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Monocytes are circulating leukocytes of innate immunity derived from the bone

marrow that interact with endothelial cells under physiological or

pathophysiological conditions to orchestrate inflammation, angiogenesis, or

tissue remodeling. Monocytes are attracted by chemokines and specific

receptors to precise areas in vessels or tissues and transdifferentiate into

macrophages with tissue damage or infection. Adherent monocytes and

infiltrated monocyte-derived macrophages locally release a myriad of

cytokines, vasoactive agents, matrix metalloproteinases, and growth factors to

induce vascular and tissue remodeling or for propagation of inflammatory

responses. Infi ltrated macrophages cooperate with tissue-resident

macrophages during all the phases of tissue injury, repair, and regeneration.

Substances released by infiltrated and resident macrophages serve not only to

coordinate vessel and tissue growth but cellular interactions as well by attracting

more circulating monocytes (e.g. MCP-1) and stimulating nearby endothelial

cells (e.g. TNF-a) to expose monocyte adhesion molecules. Prolonged tissue

accumulation and activation of infiltrated monocytes may result in alterations in

extracellular matrix turnover, tissue functions, and vascular leakage. In this

review, we highlight the link between interactions of infiltrating monocytes and

endothelial cells to regulate vascular and tissue remodeling with a special focus

on how these interactions contribute to pathophysiological conditions such as

cardiovascular and chronic liver diseases.

KEYWORDS

monocyte, macrophage, endothelial cell, angiogenesis, tumor, cardiovascular diseases,
liver diseases.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1196033/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1196033/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1196033/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1196033&domain=pdf&date_stamp=2023-07-07
mailto:pmelgar@ub.edu
https://doi.org/10.3389/fimmu.2023.1196033
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1196033
https://www.frontiersin.org/journals/immunology


Medrano-Bosch et al. 10.3389/fimmu.2023.1196033
1 Introduction

Monocytes and monocyte-derived macrophages (MDM) are

plastic cells from the innate immune system that exhibit essential

and distinct roles in homeostasis, immune response, inflammation

and tissue repair (1). They contribute to a wide spectrum of diseases

and are therefore attractive therapeutic targets (2–4). Potential

therapeutic interventions involving monocyte or MDM

modulation require an in-depth understanding of the

mechanisms that govern their ontogeny, tissue infiltration,

activation, and phenotype adaptation to the microenvironment.

Monocytes can transdifferentiate to macrophages under extreme

circumstances but generally do not significantly contribute to the

majority of tissue macrophage populations in physiological

conditions or in some particular inflammatory disorders (1).

Most tissue macrophages are derived from embryonic precursors,

established before birth, and maintained by self-renewal in adults

(5, 6). Monocytes comprise ~4% of mice and 10% of humans blood

nucleated cells with substantial reservoirs in the spleen and lungs

that can be rapidly recruited to damaged tissues (7, 8). Circulating

monocytes display a characteristic short half-life of around 20 hours

(6), which is prolonged when they do transdifferentiate into

macrophages to assist in establishing tissue-resident mononuclear

phagocyte population (9). Indeed, monocytes appear as short-lived

plastic cells meant to protect against pathogens or to harmonize

vascular and tissue remodeling upon recruitment driven by

chemokines and monocyte adhesion molecules (10). Therefore,

monocytes are dynamic cellular components that can complete

the functions of tissue-resident mononuclear phagocytes on

demand. The greatest number of tissue-resident macrophages are

configured as hepatic Kupffer cells (KCs). KCs are the most

abundant tissue macrophages in mammalians, representing the

80–90% of total tissue macrophages (11). In physiological

conditions, there is only a small number of MDM in the hepatic

portal space (12). Mouse MDM can be distinguished from KCs by

their differential expression on cell surface markers such as CD11b,

F4/80, Ly6C, and macrophage colony-stimulating factor 1 receptor

(CSF1R) (13). Human MDM are typically identified as CD14+, CC-

chemokine receptor 2 (CCR2)+ cells (13). The liver is the first line

defense against foreign molecules in particular those ingested. It is a

dynamic filter and the core of body metabolism with a unique

capacity among organs to regenerate to a physiological size even

after two-thirds of its mass has been removed. This effect

appreciated even in Greek mythology is the hallmark of health

and as with Tityus and Prometheus regeneration occurs with partial

hepatectomy. Excessive injury or significant disease can hamper

such repair. Here, we discuss how monocyte-endothelial cell

interactions and MDM participate in the regulation of

angiogenesis and regeneration in liver diseases.

Injured cells release specific signals identified as damage-

associated molecular patterns (DAMPs) that activate the immune

system similarly to pathogen-associated molecular patterns

(PAMPs), small molecular motifs released from bacteria or

viruses (14). These endogenous molecules (calcium-binding

proteins, structural and extracellular matrix (ECM) proteins, etc.)
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exhibit a wide array of cellular functions in homeostasis and as

injury signals in a complex integrated network checking and

balancing tissue repair and further damage. Tissue-specific

macrophage subpopulations sense these signals and trigger

endothelial cells (ECs), monocytes, and other immune cells to

contain injury and initiate an immune response. Infiltrated MDM

generally display a pro-inflammatory phenotype (M1-like)

involving secretion of cytokines such as interleukin 1 (IL-1) and

tumor necrosis factor (TNF-a) for inflammation propagation, and

IL-12 for T helper 1 (TH1) lymphocyte activation and induction of

the adaptive immune response (15). M1-like macrophages also

release reactive oxygen and nitrogen species aimed at elimination

of possible biological aggressors. However, all these cocktails of

cytokines and free radicals also produce substantial collateral tissue

damage to the host during the reaction against the insult. To

prevent harmful effects to the tissue, regulatory mechanisms

activate and promote macrophage apoptosis or polarization to a

M2-like anti-inflammatory and pro-regenerative phenotype that

facilitates wound healing (16). Indeed, damaged epithelial cells

release alarmins, which induce IL-4 and IL-13 secretion by T-

helper lymphocytes and other immune cells. Both IL-4 and IL-13

are major regulators of macrophage polarization to an anti-

inflammatory M2-like phenotype (15). M2-like macrophages

release vascular or fibroproliferative growth factors such as

vascular endothelial growth factors (VEGFs) or transforming

growth factor (TGFb1), respectively (17). VEGF-A, for example,

stimulates angiogenesis and vascular leakage (18). TGFb1 induces

fibroblast differentiation to myofibroblasts or phenomena of

epithelial or endothelial to mesenchymal transitions (19, 20) that

promote the synthesis of ECM components or tissue inhibitors of

metalloproteinases (TIMP). The balance of M1/M2 profiles on

MDM is crucial to understand prognostic in chronic diseases and

especially in the context of liver cirrhosis (21) or in atherosclerosis

and cardiovascular disease (22). In cardiovascular diseases, M1-like

macrophages characterize progression lesions while regressing

plaques are enriched in M2 macrophages (22). However,

macrophage heterogeneity in atherosclerotic plaques may have

only a partial semblance to M1-like and M2-like macrophage

phenotypes. Indeed, it is yet necessary to identify gene-expression

profiles and transcriptional pathways that underlie the

distinctiveness and diversity of MDM in cardiovascular diseases.
2 Monocyte-endothelial cell
interactions: molecular pathways

Monocytes interact with ECs under physiological or

pathophysiological conditions to orchestrate inflammation,

angiogenesis, or tissue remodeling (23). Indeed, the migration of

monocytes from the circulation to peripheral organs during an

inflammatory response depends on their interaction with ECs.

These interactions are orchestrated and controlled by

chemoattractant and adhesion molecules that allow monocyte

trafficking (24). The initial rolling of monocytes along the

activated endothelium results in a firm adhesion that eventually
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https://doi.org/10.3389/fimmu.2023.1196033
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Medrano-Bosch et al. 10.3389/fimmu.2023.1196033
culminates with their transmigration at inflammation sites where

they transdifferentiate into macrophages or dendritic cells (23).
2.1 Monocyte-attracting chemokines

Circulating monocytes have been classified into different subsets

based on the chemokine receptors they express and the presence of

specific surface molecules (25). In humans, monocytes are classified

according to the presence of CD14 and CD16 on their surface (26,

27). CD14++CD16– are known as classical monocytes, which are the

most abundant in the bloodstream. Alternatively, CD14++CD16+ are

referred as intermediate monocytes and, CD14++CD16++, as non-

classical patrolling monocytes. However, in mice, only two subsets

have been identified (28). One of these populations corresponds to

CD14+ CD62 ligand (CD62L)+ CC-chemokine receptor 2 (CCR2)+,

which is known as LY6Chi or inflammatory monocytes (23, 29). The

second population is similar to CD16+CCR2–monocytes in humans,

and it is known as LY6Clow or patrolling monocytes, that express

high levels of CX3C-chemokine receptor 1 (CX3CR1) and low levels

of CCR2 and LY6C (24).

Recruitment of LY6Chi monocytes from the bone marrow is

mediated by the binding of CC-chemokine ligand 2 (CCL2) (30),

also known as monocyte chemoattractant protein-1 (MCP-1), and

CCL7 (or MCP-3) to CCR2 (31, 32). Most cells express CCL2 in

response to pro-inflammatory cytokines in infections (33). Thus,

after many infections, circulating levels of CCL2 increase in both the

serum and inflamed tissues, where CCL2 binds to CCR2 that is

expressed on certain cell types (23). CCL7 expression is also
Frontiers in Immunology 03
stimulated by infections and contributes to LY6Chi monocyte

recruitment (23). Both CCL2 and CCL7 have shown important

roles on monocyte recruitment, although the mechanism of action

is still unclear (31, 32). Conversely, recruitment and survival of

LY6Clow monocytes is mediated by the binding of CX3C-

chemokine ligand 1 (CX3CL1), also known as fractalkine (FKN),

to CX3CR1 (34).

Monocytes also express other CC-chemokine receptors, such as

CCR1 and CCR5 (35) that bind to various cytokines including

CCL3 (also known as MIP1a) and CCL5 (also denominated

RANTES) (29). Both receptors display specialized roles in

monocyte recruitment. CCR1 mediates monocyte arrest in fluid

shear stress generated by blood flow. CCR5 is involved in monocyte

spreading. They both contribute to transendothelial chemotaxis

towards CCL5 gradients (36). However, none of these receptors

have shown redundancy in cell recruitment during inflammation,

which has implications in the development and progression of

many diseases, including atherosclerosis and rheumatoid arthritis

(29, 37, 38). This may be a consequence of the wide spectrum of

cells expressing these chemokine receptors (39), so determining the

specific role they play in monocyte recruitment is complex (23).

Other chemokines have also been suggested to play a role on

monocyte recruitment (Table 1). Some examples are CCR6 (42),

CCR7 (43), CCR8 (44), and CXC-chemokine receptor 2 (CXCR2)

(45). Circulating monocytes express low levels of CCR6 and do not

respond to CCL20, which explains that CCR6 does not display a

significant role on the extravasation of monocytes from the

circulation to the tissues, but it does on the migration or function

of monocytes in inflammation (46, 47).
TABLE 1 Chemokines and chemokine receptors involving monocytes and endothelial cells.

Receptor Chemokine ligands Receptor expressed on Ligands mostly expressed/
secreted by

Reference

CCR1 CCL3 (MIP-1a), CCL5 (RANTES), CCL7
(MCP-3), CCL14 (HCC1)

Monocytes, T cells, dendritic cells Monocytes macrophages, endothelial cells, T
cells, dendritic cells, neutrophils, epithelial
cells, fibroblasts

(40, 41)

CCR2 CCL2 (MCP-1), CCL8 (MCP-2), CCL7
(MCP-3), CCL13 (MCP-4), CCL16 (HCC4)

Monocytes, endothelial cells, dendritic
cells

Monocytes, macrophages, endothelial cells, T
cells, epithelial cells, fibroblasts

(40, 41)

CCR5 CCL3 (MIP-1a), CCL4 (MIP-1b), CCL5
(RANTES), CCL11 (eotaxin), CCL14
(HCC1), CCL16 (HCC4)

Monocytes, macrophages, endothelial
cells, T cells, dendritic cells

Monocytes, macrophages, endothelial cells, T
cells, epithelial cells, leukocytes

(40, 41)

CCR8 CCL1 (I309) Monocytes, T cells, dendritic cells Monocytes, T cells, mast cells (40, 41)

CXCR1 CXCL8 (IL-8), CXCL6 (GCP2) Monocytes, neutrophils Macrophages, endothelial cells, T cells,
epithelial cells, fibroblasts

(40, 41)

CXCR2 CXCL8 (IL-8), CXCL1 (GROa), CXCL2
(GROb), CXCL3 (GROg), CXCL5 (ENA-78),
CXCL6 (GcP2)

Monocytes, microvascular endothelial
cells, neutrophils

Monocytes, macrophages, endothelial cells, T
cells, epithelial cells, fibroblasts, mast cells

(40, 41)

CXCR3-B CXCL4 (PF4), CXCL9 (MIG), CXCL10 (IP-
10), CXCL11 (I-TAC)

Microvascular endothelial cells, T cells,
natural killer cells

Monocytes, endothelial cells, T cells,
neutrophils, epithelial cells, fibroblasts, cancer
cells

(40, 41)

CX3CR1 CX3CL1 (fractalkine) Monocytes, macrophages, T cells,
dendritic cells, smooth-muscle cells,
natural killer cells

Endothelial cells, T cells (40, 41)
f
rontiersin.org

https://doi.org/10.3389/fimmu.2023.1196033
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Medrano-Bosch et al. 10.3389/fimmu.2023.1196033
2.2 Monocyte-attracting
adhesion molecules

Monocyte migration to inflammatory sites is a multistep

process involving many molecules (Table 2). The initial tethering

and rolling of monocytes along the inflamed endothelium are

mediated by selectins. Selectins are cell-surface proteins that

interact with glycoprotein ligands to allow monocytes to bind

weakly and reversibly to cytokine-activated ECs (24, 62). The

selectins involved in this process are L-selectin (CD62L), P-

selectin (CD62P) and E-selectin (CD62E). L-selectin, expressed

on circulating monocytes, interacts with specific fucosylated

sialoglycoproteins expressed on lymph node venules and inflamed

or injured vascular endothelium (48, 49, 63). P-selectin glycoprotein

ligand-1 (PSGL-1), P-selectin glycoprotein ligand-1 (PSGL-1),

expressed on monocytes, interacts with P-selectinand E-selectin

expressed on inflamed endothelium (50). Then, PSGL-1 can also

interact with circulating monocytes expressing L-selectin and

amplify the monocyte recruitment (52). This initial adhesion

mediated by selectins reduces the rolling velocity of monocytes

and allows the cells to interact with chemokines that are bound to

inflamed ECs (64). ECs are activated by inflammatory cytokines

such as TNF-a or IL-1b. This activation induces the expression of

adhesion molecules such as E- and P-selectin, intercellular adhesion

molecule 1 (ICAM1/CD54) and vascular cell-adhesion molecule 1

(VCAM1/CD106) that participate in monocyte migration (65).

Chemokines can bind to transmembrane heparan sulphate

proteoglycans on the luminal surface of vascular ECs to be
Frontiers in Immunology 04
presented to monocytes (66). The main proteoglycans identified

as chemokine-binders include CD44, syndecan 1 and syndecan 4

(which bind CCL5) and syndecan 2 (which interacts with CXCL8)

(66). Chemokines bind to G-protein-coupled receptors (GPCRs) of

monocytes and induce inside-out signals that result in integrin

activation. GPCRs activate specific Gi and Gq heterotrimeric

proteins and their downstream effectors. Two key guanosine

triphosphatases (GTPases), RhoA and Rap1, have been implicated

in chemokine activation of integrins (67, 68). Rap1 is a small

GTPase of the RAS family that cycles between an inactive GDP-

bound form and an active GTP-bound form (54). Activated Rap1

binds RAPL, and the complex activates the integrin by binding to

the alpha-chain of integrin (69). Rap1 also binds to Rap-interacting

adapter molecule (RIAM), which recruits talin (70). Talin is a

cytoskeletal protein that binds to the beta-chain of the integrins,

thereby triggering integrin activation (71, 72). Integrin activation

induces conformational changes initiated at the alpha and beta

subunit cytoplasmic tails and transmitted to their extracellular

domain (73). This inside-out signaling activates integrins such as

lymphocyte function-associated antigen 1 (LFA1; also known as

aLb2-integrin and CD11a–CD18) and very late antigen 4 (VLA4;

also known as a4b1-integrin, and CD49d–CD29). Activated b2 and
a4-integrins ensure the arrest of monocytes and the formation of

firm adhesions by binding ICAM1 and VCAM1 respectively, which

are expressed by inflamed endothelial cells (54) [Table 2]. Other

integrins such as the macrophage receptor 1 (Mac1; also known as

aMb2-integrin and CD11b–CD18) and aXb2-integrin are also

activated via this signaling pathway (56).
TABLE 2 Monocyte adhesion molecules involved in transendothelial migration.

Adhesion molecule Ligands Ligand expressed on Function Reference

L-selectin (CD62L) Fucosylated sialoglycoproteins Endothelial cell Rolling (48, 49)

PSGL-1 P-selectin (CD62P)
E-selectin (CD62E)

Endothelial cell Rolling (50, 51)

PSGL-1 L-selectin Monocyte Monocyte recruitment (52, 53)

LFA1
(aLb2-integrin or CD11a–CD18)

ICAM1/CD54 Endothelial cell Arrest (24, 54, 55)

VLA4
(a4b1-integrin or CD49d–CD29

VCAM1/CD106 Endothelial cell Arrest (24, 54, 55)

Mac1
(aMb2-integrin or CD11b–CD18

ICAM1/CD54
among others

Endothelial cell Arrest (56)

LFA1
(aLb2-integrin or CD11a–CD18)

JAM-A Endothelial cell Transmigration (57)

VLA4
(a4b1-integrin or CD49d–CD29

JAM-B Endothelial cell Transmigration (58)

Mac1
(aMb2-integrin or CD11b–CD18

JAM-C Endothelial cell Transmigration (59)

aXb2-integrin (CD11c–CD18) JAM-C Endothelial cell Transmigration (59)

PECAM1
(CD31)

PECAM1 Endothelial cell Transmigration (60)

CD99 CD99 Endothelial cell Transmigration (61)
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2.3 Monocyte transmigration

The firm adhesion of a monocyte to the vascular endothelium

results in a morphological and phenotypical change known as

polarization (Figure 1) (74). Polarization involves the formation

of two different regions: the lamellipodia at the leading edge and the

uropod at the tail of the monocyte (74). Polarization involves

reorganization of the cytoskeletal proteins, intracellular regulatory

molecules, chemoattractant receptors and integrins (75). F-actin

changes from radially symmetric around the cell to accumulated in

the leading edge (76). Chemokine receptors redistribute to the

leading edge, while other adhesion molecules, such as CD44,

accumulate at the uropod (75). In addition, high affinity integrins

mobilize to the leading edge and low affinity integrins to the uropod

(54). Attachment of integrins at the leading edge and detachment at

the uropod occurs during migration (77). Several signaling

pathways contribute to polarization including Rho family

GTPases, GTPase Rap1, protein kinases, and lipid kinases (75).

GTPase Rap1 has also been described as a key molecule in integrin

activation and redistribution during leukocyte polarization (54).

RAP1 and RAPL control the polarized recruitment of integrin

clusters to the lamellipodium (69). RHOA, another member of

the RAS superfamily, also participates in integrin clustering by

activating RHO-associated coiled-coil containing protein kinase 1
Frontiers in Immunology 05
(ROCK1), which phosphorylates the actin cytoskeleton (24). GPCR

downstream signals also activate PI3K, which participates in

monocyte polarization via activation of the atypical protein

kinase C-z (PKC-z) and formation of the polarity complex

(consisting of partitioning defective 6 (PAR6)/PKC-z/lethal giant
larvae, LGL). PKC-z signaling facilitates integrin lateral mobility

(after integrin is in its high affinity form) due to the mobilization of

new lipid membrane to the leading edge (78). The polarized

recruitment of integrins clusters to the lamellipodium results in

polarized adhesion and then migration (24). After polarization,

monocytes migrate to the interendothelial junctions.

Adjacent ECs are connected by a wide array of endothelial

junctions: tight junctions, adherens junctions and gap junctions

(79). Tight and adherens junctional transmembrane proteins

mediate cell adhesion by homophilic interactions and form a

zipper-like structure along the cell border. This adhesion is

reorganized during monocyte transendothelial migration (79).

Indeed, tight and adherens junctional proteins play a critical role

in this process (Table 2) (24). Tight junctions are localized at the

apical site of the interendothelial junctions and form a close contact

between adjacent ECs. Tight junctions are composed of occludins,

claudins and junctional adhesion molecules (JAMs), but only JAMs

have been described to participate directly in the transendothelial

migration of monocytes (80). Three members of the JAM family
FIGURE 1

Overview of monocyte-endothelial cell interaction and transmigration. Monocyte migration to inflammatory sites is a multistep process with many
molecules involved. First, selectins mediate the initial tethering and rolling of monocytes along the cytokine-activated endothelial cells. Then, the
monocyte interacts with chemokines that are bound to transmembrane heparan sulphate proteoglycans (CD44 and sydecan) expressed in the
endothelium. The activation of GPCR leads to the activation of integrins and the consequent monocyte arrest mediated by the interaction of LFA1
and VLA4 with ICAM1 and VCAM, respectively. Once a monocyte establishes firm adhesion to the vascular endothelium, it undergoes a
morphological change known as polarization, in which chemokine receptors and activated integrins redistribute to the leading edge. After
polarization, monocytes migrate toward interendothelial junctions and then transmigrate into the underlying tissues. The members of the JAM family
expressed by endothelial cells (JAM-A, JAM-B, JAM-C) interact with the activated integrins of monocytes (LFA1, VLA4, Mac1) and allow the
transmigration through tight junctions. Lastly, PECAM-1 (CD31) and CD99 hemophilic engagement and endothelial retraction lead to monocyte
extravasation. PSGL: P-selectin glycoprotein ligand-1; GPCR: G-protein-coupled receptors; LFA1: lymphocyte function-associated antigen 1; VLA4:
very late antigen 4; ICAM1: intercellular adhesion molecule 1 (ICAM1/CD54); VCAM: vascular cell-adhesion molecule 1; Mac1: macrophage receptor
1; PECAM: platelet/endothelial cell-adhesion molecule 1.
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have been described: JAM-A, JAM-B, and JAM-C. JAMs from ECs

bind to monocyte integrins. LFA1 has been identified as a ligand for

JAM-A (57). JAM-B has been described to bind to a4b1-integrin
and JAM-C to aMb2-integrin (also known as MAC1 and CD11b–

CD18) and aXb2-integrin (also known as CD11c–CD18) (58, 59).

Moreover, JAM-C is specifically required to prevent reverse

transmigration of monocytes back to the vascular lumen (81).

The interaction between the members of the JAM family and the

integrins expressed by monocytes allows the transmigration

through tight junctions (Figure 1). Then, monocytes transmigrate

through the adherens junctions. The main component of adherens

junctions is the vascular endothelial cadherin (VE-Cadherin), an

endothelial-specific protein anchored to the cytoskeleton and

responsible for endothelial tightness against leakage (24). VE-

cadherin plays an important role on the control of vascular

permeability and integrity but does not interact with monocyte

proteins to facilitate transmigration. In contrast, molecules present

in adherens junctions such as platelet/endothelial cell-adhesion

molecule 1 (PECAM1) and CD99 participate in this process by

homophilic interactions (24, 60, 61) (Figure 1). VE-cadherin is

crucial to regulate endothelial permeability because it participates in

adherens junctions dismantling of and EC retraction, which is

required to complete the transmigration of monocytes (60). The

clustering of selectins and/or VCAM/ICAM induces an activation

of RhoA and an increase in intracellular free calcium within the

endothelial cells (82). This results in the activation of the

calmodulin-dependent enzyme myosin light chain kinase

(MLCK), thereby causing a conformational change in myosin II

(83) and the phosphorylation of the VE-cadherin cytoplasmic tail

(82). ICAM-1 engagement also results in the activation of Src and

PYK2 kinases, which also phosphorylate VE-Cadherin (84). The

phosphorylation on Tyr658 and Tyr731 induce the dissociation of

VE-cadherin from the cytoskeleton and allow the splitting of EC

junctions (82). These changes lead to the increase in vascular

permeability and allow monocyte extravasation (60). Monocytes

mostly transmigrate through junctions between adjacent ECs

(paracellular transmigration) although monocytes can also

migrate through ECs (transcellular transmigration) by the

formation of vesiculo-vacuolar organelles (85).

The reorganization of interendothelial junctions during

inflammation is temporally and spatially regulated by

inflammatory mediators and leukocyte transendothelial migration

(86). These changes are reversible, and endothelium quiescence and

vascular permeability are restored once the triggering cause is

removed. However, in some pathological conditions such as

chronic inflammation and atherosclerosis, the ECs remain

activated and the interendothelial junctions become instable (87).

This instability causes an impairment in the endothelial barrier

function leading to uncontrolled leukocyte migration and vascular

leakage. Defects in the organization of endothelial cell junctions can

lead to vascular malformations, vascular fragility and rupture, and

appearance of hemorrhages and edema (88). Loss of barrier

integrity is a common feature in several vascular disorders

including anaphylaxis, diabetic microangiopathy, angioedema, or

cancer and metastasis (85). Endothelial junctions not only mediate

adhesion but also trigger intracellular signals that communicate cell
Frontiers in Immunology 06
position, limit growth and apoptosis. They are essential to maintain

vascular integrity and homeostasis (88). Furthermore, the

reorganization of interendothelial junctions and loosening of cell-

cell adhesion is also required for other physiological processes such

as angiogenesis (85).
3 Monocyte-endothelial cell
interactions in angiogenesis
and vasculogenesis

Angiogenesis is the process of formation of new endothelium-

lined channels from pre-existing blood vessels (89). Vasculogenesis

refers to the creation of new blood vessels, mainly in the embryo,

involving differentiation of angioblasts or endothelial progenitor

cells (90). In adults, blood vessel formation may be defined by either

angiogenesis or arteriogenesis depending on the initial trigger and

the final vessel structure. Whereas angiogenesis is usually induced

by hypoxia, arteriogenesis is induced by physical forces and, among

them, primarily by increased fluid shear stress. Arteriogenesis

entails the remodeling of pre-existing arterio-arteriolar

anastomoses via recruitment of smooth muscle cells to fully

established and functional arteries (89). In contrast, angiogenesis

(capillary sprouting) results in higher capillary density but without

the presence of vascular smooth muscle cells. Increasing evidence

implicates blood monocytes in the selection of vascular sprouting

points and assistance in vascular bridging (90, 91). Indeed,

monocytes and MDM release a combination of chemokines,

growth factors, and proteases that may simultaneously participate

in immune cell attraction, basement membrane degradation, and

endothelial proliferation (92, 93).
3.1 Monocyte-endothelial cell interactions
in angiogenesis

Vascular sprouting or angiogenesis is one, but not the only,

process of blood vessel formation in the adult. Ordered angiogenesis

has long been considered a critical mechanism for optimal wound

healing. Little is known about the molecular basis by which leading

ECs at vascular sprouts (endothelial ‘‘tip’’ cells) are designated to

grow and elongate to form new blood vessels. Some investigations

show that direct interactions of monocytes with ECs may be a

driving force to stimulate endothelial proliferation (93, 94) and to

mediate the fusion of endothelial tip cells (95). Indeed, some

investigators have demonstrated that circulating monocytes are

selectively recruited to certain regions of regenerating livers after

hepatectomy (Figure 2A), particularly surrounding sprouting

points (91) (Figure 2B).

Monocyte recruitment initiates in portal areas and expands to

the rest of hepatic tissue in correlation with vasodilation and the

expression of the inducible form of nitric oxide synthase (iNOS).

iNOS is upregulated in injury and induces the synthesis of the

vasodilator and proangiogenic substance NO (96). Indeed,

angiogenesis initiates with vasodilation, a process involving NO
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(89). Then, vascular permeability increases in response to

proangiogenic factors such as VEGF, plasma proteins extravasate

and pave the ground with a provisional path for the migration of

ECs. In this scenario, vascular permeability is affected by the

formation of fenestrations, vesiculo–vacuolar organelles and the

relocation of PECAM-1 and VE–cadherin, which implicates Src

kinases (97, 98). Although angiogenesis requires increased

permeability, vascular leakage, and release of permeability factors

such as VEGF, it needs to be finely regulated to avoid water and

sodium imbalance, circulatory collapse, intracranial hypertension,

or ascites (18) among other pathological conditions. Either VEGF

or other proangiogenic factors such as angiopoietins may be

released by monocytes and MDM to regulate vascular

permeability (92, 99). Angiopoietin 1 (Ang-1), a ligand of the

endothelial Tie2 receptor, is an endogenous inhibitor of vascular

permeability via strengthening of endothelial junctions (100). In

contrast, angiopoietin 2 (Ang-2) is a partial agonist/antagonist of

Tie2, thus promoting vascular leakage (101, 102). Indeed, Ang-2 is

involved in the processes of detachment of smooth muscle cells and

loosening of the ECM (103). In addition, MDM release different

matrix metalloproteinases (MMP) that may activate or liberate a

myriad of growth factors (bFGF, VEGF, IGF-1, etc) retained within

the extracellular matrix (104, 105).

Substances released by parenchymal cells (damage-associated

molecular patterns) and resident macrophages (e.g. TNF-a) during
tissue injury serve not only to coordinate vessel and tissue growth,

but also cellular interactions, attracting circulating monocytes (e.g.

MCP-1) and inducing neighboring ECs to expose monocyte

adhesion molecules such as those described in the section 2.2 of

this review (106) (Figure 3).

Circulating monocytes detect attracting signals and interact with

ECs to initiate endothelial disruption and monocyte translocation to
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local sprouting points. It has been demonstrated that the number of

interactions of recruited monocytes with liver vascular network

during regeneration is directly associated with phosphorylation and

disruption of VE-cadherin connections (91). This uncoupling of

inter-EC connectivity mediated by VE-cadherin is critical to the

plasticity of the selected endothelial tip cell and for EC migration and

elongation (107). MDM also serve as chaperones of endothelial

sprouting by locally secreting proliferative factors, such as Wnt5a

and Ang-1 and the stalk cell stabilizer Notch1 (Figure 4).

The release of Wnts from infiltrating monocytes and, namely, the

contribution of Wnt5a and non-canonical ligands is especially

important to harmonize angiogenesis in inflamed vessels (108)..

Recruited monocytes are important beyond the priming phase of

angiogenesis and throughout the process of tissue regeneration.

Indeed, leukocyte adhesion molecules such as P-selectin, CCR2,

and VCAM-1 upregulate during tissue regeneration and maintain

the number of rolling interactions and the likelihood of recruiting

monocytes. Specifically, the adhesion molecule ICAM-1 is

upregulated after hepatectomy, but its gene expression is

significantly downregulated when monocyte interactions and VE-

cadherin phosphorylation are maxima. This points to a precise

regulation of this adhesion molecule by monocyte interactions in

accordance with the requirements of endothelial sprouting and the

subsequent hepatic mass expansion. In fact, ICAM-1 activation is an

important signaling pathway to trigger vascular sprouting (109, 110)

and arteriogenesis (111). ICAM-1 is then an excellent candidate to

understand the role of direct interactions of monocytes with

endothelium to regulate vascular and tissue regeneration. Indeed,

gene suppression of any of the subunits of the monocyte receptor

Mac-1 (CD11b/CD18) disrupts wound healing in mice (112, 113).

Moreover, suppression of the CD11b gene drops survival in mice

undergoing partial hepatectomy and hinders vascular and liver mass
A

B

FIGURE 2

Monocyte-endothelial cell interactions and vascular sprouting occurring after hepatectomy. (A) Images of vessels from liver sections identified by
staining for von Willebrand factor (VWF, in red) and recruited monocytes by staining for CD14 (in green). Nuclei were stained by DAPI (in blue). Initial
contacts of recruited monocytes (in yellow) take place in portal areas. (B) Amplification of multiphoton images (vessels in green and yellow,
macrophages in red), visualized vascular buds (white circles) surrounded by spread recruited macrophages 16 hours after hepatectomy. Images
reprinted with permission from “Melgar-Lesmes, P.; et al. Monocyte-endothelial cell interactions in the regulation of vascular sprouting and liver
regeneration in mouse. J Hepatol. 2015; 63 4):917-25. doi: 10.1016/j.jhep.2015.05.011”.
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regeneration in line with a reduced infiltration of circulating

monocytes into the hepatic vascular network (91). Interestingly, the

lack of CD11b also induces TNF-a expression, which can also

directly promote VE-cadherin phosphorylation to replace the

missing effects of monocyte-endothelial cell interactions (114).

However, this increase in TNF- a is followed by an intense

vascular leakage and a disorganized and aberrant vascular network

after hepatectomy (91). Indeed, exacerbated increase of TNF-a by

monocytes or MDM is associated to suppressive effects on wound

healing in mice (115). To regulate these vascular disorders, tissue

macrophages, such as KC, may progressively move into vessel walls

from their static state and location in an attempt to replace the role of

monocyte-EC interactions in the control of vascular and tissue

growth in ICAM-1 KO mice (91). Thus, macrophage interaction

with ICAM-1 in endothelium seems a critical step in the regulation of

the endothelium integrity and in the control of TNF-a expression

during angiogenesis after hepatectomy.
3.2 Monocyte-endothelial cell interactions
in vasculogenesis

The molecular basis of vasculogenesis (in the embryo and from

endothelial progenitors) diverges from that of pathological
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angiogenesis in the adult. The formation of the vascular network

in the embryonic phase requires several sequential steps combining

both mechanisms, vasculogenesis and angiogenesis. Vasculogenesis

gives rise to the heart and the initial embryonic vascular plexus and

surrounding membranes comprising the yolk sac circulation (116).

Angiogenesis accounts for the expansion and remodeling of this

vascular tree via endothelial sprouting and intussusceptive

microvascular growth. However, little is known of any possible

direct implication of monocyte or macrophage-EC interactions to

drive vasculogenesis. The fact is that the macrophage is one of the

first blood cell lineages to originate during embryonic development.

Macrophages generate and grow surrounded by ECs and

vasculogenesis occurs in parallel with hematopoiesis (116).

Studies in mice have revealed that embryonic macrophages arise

during three different waves of hematopoiesis: primitive

hematopoiesis, erythro-myeloid progenitor (EMP) generation,

and definitive hematopoietic stem cell-mediated hematopoiesis

(116). Macrophages are then distributed through most developing

organs (117). These initial macrophages derived during primitive

hematopoiesis behave as a mediator between neovascularization

and organ architecture during fetal organogenesis (118). Further

recent findings using inducible Csf1r promoter-driven-Cre

ROSAYFP reporter mice support a direct relationship between

blood and endothelial lineages (119). These authors found that
FIGURE 3

Schematic illustration showing that signals from injured parenchymal cells stimulate the release of cytokines and chemokines from resident
macrophages and the induction of monocyte adhesion molecules on the endothelium to stimulate vascular sprouting. DAMPS: Danger-associated
molecular patterns; TNF-a: tumor necrosis factor alpha; MCP-1: Monocyte chemoattractant protein-1. Scheme modified and adapted from “Melgar-
Lesmes, P.; et al. Monocyte-endothelial cell interactions in the regulation of vascular sprouting and liver regeneration in mouse. J Hepatol. 2015
Oct;63 (4):917-25. doi: 10.1016/j.jhep.2015.05.011”.
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circulating EMP contribute to ECs in vascular network in multiple

tissues (liver, brain, heart, lung, and yolk sac), and their interaction

continues throughout adulthood (119). Other authors have found

evidence on the active role of macrophages to promote

vasculogenesis during retinal neovascularization (120). They have

shown that macrophages boost the recruitment and differentiation

of bone marrow-derived cells (BMCs). Mechanistically, they found

that specifically M2-like macrophages affected the migration and

activation of BMCs via secretion of VEGF and stromal cell-derived

factor-1 (SDF-1). This is consistent with another investigation that

demonstrated a higher recruitment of BMCs by SDF-1 and

hepatocyte growth factor (HGF), released by the interaction

between macrophages and matrix-embedded endothelial cells

(MEECs) during liver regeneration (121). Namely, HGF

stimulated the expression of the receptors CXCR4 and CXCR7

(122), that promoted the mobilization of endothelial progenitors to

the blood stream and their recruitment into injured liver. In turn,

incorporated endothelial progenitors secreted more HGF

promoting positive feedback and the formation of new blood

vessels that irrigated the implants and the ischemic tissue (121).

Vascular development is one of the earliest organogenesis

events in embryonic development. A primitive vascular tree

provides a basic path for circulating cells and guarantees the

supply of nutrients. EC differentiation arises during gastrulation

when cells invaginate to form the mesoderm. This process occurs

around the embryonic day E7.25 in different clusters of cells in the
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extra-embryonic yolk sac, called blood islands (123). Blood islands

are disposed of primitive hematopoietic cells in the center and

aligned endothelial cells in the periphery (124). Primitive

hematopoiesis produces unipotent myeloid progenitors that may

uniquely generate the macrophage lineage (124), bipotent

progenitors of erythrocytes, and megakaryocytes (125). Then,

these progenitors are mobilized to the blood circulation around

E8.0 (124). The first embryonic-derived macrophages are detected

in the yolk sac at E9.0 (126). Yolk sac-derived macrophages colonize

first the developing brain by E9.5 and then the rest of the embryonic

tissues by E12.5 (123, 124). Although primitive macrophages are

generated directly from progenitors without going through a

monocyte intermediate (126), it remains elusive the possible

interplay with endothelium during this phase to understand

positioning and growth of the fetal vascular tree during

organogenesis. Both vasculogenesis and macrophage generation

occur in parallel in space and time, but how direct interactions of

nascent macrophages or monocytes with ECs contribute to

vasculogenesis need further investigation.
3.3 Monocyte-endothelial cell interactions
in tumor angiogenesis

Infi l tration of circulating monocytes to the tumor

microenvironment (TME) is critical for tumor angiogenesis (127).
A

B

FIGURE 4

Monocyte-endothelial cell interactions locally release sprouting factors. (A) Hepatic staining of recruited monocytes (CD14, in red) enhancing the
local expression of sprouting-related factors Wnt5a, Notch1, and Ang-1 (in green) in contact points of vessels (in yellow) in portal areas 16 hours
post-hepatectomy. (B) Signals released by resident macrophages (KCs) recruit monocytes to selected areas driving the sprouting and angiogenic
process. KCs deliver MCP-1 to blood stream and TNF-a towards nearby ECs to promote the expression of ICAM-1, which recruit monocytes and
allow phosphorylation of the interendothelial VE-cadherin allowing monocyte migration throughout the vessel where they locally deliver sprouting
factors (Notch1, Ang-1, and Wnt5a). Images reprinted with permission from “Melgar-Lesmes, P.; et al. Monocyte-endothelial cell interactions in the
regulation of vascular sprouting and liver regeneration in mouse. J Hepatol. 2015;63 (4):917-25. doi: 10.1016/j.jhep.2015.05.011”.
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It is well-known that inflammation is a starting event to attract and

recruit monocytes and a driving force for monocyte-endothelial cell

interactions and extravasation. For this reason, cancer cells use

these endogenous mechanisms to stimulate an inflammatory milieu

and release angiogenic factors that stimulate the endothelium to

expose adhesion molecules, which enable adhesion and

extravasation of proangiogenic monocytes (128). There are

different markers described for these proangiogenic monocytes

that cancer cells recruit to the TME. Different authors have found

that human CD16+ patrolling monocytes promote angiogenesis and

boost the expansion of human colorectal carcinoma xenografts

(128, 129). These CD16+ monocytes seem to be recruited to the

TME by cancer-released inflammatory cytokines and angiogenic

factors (TNF-a, IL-1b, IL13, VEGF, etc.). In contrast, other

investigations have described that inflammatory GR1+ monocytes

are the proangiogenic monocyte subset that supports the growth of

primary tumors (130, 131). In any case, once proangiogenic

monocytes are attached to inflamed endothelium within the

TME, these monocytes are locally retained by endothelial

CX3CL1/Fractalkine released by ECs in response to interferon

gamma (IFN-g), which is present in the inflammatory locus

(132). CX3CL1 is a distinctive CX3C chemokine that is anchored

to the cell membrane to allow leucocyte adhesion (133, 134),

although it is also present in a soluble form that exhibits

monocyte and lymphocyte chemotaxis properties (135).

Furthermore, CX3CL1 also facilitates vascular extravasation of

monocytes in lung tumor metastasis (136).

Hypoxia is a driving force of angiogenesis in tumors (137, 138).

Some investigations have described that hypoxia, via hypoxia-

inducible factor-1 (HIF-1), enhances the expression of

proangiogenic factors such as VEGF, Ang-1 and Ang-2 in

endothelial and cancer cells (139, 140), and promotes the

synthesis of CXCR4 (a receptor for CXCL12) and Tie2

(angiopoietin receptor) on macrophages, which allows the

interstitial migration of proangiogenic macrophages inside the

tumor (128, 141, 142). Numerous tumor-derived chemokines are

critical for recruiting monocytes into the tumor milieu and to

promote the transition of monocytes to tumor-associated

macrophages (TAM). These include chemokines such as CCL3

(macrophage inflammatory protein, MIP1a), CCL2 (MCP-1) and

CCL4 (MIP1b), interleukins (IL-6 and IL-1b) and cytokines (colony
stimulating factor 1 (CSF-1) (143–145). Monocytes recruited into

the tumor are then further reprogrammed by cancer cells to display

a proangiogenic and immunotolerant M2-like macrophage

phenotype (146). Indeed, tumor-associated macrophages (TAMs)

are the most abundant immunosuppressive cells in the TME. They

play a fundamental role in the tumor initiation, growth, and

progression (147). M2-like TAM, under hypoxic milieu, also

release proangiogenic factors such as VEGF and placental growth

factor (PIGF), and chemokines such as CCL2 and CXCL9, that

regulate the expansion of peritumoral vascular network (143, 145).

Additionally, TAMs are also involved in immunosuppression of

CD8+ T cells and natural killer (NK) cells, a major mechanism of

anti-tumor immunity (148, 149).

The proangiogenic activity of TAM is also mediated by MMP

activity, which contribute to the release of matrix-bound growth
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factors such as VEGF. For example, active MMP-9 is produced by

mouse and human proangiogenic Tie2+ monocytes (150). The

release of different matrix-bound growth factors from TME by

active MMP-9 represents one of the most challenging mechanisms

for current therapies to interfere with tumor angiogenesis (141).

Indeed, digestion and delivery of angiogenic factors by MMPs is a

vicious circle for tumor angiogenesis. Tumor tissues synthetize and

accumulate MMPs and growth factors in the extracellular matrix,

and simultaneously induce the arrival of more proangiogenic

monocytes. Then, these monocytes infiltrate and transdifferentiate

into TAM and secrete additional MMP-9 and growth factors to the

TME, as suggested by previous studies in mice (151, 152).

Hypoxic TAMs show deep variations in the expression of

numerous metabolic genes because they are compelled to adjust

their metabolism to low oxygen pressure to maintain the energy

needs (153). Cytokines are also important effectors on macrophage

metabolism, inducing a wide array of metabolic changes. For

example, pro-inflammatory M1-like macrophages change their

metabolism toward increased anaerobic glycolysis, pentose

phosphate pathway activation, and protein and fatty acid

synthesis (154). In contrast, cytokines such as IL-4, IL-10, and IL-

13 released by M2-like macrophages lead to a phenotype that more

closely resembles the characteristics of TAMs (displaying enriched

oxidative phosphorylation and stable glycolysis) (155). It is known

th a t me t abo l i c c h ang e s i nfluen c e ang i o g en i c and

immunosuppressive properties of hypoxic TAMs. One signaling

pathways governing these events is REDD1, a negative regulator of

mTOR (156). Indeed, REDD1-mediated inhibition of mTOR

hampers glycolysis in TAMs and reduces their excessive

angiogenic response promoting the formation of anomalous

blood vessels. Hence, TAMs lacking REDD1 promote the

formation of smoothly aligned, pericyte-covered, functional

vessels preventing vascular leakage, hypoxia, and metastases.

TAMs deficient in REDD1 are highly glycolytic and drain glucose

from TME affecting nearby ECs. This hinders vascular

hyperactivation and stimulates the formation of quiescent

vascular junctions (156). This functional link between TAM

metabolism and tumor angiogenesis could be exploited in the

future for the design of novel anti-angiogenic therapies for cancer.
4 Monocyte-endothelial cell
interactions in tissue remodeling

4.1 Modulation of monocytes and MDM in
atherosclerosis and cardiovascular diseases

4.1.1 Monocytes and MDM in atherogenesis
CVDs are the leading cause of death and disability worldwide

(157). The main etiological factor for CVD is atherosclerosis (158).

Atherosclerosis predominantly affects the coronary circulation and

increases the risk of myocardial infarction and stroke, but shear

stress caused by atheroma plaques may also affect the peripheral

and cerebrovascular circulation (159, 160). Atherosclerosis is

currently understood as a chronic inflammatory disorder
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1196033
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Medrano-Bosch et al. 10.3389/fimmu.2023.1196033
involving many immune cell types (161). Namely, MDM were the

first inflammatory cells identified in the atherosclerotic plaques

(162). Monocytes also contribute substantially to the different stages

of atherosclerosis and myocardial infarction including initiation,

progression, thrombus formation, and scarring (163, 164). Innate

immune response is initially activated during early arterial injury,

which induces the recruitment of bone marrow–derived monocytes

into the intima (165). Hypercholesterolemia and clonal

hematopoiesis of indeterminate potential are known risk factors

in atherosclerosis via boosting the recruitment of mononuclear

phagocytes into atheroma plaques (166). Monocytes that infiltrate

into the intima of injured vessels transdifferentiate to inflammatory

macrophages and can proliferate and promote plaque progression

(Figure 5A). Monocyte and macrophage subsets secrete chemokines

and cytokines that may stabilize or unstabilize the plaque (167).
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Generally, M1-like inflammatory macrophages increase the risk for

unstable plaques and a class of M2-like resolving macrophages seem

to promote plaque stabilization via efferocytosis, collagen

production, and TGF-b production (168, 169). However, it is

important to emphasize that there are multiple subpopulations of

macrophages coexisting within the atheroma plaque with distinct

genetic markers and functions, such as resident-like anti-

inflammatory, inflammatory, and TREM2high macrophages (170).

ECs in injured vascular walls also release an array of chemokines

that are commonly classified in four subgroups: CXC, CC, C, and

CX3C chemokines. CX3CL1, also known as fractalkine, is the only

member of the CX3C chemokine family. CX3CL1 and other

chemokines such as CXCL12 may bind either to heparan sulfate

(HS) on ECs or to their chemokine receptors in monocytes (171).

Therefore, these chemokines may attract, retain, or induce
A

B

C

FIGURE 5

(A) Hypercholesterolemia, high blood pressure, or disrupted flow patterns lead to LDL accumulation within the vascular wall. This accumulation
activates endothelial cells (ECs), which recruit and activate monocytes by the secretion of chemokines and monocyte activators (MCP-1, IL-6, IL-8).
Then, monocytes infiltrate atherosclerotic lesions, differentiating into macrophages and ultimately into foam cells. Macrophages and foam cells
deliver pro-inflammatory mediators (TNF-a, IL-1b), which decisively participate in the propagation of the inflammatory response and plaque
progression. (B) Exogenous administration of CS disrupts the release of leukocyte activators and chemokines from aortic ECs inflamed with TNF-a
and interferes with the release of inflammatory cytokines in activated monocytes and macrophages, and with their migration. (C) Numerous
nanoparticles (NPs) have been used to target and treat macrophages in experimental atherosclerosis. Nanoparticles have aimed at reducing low
density lipoprotein (LDL) accumulation in macrophages either reducing the macrophage expression of LDL scavenger receptors (SRs) using siRNA or
delivering the liver-x-receptor (LXR) ligand to increase the expression of cholesterol transporters. Other NPs have been designed to deliver siRNA
against the expression of the chemokine receptor 2 (CCR2) and reduce monocyte recruitment to atherosclerotic plaques.
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monocyte transdifferentiation into macrophages and foam cells

thereby displaying a major role on the progression of atheroma

plaques and atherosclerosis (172, 173).

4.1.2 Monocytes and MDM in angiogenesis
and inflammation

Angiogenesis and inflammation are close collaborators in tissue

remodeling following vascular injury and atherosclerosis. One of

the initial signatures of early atherosclerosis is the appearance of a

dysfunctional endothelium (174). Some of the factors affecting

endothelial homeostasis include high levels of modified low-

density lipoproteins (LDL), shear stress, free radicals, and

hypertension (175). Indeed, dysfunctional endothelium induces

an inflammatory response that may progress to a vascular lesion

in CVDs or pave the ground for cancer metastasis (176). As

described in the section 3 of this review, infiltrating inflammatory

cells secrete a wide array of proangiogenic cytokines that stimulate

EC activation, proliferation, and migration. However, the role of

angiogenesis in atherosclerosis and CVDs is still a controversial and

unresolved issue. Although proangiogenic therapy is useful for the

treatment of ischemic heart disease and to enhance endothelial

protective functions, angiogenesis may contribute to the growth of

atherosclerotic lesions, and is a key factor in plaque destabilization

and rupture at every vascular scale (177). The vasa vasorum, a

specialized microvasculature that originates primarily in the

adventitia of large arteries, is activated during atherosclerosis

(178) and may well be influenced by MDM and EC-monocyte

interactions. Vasa vasorum provides oxygen and nutrients to the

external layers of the arterial wall and its expansion arises preceding

endothelial dysfunction, intimal thickening, or plaque formation

(178). The presence of intraplaque vasa vasorum is a marker of

plaque expansion, progression, hemorrhage, instability, and rupture

(178). In this scenario, proangiogenic molecules released by

monocytes and MDM promote the growth of vasa vasorum and

intimal lesions in both early and late stages of the disease. Moreover,

the interactions between monocytes or MDM and ECs within

atherosclerotic lesions may also be influenced by the local EC

subpopulat ion. Indeed, analys i s of the di fferent EC

subpopulations in aorta has identified a lymphatic EC cluster and

two other populations specialized in lipoprotein handling,

angiogenesis, and ECM production (179). Therefore, different

subpopulations of monocytes and MDM may interact with

distinct EC populations with vascular disease-relevant functions

to decide the fate of the vascular lesion.

4.1.3 Monocytes and MDM in other
vascular alterations

There are other scenarios of vascular remodeling where

monocytes and MDM display essential regulatory roles such as in

pulmonary hypertension, thrombosis disorders, and venous

malformation. Data obtained with single-cell analysis has revealed

that non-classical and intermediate monocytes are enriched among all

the monocyte subsets associated with pulmonary hypertension, and

these phenotypes were associated with a decrease in hypoxia-inducible

transcription factor-1a (HIF-1a) (180). Indeed, nonclassical

(CD14+CD16+) monocytes sense hypoxia, modulate pulmonary
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vascular remodeling, and induce pulmonary hypertension (181).

Moreover, the presence of perivascular MDM has emerged as a key

pathogenic driver of pulmonary hypertension via interstitial

macrophage-dependent inflammation and vascular remodeling

(182). In thrombosis, monocytes and MDM release tissue factor,

which activates prothrombin and initiates a coagulation cascade

resulting in fibrin formation and thrombus formation (183).

Monocytes and MDM also participate in the pathogenesis of

venous malformation and cavernous venous malformation

stimulating angiogenesis via VEGF overexpression in monocytes

and MDMs and up-regulation of VEGF receptors in ECs (184).

4.1.4 Monocytes and MDM in the regulation of
vascular smooth muscle cells

Monocytes and MDM also modulate vascular smooth muscle

cells (VSMCs) functions during atherosclerosis (185). The regulation

of VSMC phenotypes may influence plaque morphology (necrotic

core size and fibrous cap thickness) and the deposition and

distribution of milieu components (lipoprotein, ECM, and

chemokines). In turn, VSMCs, also interact with ECs to orchestrate

response to injury or control EC growth (186, 187). VSMCs are major

contributors tomodifications of vascular microenvironment in CVDs

by producing ECM proteins (e.g., fibrin, fibronectin, collagen, and

proteoglycans) and agents that regulate ECM formation (e.g., tissue

inhibitors of metalloproteinases, tissue factor). Alterations in some of

these subendothelial matrix components influence EC apoptosis,

which plays pivotal roles in atherosclerosis (188). Moreover, these

variations in the ECM composition alter mechanical and functional

properties of the vascular wall, which influence the behavior of

monocytes, MDM, and ECs (189, 190). Namely, the interaction of

the substratum component chondroitin sulfate (CS) has

demonstrated a wide array of regulatory functions on monocytes/

MDM and ECs in the context of inflammation and atherogenesis

(191). In advanced atherosclerosis, there is a decrease in CS, with a

concomitant increase of dermatan sulfate in arterial walls (192).

Exogenous administration of CS disrupts the release of leukocyte

activators and chemokines from aortic ECs inflamed with TNF-a and

interferes with the release of inflammatory cytokines in activated

monocytes and macrophages, and with their migration (Figure 5B)

(191). Indeed, oral administration of CS to ApoE knockout mice has

demonstrated to reduce the area of atheroma plaques via interference

with the release of monocyte attractants and the uptake and

accumulation of Ox-LDL in macrophages and foam cells (193).

These findings have motivated a growing interest in incorporating

either CS or other immunomodulator drugs in the composition of

new intravascular devices for the treatment of CVDs (194–196).

4.1.5 Therapeutic strategies to modulate
monocytes and MDM in atherosclerosis
and CVDs

Monocytes and MDM have a significant impact on lesion

progression at all stages of atherogenesis, and there has been great

effort in design novel therapies to interfere with the monocyte-EC

or macrophage-atheroma plaque interactions in atherosclerosis

(Table 3) (2, 161, 210). Standard therapies for atherosclerotic

vascular disease (e.g. angiotensin converting enzyme inhibitors,
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1196033
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Medrano-Bosch et al. 10.3389/fimmu.2023.1196033
aspirin, corticosteroids, etc.) induce general immune responses but

not a specific macrophage targeting. Immunosuppressive therapies

may display side effects in patients such as vulnerability to infection

and cancer. A precise macrophage targeting seems essential for the

treatment of atherosclerosis. Molecular signaling of peroxisome

proliferator-activated receptors (PPARs) is of major relevance for

the regulation of macrophage lipid metabolism and inflammatory

responses. Natural ligands such as prostaglandins and anti-diabetic

thiazolidinediones induce PPARs, which in turn stimulate the M2-

like macrophage phenotype and a reduced progression of

atherosclerosis (197). Liver X receptors are up-regulated in M2-

like macrophages and, as occurs with PPARs, exert relevant

antiatherosclerotic effects via regulation of cholesterol metabolism

and M1-like macrophage inflammatory response (211). Statins are

efficient cholesterol-reducing agents that also reduce immune

responses via inhibition of macrophage inflammatory activity

(212). However, these and other conventional pharmacological

agents cannot selectively target macrophages. Numerous potential

therapies based on nanoparticles (NPs) to target and treat

macrophages have been used during the last decade to treat

experimental atherosclerosis (Figure 5C). For example, a wide

array of NPs functionalized with different targeting ligands such

as mannose, hyaluronan, folate, DNA, peptides, antibodies, HDLs

and LDLs have been employed to target intraplaque macrophages

and to enhance selectivity and delivery of anti-inflammatory drugs

to reduce atherosclerosis (213). Other strategies aim to reduce LDL
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accumulation in macrophages either reducing the macrophage

expression of LDL scavenger receptors (SRs) or delivering the

liver-x-receptor ligand to increase the expression of cholesterol

transporters (198, 199). Other researchers have developed NPs to

inhibit the expression of the chemokine receptor 2 (CCR2)

associated with monocyte recruitment as a potential treatment for

atherosclerosis (200, 201). Another interesting strategy for the

treatment of atherosclerosis is the enhancement of macrophage

efferocytosis – the phagocytic clearance of dying cells and apoptotic

and necrotic debris. Indeed, this process is diminished in

atherosclerotic blood vessels. Interestingly, NPs delivering siRNA

against Ca2+/calmodulin-dependent protein kinase g (a known

blocker of macrophage efferocytosis) have shown plaque

stabilization in mice (202). Therefore, it seems clear that specific

modulation of macrophage interactions and functions in vascular

lesions using targeted nanoparticles may be of therapeutic interest

for the treatment of atherosclerosis and CVDs in the future.
4.2 Modulation of monocytes and MDM in
chronic liver diseases

4.2.1 Contribution of monocytes and MDM to the
pathogenesis of chronic liver diseases

Chronic liver injury from different etiologies may lead to hepatic

fibrosis, cirrhosis, and/or hepatocellular carcinoma (HCC). Cirrhosis
TABLE 3 Novel therapies to modulate monocytes and MDM.

Treatment Target cell Disease Treatment strategy Reference

Chondroitin sulfate (CS) ECs
Monocytes and
macrophages

Atherosclerosis Disruption of the propagation of inflammation (193)

Prostaglandins
Anti-diabetic thiazolidinediones

Macrophages Atherosclerosis Stimulation of the M2-like macrophage
phenotype

(197)

NPs with siRNA against LDL scavenger
receptors

Macrophages Atherosclerosis Reduction of LDL accumulation (198, 199)

NPs with Liver-x-receptor ligand Macrophages Atherosclerosis Reduction of LDL accumulation (198, 199)

NPs with siRNA against CCR2 Macrophages Atherosclerosis Reduction of monocyte recruitment (200, 201)

NPs with siRNA against Ca2+/calmodulin-
dependent protein kinase g

Macrophages Atherosclerosis Enhancement of macrophage efferocytosis (202)

PLGA-NPs with SYK pathway inhibitor Macrophages Steatohepatitis Inhibition of inflammatory pathways (203)

Liposomes loaded with dexamethasone Macrophages Acute and chronic
liver diseases

Induction of anti-inflammation (204)

Dendrimer-graphene nanostars with PPAR-g
agonist GW1929

Macrophages Hepatic fibrosis Reduce Hepatic inflammation and fibrosis (205)

Nanostructured lipid carriers containing
curcumin

Macrophages Hepatic fibrosis Reduction of hepatic inflammation (206)

Dendrimer-graphene nanostars containing
cDNA MMP9

Macrophages Hepatic fibrosis Local digestion of collagen fibers (207)

CXCR4-targeted lipid-coated PLGA NPs with
sorafenib and AMD3100

TAM Hepatocellular
carcinoma

Reduction of M2-like macrophage polarization
and TAMs infiltration

(208)

NPs with mRNA encoding BisCCL2/5i TAM Hepatocellular
carcinoma

Induction of macrophages polarization to
antitumoral M1-like subtype

(209)
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is among the most prevalent diseases in Western countries. The

prognosis of these patients is grim, except for those who can benefit

from liver transplantation. This is due to the multiple organic

derangements, including renal failure, variceal bleeding, or bacterial

peritonitis (214). These patients develop an important and

progressively accentuated cardiocirculatory dysfunction, portal

hypertension, arterial hypotension, high cardiac output, and

diminished systemic vascular resistance. It is commonly assumed

that increased endothelial production of NO is of major importance

in the pathogenesis of the circulatory dysfunction occurring in

cirrhosis (215), but the contribution of other endogenous systems

has also been considered (216). In this scenario, MDM also contribute

to vascular dysfunction in cirrhosis via release of vasodilators such as

NO or adrenomedullin (217, 218). Hypoxia appears as a common

phenomenon associated with the induction and release of NO from

macrophages during liver cirrhosis (219). Another general activator of

macrophages in liver cirrhosis is bacterial lipopolysaccharide (LPS).

Intestinal permeability is increased in patients with advanced liver

cirrhosis, and bacterial translocation may cause infection and

spontaneous bacterial peritonitis that usually results in renal failure

and death despite the efficacy of the antibiotic therapy (214).

Macrophages isolated from cirrhotic patients with bacterial

peritonitis have shown a high release of VEGF that results in

increased vascular permeability in the peritoneal vessels of these

patients (220). LPSs also suppress the expression of the cannabinoid

receptor CB2 in circulating monocytes and peritoneal macrophages,

impairing the defense response mechanisms in cirrhotic patients with

liver disease (221). Macrophage CB2 activation has also been

associated with reduced angiogenesis attributed to a lower monocyte

infiltration during liver fibrosis and a lesser macrophage release of

proangiogenic factors (222, 223).

4.2.2 Role of monocytes and MDM on
liver regeneration

MDM are critical players during all the stages of chronic liver

injury: initiation, progression, resolution, and regeneration of the

hepatic function (224). Indeed, the liver is a unique organ in its

capacity to regenerate the entire organ mass after a liver insult or a

hepatic resection (225). After liver resection, injured hepatocytes,

liver progenitor cells and KCs from the portal space recruit

circulating monocytes to injured liver via secretion of monocyte

chemotactic protein 1 (MCP-1) (226). Then, recruited monocytes

trigger endothelial c-Met and Tie2 pathways by direct interaction

(92–94), and activate the paracrine release of different cytokines and

endothelial growth factors critical for liver regeneration, such as the

family of molecules Notch and Wnt (91, 227). Indeed, either

complete depletion of hepatic macrophages or interference of the

canonical Wnt/b-catenin signaling pathway in macrophages

reduces liver regeneration (228, 229). KCs elaborate a precise

control role of sinusoidal endothelium releasing priming factors

(e.g., IL-6 and TNF-a) and induce hepatocytes to act in response to

growth factors (e.g., HGF, TGF-b, and EGF). Then, proliferation of

hepatocytes sequentially advances from periportal to pericentral

areas of the lobule, as a wave of mitosis under circadian control. In

turn, hepatocyte proliferation needs to be perfectly coordinated

with the expansion of the hepatic vascular network during liver
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regeneration (230). A previous work has described how this

sequence of phenomena is fine-tune regulated by monocytes and

MDM in regeneration occurring after liver resection. It has been

demonstrated that circulating monocytes are selectively recruited to

sprouting spots in regenerating livers. This process starts in portal

areas and expands to the rest of hepatic tissue coinciding with the

waves of hepatocyte mitosis, the hepatic expression of iNOS and

vasodilation to facilitate monocyte infiltration and endothelial

migration as explained in section 3.1 of this review. These

interactions between monocytes and hepatic ECs commensurate

with phosphorylation and disruption of VE-cadherin connections,

which is crucial for endothelial tip migration and elongation (231).

MDM display different roles in liver regeneration initiated after

chronic injury and fibrosis. MDMs that infiltrate during the

progression of liver fibrosis propagate inflammation and induce

scarring via activation of myofibroblasts (232). The balance between

stimuli from microenvironment and the presence of different

subsets of macrophages is determinant towards liver disease or

repair (233). Recent advances in flow cytometry and single-cell

transcriptomics have allowed a broad understanding of the array of

macrophage phenotypes within healthy and diseased liver (234).

Nowadays, these technologies have allowed the determination of

different subsets of mononuclear phagocytes in the liver fibrotic

niche, which is composed of ten main clusters: scar-associated

macrophages (SAMacs), KCs, tissue monocytes (TMs),

conventional dendritic cells (cDCs) and each corresponding

cycling (proliferating) cell subsets (234). SAMacs express the

unique markers TREM2 and CD9 (234). These macrophages

displayed a hybrid phenotype, between TMs and KCs and similar

to MDM in mouse liver injury models. SAMacs have a pro-

fibrogenic phenotype and accumulate within the fibrotic niche in

cirrhotic liver. TREM2+CD9+ SAMacs have showed a monocyte-

like morphology and a distinctive topographical distribution and

differentiation trajectory separated from KCs (234).

4.2.3 Monocytes and MDM on liver cancer
Liver cancer is the third leading cause of cancer-related

mortality worldwide and HCC accounts for nearly 90% of the

inc idence o f a l l hepa t i c cancer s (235) . The tumor

microenvironment (TME) is composed by a highly complex

cellular composition including different populations of myeloid

cells and lymphocytes. Indeed, the presence of myeloid cells in

the TME is frequently associated to altered patient survival (236). In

this scenario, TAM is one of the main members of the TME with a

critical role on HCC occurrence and development via angiogenesis

stimulation, interference with T cell anticancer activity, promotion

of drug resistance, and cancer metastasis (148, 237). The state-of-

the-art combination of two single-cell RNA sequencing

technologies has recently allowed the analysis of all CD45+

immune cells in HCC patients from different hepatic zones

(tumor, adjacent liver, hepatic lymph node, blood, and tumor

ascites) (238). In this study, TAMs were associated with poor

prognosis and these macrophages highly expressed two marker

genes, SLC40A1 and GPNMB, in HCC tumors. Namely, SLC40A1

encodes ferroportin, an iron exporter, and regulates TLR-stimulus-

induced pro-inflammatory cytokines, including IL-6, IL-23, and IL-
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1b, thus pointing out that iron metabolism is implicated in

determining innate immunity in the TME.

4.2.4 Therapeutic strategies to modulate
monocytes and MDM in chronic liver diseases

Cirrhosis is a limiting factor for anticancer therapy and a major

risk factor for the development of HCC. Indeed, cirrhosis may

challenge surgical and interventional approaches to treat liver

cancer, alter pharmacokinetics of anticancer drugs, enhance side

effects of chemotherapeutics and susceptibility to hepatotoxicity.

Therefore, conventional and future treatments designed to

modulate monocytes and MDM in liver diseases need to consider

the different molecular signals involved during liver cirrhosis (M1-

like inflammatorymacrophages and fibrogenicMDM signals) or liver

cancer (anti-inflammatory M2-like TAM in the TME and

immunosuppression). Various strategies have been developed to

treat liver inflammation and to target hepatic macrophages

(Table 3) (239). For example, polylactic-co-glycolic acid (PLGA)

NPs with a Spleen Tyrosine kinase (SYK) pathway inhibitor have

been used to target and treat macrophages in chronic liver injury

induced by steatohepatitis, since SYK is a critical mediator in

inflammatory pathways (203). Liposomes loaded with the anti-

inflammatory drug dexamethasone have obtained anti-

inflammatory and anti-fibrotic results in mouse models of acute

and chronic liver disease (204). A PPAR-g agonist GW1929 targeted

to MDM with dendrimer-graphene nanostars has been used to

reduce hepatic inflammation and fibrosis (205). Phosphatidylserine

(a component that mimics apoptotic cells recognized by

macrophages) has been used to decorate nanostructured lipid

carriers containing curcumin to reduce hepatic inflammation and

fibrosis (206). Another interesting approach has been the delivery of a

plasmid expressing the collagenase metalloproteinase 9 into

inflammatory macrophages using dendrimer-graphene nanostars

for local digestion of collagen fibers, reduction of hepatic injury,

and hepatic regeneration (207). Different strategies have also been

developed to target and treat selectively TAM in HCC (240). For

example, CXCR4-targeted lipid-coated PLGA NPs with sorafenib

and AMD3100 (a CXCR4 antagonist) revealed that blocking the

interaction of TAM CXCR4 with SDF1a reduced M2-like

macrophage polarizat ion and TAMs infi l trat ion, and

simultaneously tumor progression was delayed in a mouse model

of HCC (208). CCL2 and CCL5 are two chemokines that attract

TAMs infiltration and induce their polarization to the M2-like

phenotype. A specific CCL2/CCL5 dual inhibitor (BisCCL2/5i)

coating lipid NPs or a mRNA encoding BisCCL2/5i inhibited TAM

infiltration and induced the polarization of M2-like macrophages to

antitumoral M1-like subtype (209). Overall, further studies are still

necessary to delineate how to combine conventional therapies against

HCC cells with TAM-targeted nanotherapeutics to overcome the

limitations of current pharmacological treatments in HCC.
5 Conclusions

This review has emphasized that interactions between

monocytes and ECs or between transmigrated and differentiated
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MDM and the milieu are critical to the orchestration of vascular

and tissue remodeling. The interplay between monocytes and ECs

determines the selection of sprouting points during angiogenesis

and may be involved in vasculogenesis. Infiltrated MDM regulate

the promotion of vascular and tissue growth via the release of

different vascular growth factors, regulation of vascular

permeability, and control over ECM turnover. Tumors take

advantage of the physiological functions of proangiogenic

monocytes and MDM to increase cancer cell irrigation

and metastasis.

Blood monocytes and MDM play a critical role in the

pathogenesis of myocardial infarctions, strokes, and CVDs

overall. They actively contribute to new vessel formation inside

the arterial wall and atherosclerotic plaques resulting in local

ischemia and inflammation, and regulate the activity and

phenotype of VSMC, thereby influencing plaque morphology and

ECM deposition.

Chronic liver diseases are characterized by a vigorous activation

of inflammatory subsets of monocytes and MDM that mediate

hepatic angiogenesis, inflammation, and fibrosis. Monocytes and

MDM display different roles during regeneration of healthy liver or

after chronic injury and fibrosis. Monocyte-EC interactions

orchestrate harmonized angiogenesis and synchronized liver mass

growth after resection in healthy liver. In contrast, monocytes and

MDM perpetuate angiogenesis and inflammation in chronic liver

diseases and pave the ground for hepatic tumor growth.

Conventional and novel therapeutic strategies are being

developed to selectively target monocytes and MDM to modulate

the progression of chronic diseases such as CVD or liver diseases,

and cancer. There is still an urgent need for more selective

treatments and molecular insights on the different macrophage

stirpes involved in the zonation phenomena occurring during

vascular and tissue remodeling, and cancer. It is mandatory to

decipher surface markers and mechanisms involved in the control

of specific subsets of monocytes and MDM to improve therapeutic

interventions without distortion of the necessary physiological

functions of these immune cells in pathogen detection and

tissue regeneration.
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(CIBERehd) is funded by the Instituto de Salud Carlos III.

RedFibro (RED2022-134485-T) of the 2022 call for aid to

«RESEARCH NETWORKS», within the framework of

the Programa Estatal del Plan Estatal de Investigación Científica,
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