflammatory, anti-proliferative, anti-

metastatic and anti-atherosclerosis properties (237, 238). Samra

et al. (119) found that CEP, Pip or their combination noticeably

improves renal function and proteinuria in diabetic rats,

accompanied by down-regulation of NF-kB and NLRP3.

Solasonine (SS) is a natural glycoalkaloid isolated from

Solanummelongena. It has been proved to possess anti‐

inflammatory, anti-cancer, and neuroprotective properties (239–

241). Zhang et al. (120) revealed that SS alleviated cell apoptosis,

reduced pyroptosis and oxidative injury in podocytes induced by

HG. The possible mechanism may be through regulating the Nrf2/

NLRP3 signaling pathway.

Rutaecarpine is an important active component of Euodia

rutaecarpine (242). Numerous studies have shown that

rutaecarpine has anti-inflammatory, anti-atherosclerosis, and anti-

cancer pharmacological effects (243–245). Hu et al. (121) found that

rutaecarpine effectively alleviated renal damage in db/db mice,
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along with the reduced expression of NLRP3/ASC/IL-18/IL-1b in

the kidney. In vitro studies also confirmed that rutaecarpine can

inhibit NLRP3/ASC/IL-18/IL-1b in MPC-5 and reduce

programmed cell necrosis, which suggested that rutaecarpine may

be protective to DKD through NLRP3-dependent pathway.
4.6 Phenylpropanoids

Phenylpropanoids are one of the main phenolic acids widely

distribution in plants, with the C6-C3 carbon skeleton as core

structure (246). They are mainly found in fruits, vegetables, cereal

grains, beverages, spices and herbs. Phenylpropanoids are known to

have multifaceted effects, including antimicrobial, antioxidant, anti-

inflammatory, anti-diabetic, anticancer activities (247, 248). Their

therapeutic effects on DKD are also being explored.

Schisandra chinensis is the dried ripe fruits of Schisandra

chinensis (Turcz.) Baill. It is both a health food and a traditional

herb medicine (249, 250).. Schisandrin A is the main lignan derived

from Schisandra chinensis, which exerts anti-oxidative, anti-

apoptosis, and sedative abilities (251, 252). Wang et al. (122)

revealed that schisandrin A decreased ROS overproduction and

inhibited inflammation in DKD mice. It also reduced HG-induced

ferroptosis and ROS-mediated pyroptosis by mitochondrial damage

in human renal glomerular endothelial cells. The expression of

TXNIP and NLRP3 was down-regulated by Schisandrin A,

suggesting that Schisandrin A attenuated DKD by suppressing

TXNIP/NLRP3 signaling pathway.

Ferulic acid (FA) is a natural derivative of caffeic acid

commonly found in vegetables, especially in tomatoes, corns, and

rices. It is also the main active ingredient of many traditional herbal

medicines, involving Cimicifuga racemosa, Angelica sinensis, and

ligustici chuanxiong rhizome (253). FA exhibits a wide range of

therapeutic effects, including scavenging free radicals, antioxidant

properties, and anti-cancer, anti-inflammatory, anti-fibrotic, and

reno-protective effects against cardiovascular diseases,

neurodegenerative diseases, and diabetes (253–256). It is also

revealed that FA has reno-protective effects in DKD rats by

antioxidation, anti-inflammation and anti-fibrosis (257–259). Ma

et al. (123) further proved that FA reduced the expressions of p62,

NLRP3 and IL-1b in renal tissues of DKD mice and

suppressed inflammation.

Sauchinone is a biologically active lignin extracted from

Saururus chinensis. Studies have shown that it has powerful anti-

oxidant, anti-inflammatory, anti-apoptosis, anti-cancer and anti-

obesity abilities (260–263). Yoon et al. (124) found that sauchinone

improved angiotensin II-induced mesangial inflammation by

inhibiting the NLRP3 inflammasome.
4.7 Others

Crocin is a carotenoid compound mainly exist in saffron, which

belongs to the iris family, a perennial stemless herb. Previous studies

have shown that crocin has a variety of pharmacological effects,

including the inhibition of cancer growth, inflammatory responses,
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apoptosis, and oxidative stress (264–268). Crocin also has reno-

protective effects (269). Zhang et al. (125) demonstrated that Crocin

improved diabetic kidney dysfunction and renal fibrosis in STZ rat.

Additionally, Crocin reduced excessive ROS production and

decreased the synthesis of pro-inflammatory factors by inhibiting

the activation of the NLRP3 inflammasome.

Pyrroloquinoline quinone (PQQ) is the third coenzyme of

oxidoreductase discovered so far, which exists widely in plants,

bacteria, animals, and human (270). The confirmed biological

abilities of PQQ include antioxidant, neuro-protection, and

immunoregulation (271–273). Qu et al. (126) demonstrated that

PQQ down-regulated the expression of NLRP3, caspase-1, IL-1b,
and attenuated renal fibrosis by alleviating mitochondrial

dysfunction, reducing ROS production in STZ mice and HG

induced HK-2 cells.

Apocynin is a compound isolated from the root of the medicinal

herb Picrorhiza kurroa (274, 275). It is used as an antioxidant due to

the ability to inhibit NADPH oxidase activity and reduce ROS

production (276, 277). Xin et al. (127) found that in rats with DKD,

apocynin improved renal function and attenuated renal fibrosis.

This effect was likely due to the down-regulation of the NLRP3/X-

linked inhibitor of apoptosis protein (XIAP) signaling pathway.

Diallyl trisulfide (DATS), one of the main allyl sulfur

compounds exist in garlic, possesses considerable anti-oxidant,

anti-inflammatory, anti-fibrosis, and anti-fungal activities (278–

280). Shen et al. (128) confirmed that DATS alleviated renal

damage in DKD rats, and the expressions of ROS, NLRP3, ASC,

Caspase-1, IL-1b and IL-18 were decreased, which suggested that

DATS may be effective in treating DKD by inhibiting ROS/NLRP3/

Caspase-1 pathway.
5 Conclusion

Inflammation plays a crucial role in the pathogenesis of DKD,

and the NLRP3 inflammasome is regarded as a key regulator of

inflammation in DKD. Various signaling pathways are involved in

the activation of NLRP3 inflammasome, including NF-kB, ROS/
TXNIP, ncRNAs. However, specific mechanisms and crosstalk

between them require further investigation. Many natural
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products exhibit excellent anti-inflammatory properties, and may

alleviate DKD by inhibiting the activation of NLRP3

inflammasome. However, most studies are mainly limited to in

vitro and animal experiments. With improved understanding of the

regulatory network of NLRP3 inflammasome, and better

understanding of the pharmacological mechanism of natural

products, more clinical trials on the use of natural products in the

treatment of DKD are expected in the future.
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