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Introduction: Breast cancer has become one of the top health concerns for
women, and triple-negative breast cancer (TNBC) leads to treatment resistance
and poor prognosis due to its high degree of heterogeneity and malignancy.
Reactive oxygen species (ROS) have been found to play a dual role in tumors,
and modulating ROS levels may provide new insights into prognosis and
tumor treatment.

Methods: This study attempted to establish a robust and valid ROS signature
(ROSig) to aid in assessing ROS levels. The driver ROS prognostic indicators were
searched based on univariate Cox regression. A well-established pipeline
integrating 9 machine learning algorithms was used to generate the ROSig.
Subsequently, the heterogeneity of different ROSig levels was resolved in terms
of cellular communication crosstalk, biological pathways, immune
microenvironment, genomic variation, and response to chemotherapy and
immunotherapy. In addition, the effect of the core ROS regulator HSF1 on
TNBC cell proliferation was detected by cell counting kit-8 and transwell assays.

Results: A total of 24 prognostic ROS indicators were detected. A combination of
the Coxboost+ Survival Support Vector Machine (survival-SVM) algorithm was
chosen to generate ROSig. ROSig proved to be the superior risk predictor for
TNBC. Cellular assays show that knockdown of HSF1 can reduce the proliferation
and invasion of TNBC cells. The individual risk stratification based on ROSig
showed good predictive accuracy. High ROSig was identified to be associated
with higher cell replication activity, stronger tumor heterogeneity, and an
immunosuppressive microenvironment. In contrast, low ROSig indicated a
more abundant cellular matrix and more active immune signaling. Low ROSig
has a higher tumor mutation load and copy number load. Finally, we found that
low ROSig patients were more sensitive to doxorubicin and immunotherapy.
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Conclusion: In this study, we developed a robust and effective ROSig model that
can be used as a reliable indicator for prognosis and treatment decisions in TNBC
patients. This ROSig also allows a simple assessment of TNBC heterogeneity in
terms of biological function, immune microenvironment, and genomic variation.

KEYWORDS

triple negative breast cancer (TNBC), reactive oxygen species (ROS), machine-learning,
chemotherapy, immunotherapy

Introduction

The incidence of breast cancer (BC) has gradually increased in
recent years and has been recognized as one of the most frequently
diagnosed types of cancer (1, 2). BC is a type of tumor that is highly
heterogeneous, with major molecular subtypes defined according to
different hormone receptor expressions (estrogen receptor (ER),
progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER2)) (3). Triple-negative breast cancer (TNBC),
which does not overexpress HER2 and is devoid of hormone
receptor expression (ER/PR), is an invasive subtype that usually
exhibits extensive intratumoral heterogeneity (3). Due to the
extensive intratumoral heterogeneity, TNBC lacks effective
biomarkers and poses a difficult challenge for targeted therapy,
with patients often experiencing treatment resistance (4). In clinical
practice, TNBC has a high rate of early recurrence and is more
susceptible to metastasis, making it the BC subtype with the poorest
prognosis (5). Despite emerging research that has made multiple
advances in elucidating the mechanisms of tumor progression, the
clinical outcomes of TNBC remain worrisome. This grim fact
underscores the urgent need to find reliable biomarkers for
TNBC and to develop novel, effective treatments.

Reactive oxygen species (ROS) are byproducts of various
aerobic metabolic pathways and are more reactive but less long-
lived than common oxygen molecules (6). Excessive ROS
enrichment has been detected in various cancers, and a dual role
of ROS in the cancer process has been recognized (7). On the one
hand, ROS can activate protumorigenic signaling, regulate cancer
cell proliferation and differentiation, and drive DNA damage and
chromosomal instability in the nucleus (6). This set of modulations
undoubtedly increases intratumor heterogeneity. On the other
hand, ROS can be involved in multiple cell death pathways by
way of oxidative stress and induce apoptosis in tumor cells (8). In
contrast to normal cells, abnormal oxidation-reduction
homeostasis is maintained within tumor cells, sustaining
activation of pro-tumor pathways and anti-apoptosis (8). In light
of these findings, targeting the ROS pathway has emerged as a new
direction in the treatment of cancer, where modulating tumor cell
ROS levels can induce apoptosis and increase sensitivity to
chemotherapeutic agents (9, 10). In addition, new studies have
focused on immune cells in the microenvironment, proposing that
ROS can regulate the activity and function of a variety of immune
cells (11, 12). For example, excess ROS can act as a potential
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antigenic stimulus to convene dendritic cells and T cells in the
microenvironment and increase their infiltration levels, thus
effectively increasing antitumor responses (13, 14). In addition, it
has also been found that regulation of ROS concentration can
reduce the secretion of immunosuppressive cytokines and decrease
the summoning of suppressive immune cells, thus avoiding
immune escape (15). Taken together, ROS may also function as
an effective target for immunotherapy. In recent years, targeted
therapies and immunotherapy have become effective complements
to conventional chemotherapy and have amazing potential in
improving the prognosis of TNBC patients. However, further
research is still needed on how to accurately modulate ROS to
increase targeted therapy and immunotherapy, and the
development of effective biomarkers is urgently needed.

In this study, we integrated sequencing data from TCGA and
Metabric to systematically analyze the ROS regulatory pathways in
TNBC and identified 24 potential ROS regulatory factors. An
optimized bioindicator ROS signature (ROSig) was developed
through an integrated machine learning pipeline. The prognostic
significance, biological and immunological heterogeneity, and
clinical application potential of ROSig were subsequently
evaluated in detail. Furthermore, our findings were confirmed by
single-cell sequencing data and cell counting kit-8 (CCKS)
experiments. Our study reveals the possibility of ROS as a novel
TNBC bioindicator, providing new insights into the prognosis and
combination treatment options for TNBC patients.

Methods
Data acquisition and preprocessing

We retrieved BC data from TCGA using the UCSC Xena platform
(https://xena.ucsc.edu/), selected samples with a pathological diagnosis
of TNBC, and enrolled a total of 195 patients as a TCGA-TNBC cohort
after excluding patients with missing clinical information (follow-up,
staging, age). The corresponding RNA-seq, maf mutation data, and
copy number variation (CNV) data processed by Gistic 2.0 were
downloaded. Subsequently, transcriptional profiles and patient
information for the Breast-Metabric cohort were downloaded via the
cBioPortal platform (http://www.cbioportal.org/), a dataset that
included a total of 418 TNBC patients and was used as an external
validation cohort (16).
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To assess the applicability of ROSig for immunotherapy
prediction, we downloaded RNA-seq data from two well-
established immunotherapy cohorts containing clinical follow-up
data as well as detailed records of the number of mutations and
neoantigens: a. the Imvigor210 cohort containing 298 patients with
bladder cancer who received anti-PD-L1 therapy; b. the 121-patient
melanoma Liu David cohort, where patients received anti-PD-1
therapy (17, 18). All RNA-Seq data were log2 normalized and z
scored using the scale function.

Finally, we downloaded the single-cell transcriptome
GSE176078, a dataset containing 10 primary TNBC samples with
a total of 42,112 cells. The “seruat” package was used for
normalization and cell clustering according to the original
parameters (19). Specifically, we retained cells with >200
expressed genes and <20% mitochondrial gene content. Using the
default parameter “NormalizeData” to normalize the expression
profile, 2000 feature genes were selected for dimensionality
reduction. Adjacent modules were identified based on 30
principal components and a resolution of 0.8, and the cell types
were identified according to the original annotation file (19).

Machine learning -based system pipeline
for generating ROSig

We collected ROS-related pathways from the ontology gene set
in the MSIGDB (https://www.gsea-msigdb.org/gsea/msigdb)
database, containing a total of 406 ROS-related genes in 15
pathways (20). A detailed list of ROS pathways is provided in
Table S1. To systematically and efficiently retrieve the best
combination of machine learning models to generate the most
reliable ROSig. We performed the following pipeline: a. Single-
factor Cox regression to retrieve indicators with significant
prognostic efficacy in ROS-regulated pathways (p<0.05); b.
Integration of nine well-established machine-learning algorithms,
including CoxBoost, stepwise Cox, Supervised Principal
Component (SuperPC), Elastic Network (Enet), generalized
augmented regression model (GBM), Random Survival Forest
(RSF), Survival Support Vector Machine (survival-SVM), Lasso-
penalty Cox regression (LASSO), and Ridge. A combination of two
algorithms, one for filtering variables and the other for constructing
the model, was composed, resulting in the final 63 combinations of
algorithms (21). The default parameters were applied, and five
cross-validations were performed to avoid overfitting. c. The
constructed models were used in the Metabric queue to verify the
performance, and the best model was selected by the C-index, with a
higher C-index indicating a more accurate model (22). ROSig for
different datasets was generated using the best model by the predict
function, and high and low ROSig patients were classified according
to the median of ROSig.

Detection of cell proliferation

We purchased two TNBC cell lines (MDA-MB-231 and BT549)
from Shanghai EK Bioscience Co. We then transfected the cells
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using LipofectamineTM 2000 transfection reagent (Invitrogen,
USA) according to the instructions to silence the target genes and
set up a blank control. CCK-8 (Bioss, China) was used to measure
the proliferation rate of TNBC cell lines. Three chambers of
different groups were selected at 0, 12, 24, 48, and 72 hours.
Subsequently, 10 ml of CCK-8 was added and incubated at 37°C
for two hours according to the instructions. The absorbance value at
450 nm was measured to estimate the proliferation rate. All cells
were grown in DMEM containing 10% FBS and incubated in a cell
culture incubator at 37°C with 5% CO.,.

Detection of cell invasion

After transfected TNBC cells were cultured for 48 hours, they
were inoculated into the upper chamber of a Transwell plate coated
with Matrigel solution (BD Biocoat, USA). After incubation in the
incubator for 48 h, the cells were fixed with 4% paraformaldehyde
and stained with 0.1% crystalline violet. The invasion level of cells
was observed by light microscopy, and cells were counted by
Image] software.

Dissecting the heterogeneity of
biological functions and the
immune microenvironment

Differentially expressed genes (DEGs) from different ROSig
subgroups were screened using the “limma” software package
with a threshold of fold change>2 and adjusted p value<0.05 and
functionally annotated and enriched through the Metascape website
(https://metascape.org/gp). Subsequently, the enriched KEGG
pathway was assessed by GSEA software (version 4.1.0) for
different ROSig subgroups. The relative activity of the
HALLMARK gene set was assessed using the ssGSEA algorithm
based on the “gsva” package. In addition, markers for antitumor
immune circulation were collected according to previous definitions
(23). We then used the “CIBERSORT” algorithm to estimate
the relative infiltration abundance of 22 immune cells in
the microenvironment based on transcriptional profiles (24). The
individual patient’s Estimate score was also estimated by the
“ESTIMATE” algorithm (25). The homologous recombination
defect (HRD) score, intratumor heterogeneity, indel neoantigens,
and SNV neoantigens of TCGA-TNBC patients were retrieved from
the previous literature (26). The “Nebulosa” package was used to
display the density of ROSig in different cells (27). Finally, the
“CellChat” package was used in the single-cell dataset to identify
possible crosstalk between different cells in the tumor
microenvironment of different ROSig subgroups (28).

Dissecting the heterogeneity of
genomic variants

For the maf mutation data, we used the “maftools” package for
processing and analysis (29). The total number of nonsynonymous
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mutations in individual samples was first calculated, and then high
frequency mutated genes were identified based on a threshold of
mutation frequency >5, and differences in mutation frequency
between ROSig groups were assessed. Chromosomal
amplifications and deletions in CNV data were identified
according to a threshold of 0.2. “Complexheatmap” was used to
present CNV profiles of different ROSig groups. The total number
of amplifications and deletions of individual samples were counted
and presented with the ggplot2 package.

Assessing the potential of ROSig for
clinical application

We evaluated the predictive potential of ROSig for chemotherapy,
targeted therapies, and immunotherapy. First, the IC50 values of the
samples for chemotherapeutic agents were predicted using the ridge
regression function in the “pRRophetic” package based on the GDSC
database (version 2016.) (30). Subsequently, the sensitivity of different
ROSig patients to immunotherapy was assessed by the TIDE
algorithm (http://tide.dfci.harvard.edu). We uploaded the top 150
differentially expressed genes to the Cmap database (https://clue.io/)
to predict the potential small molecule agents that may target ROS.
Finally, the predicted sensitivity to immunotherapy was assessed by
ROSig generated in two established immunotherapy cohorts
(Imvigor210 and Liu David).

Statistical analysis

All statistics and plots were performed in the R environment
(version 4.1.0). For the comparison of two groups, Student’s t test or
Wilcoxon’s rank test was chosen according to the data structure.
Fisher’s exact test was used for the comparison of rank data. The
log-rank test was used to detect differences between survival curves.
Correlation analysis was performed by the Pearson coefficient.
Two-tailed P<0.05 was set as the threshold of significance if not
otherwise stated.

Results

Dissecting the transcriptome features of
ROS-regulated genes in TCGA-TNBC

We first searched for indicators of independent prognostic
efficacy in the ROS regulatory pathway and finally identified 24
significant regulators (Figure 1A). Among them, HBA2 and HSF1
were the two most significant risk factors. Subsequently, we mapped
the correlation network of these 24 ROS modifiers, and the results
showed that all 23 indicators except PARP1 were highly positively
correlated (Figure 1B). Interestingly, PARP1 was the only protective
factor. We summarized their mutational landscapes, and the results
showed that missense mutations accounted for the highest percentage
and that PARP1 was the gene with the highest mutation frequency
(Figure 1C). More interestingly, we found that PARP1 and HSF1
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were the most frequently amplified genes, while F2RL1, GPX3, and
PDGFRB were the three genes with the highest deletion frequency
(Figure 1D). Figure 1E shows the CNV profiles of patients with
different stages of TNBC in detail, and we can found that a higher
proportion of TNBC patients in stage II in the entire dataset.

Integrating machine learning pipeline to
build a robust ROS signature

As stated in the methods section, we imported 24 independently
prognostic ROS modulators into the machine learning algorithm
pipeline and performed a 5-fold cross-validation. Based on the
average C-index, we found that Coxboost+survivalSVM was the
best combination (C-index: 0.736 for TCGA; 0.545 for Metabric).
Therefore, we applied this combination to generate ROSig
(Figure 2A) in TCGA and Metabric queues. The results of the
survival analysis indicate a statistically significant impact of risk
stratification utilizing ROSig in both cohorts. Specifically, patients
classified as having a high ROSig exhibited significantly worse
survival outcomes. (Figures 2B, C). ROC analysis showed that
ROSig was an excellent predictor in the TCGA cohort
(Figure 2D). In contrast, in the Metabric cohort, ROSig was
superior at 1 year but poor at 3 and 5 years (Figure 2E). TROC
compared the predictive merits of ROSig with age and stage metrics.
In the TCGA cohort, ROSig outperformed Stage in predictive
efficacy at 4 years with increasing time (Figure 2F), whereas in
the Metabric cohort, ROSig had better predictive performance than
Stage over a five-year period. (Figure 2G).

Knockdown of HSF1 inhibits the
proliferation and invasion of breast cancer
cells in vitro

We then examined the effect of core genes on the malignant
phenotype of BC in the ROSig model in vitro. Specifically, Coxboost
was used as a screening algorithm to select the 9 best indicators,
with HSF1 having the leading edge (Figure 3A). To verify the
promoting effect of HSF1 on tumor progression, we performed a
CCK-8 assay in two BC cell lines (MDA-MB-231 and BT549), and
the results showed a significant downward trend in the cell
proliferation level after knockdown of HSF1 (Figure 3B).
Transwell assays showed that the number of invasive BC cell lines
transfected with si-HSF1 was significantly lower than that of BC cell
lines transfected with si-NC (Figure 3C). In summary, HSF1 can
promote the proliferation and invasion of BC cell lines in vitro.

Systematic evaluation of the predictive
benefit of ROSig

We searched for published gene signatures used to predict the
prognosis of TNBC and collected a total of 38 prediction models based
on RNA transcriptional profiles. The detailed gene signature was
provided in Table S2. We excluded models with <3 valid genes at
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FIGURE 1

Genomic profiling of the driving ROS indicators. (A) The forest plot shows the results of the univariate Cox regression for the 24 ROS indicators.
(B) The correlation network of 24 ROS indicators in TCGA-TNBC. (C) Summary of single nucleotide variants of 24 ROS indicators in TCGA-TNBC.
(D) Summary of copy number variants of 24 ROS indicators in TCGA-TNBC. (E) The landscape of copy number variants of 24 ROS indicators in

different stage patients.

the time of model application and finally compared the advantages of
31 published models with ROSig. The results showed that ROSig was
the best predictor in the TCGA cohort and had significantly higher
predictive efficacy than 19 publicly available models (Figure 4A). In the
Metabric cohort, ROSig was the fourth most effective metric and
showed significant advantages in comparison with the three models
(Figure 4A). Specifically, for our study, the C-index indicated that
ROSig is an indicator with potential for clinical application (Figure 4B).
Subgroup analysis indicated that ROSig performed poorly in predicting
patients in the early stage (Stage 1) but had independent prognostic
efficacy in all other subgroups (Figure 4C). More convincingly, both
univariate and multifactorial Cox regression analyses confirmed ROSig
as an independent prognostic indicator for both TNBC cohorts
(Figures 4D, E).

ROSig-based individual risk stratification

To better facilitate the clinical application of ROSig, we
integrated ROSig, age, and stage and developed a nomogram for
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rapid clinical application (Figure 5A). The calibration curve showed
that the ROSig-based nomogram model showed good predictive
performance at 1, 3, and 5 years (Figure 5B), and the TROC curve
showed that the nomogram model was the best predictor over a 5-
year cancer cycle (Figure 5C). More convincingly, the decision
curve analysis (DCA) curve supports this conclusion, with the
nomogram model having satisfactory decision gains at the 1-year,
3-year and 5-year points (Figure 5D).

ROSig-based heterogeneity at
single-cell resolution

We then used single-cell datasets to resolve the heterogeneity of
the microenvironment in different ROSig groups from more specific
cellular interactions. We identified 9 cell subtypes based on the
original parameters (Figure 6A). We then found a higher
proportion of low ROSig cells in B and T cells and a higher
proportion of high ROSig cells in cancer epithelial cells, myeloid
cells, and endothelial cells (Figure 6B). Low ROSig cells were more
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Evaluation of the ROSig model. (A) Comparing the accuracy of ROSig with 31 published molecular signatures for TNBC. (B) C-index for ROSig and
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(E) Multivariate Cox regression analysis of OS in TCGA and meta-GEO cohorts. *P<0.05, **P<0.01, ***P<0.001.

predominant in B and T cells, while high ROSig cells were more
abundant in cancer epithelial, myeloid, and endothelial cells
(Figure 6C). The gene expression of the final ROSig model is also
shown in Figure 6D, where HSFI is expressed at higher levels not
only in epithelial cells but also in T cells. We identified significant
cellular exchange pairs based on a threshold of P<0.05, which
showed that cells with low ROSig had more overall incoming and
outgoing communication pairs (Figure 6E). Figure 6F shows
detailed exchange pathways, there are fewer communicating
pathways in high ROSig cells. In contrast, there are more
communicating pathways in low ROSig cells, and most of them
are related to the immune system (e.g., CXCL, TNF. IL16, etc.)
(31-33).
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Dissecting the biological heterogeneity of
different ROSig groups

We then systematically assessed the potential biological
functional heterogeneity behind different ROSig levels. First, the
DEGs of different ROSig subgroups were functionally enriched.
The results showed that DEGs in the high ROSig group were
mainly involved in cell division, cell cycle-related pathways
(including G2/M checkpoints, etc.) (Figure 7A). DEGs in the low
ROSig group were mainly enriched in the extracellular matrix and
cytoskeleton-related pathways (Figure 7B). GSEA showed that DEGs
in the high ROSig group were mainly enriched in cell cycle-related
pathways such as DNA replication, ribosome, and mismatch repair
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patients. (B) The calibration curves for the nomogram at 1, 3, and 5 years. (C) TimeROC curves comparing the predictive accuracy of the nomogram
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(Figure 7C). In contrast, the pathways upregulated in the low ROSig
group were mainly the gap junction, lysosome, and TGF - pathways
(Figure 7D). Finally, we evaluated the correlation between ROSig and
cancer marker pathways (HALLMARK set) and showed that ROSig
was positively correlated with cell cycle-related pathways and
metabolic-related pathways and negatively correlated with signaling
pathways such as TGE-f, interferon, IL6-JAK-STAT3 and
MYC (Figure 7E).

Dissecting immune heterogeneity at
different ROSig levels

To analyze the balance of the immune microenvironment at
different ROSig levels from multiple perspectives, we analyzed the
relationship between Estimate score, immune cell infiltration
abundance and checkpoint activity with ROSig. Figure 8A
summarizes the immunological profile of ROSig. We found that
high ROSig corresponded to higher tumor purity, stromal score, M2
macrophage abundance, and resting mast cell abundance. In
contrast, the low ROSig group had a higher Estimate score,
plasma cell and activated CD4-T-cell abundance, and higher
LAG-3 expression (Figure 8A). In addition, we found that ROSig
was significantly positively correlated with tumor purity, M2
macrophages, and resting dendritic cells (Figure 8B). Plasma cells,
CD4-T cells, PD-1 and CTLA-4 were significantly negatively
correlated with ROSig (Figure 8B). We then assessed the
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antitumor immune circulating activity in different ROSig groups,
and the results showed that the low ROSig group was more active in
Step 4 B-cell and CD8+ T-cell convening as well as in step 7
(Figure 8C). However, cloud and rain plots showed no significant
difference in homologous chromosome recombination between the
two ROSig subgroups (Figure 8D). However, tumor heterogeneity
was greater in the high ROSig group (Figure 8E), and indel
neoantigens and SNV neoantigens were more frequent in the low
ROSig group (Figures 8F, G).

Dissecting the potential genomic
heterogeneity of ROSig

We resolved the genomic heterogeneity of different ROSig levels
from the perspective of single nucleotide mutations and CNV. First,
the Rainy plot showed that the low ROSig group had a higher
number of nonsynonymous mutations (Figure 9A). Subsequently,
after searching for high-frequency mutated genes, we found four
significant mutations in the low ROSig group: FBXW7, HUWE],
LYST, and TET3. FLG was a significantly mutated gene in the high
ROSig group (Figure 9B). A detailed mutation landscape of high-
frequency mutated genes was shown by waterfall plots (Figure 9C).
We then summarized the CNV profiles of different ROSig groups,
and the results showed that there were more CNV events in the low
ROSig group. HSF1, in particular, underwent more amplification in
the low ROSig group (Figure 9D). In addition, the overall
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chromosome amplification number and the number of deletion
segments were also significantly and negatively correlated with
ROSig, and both were upregulated in the low ROSig group
(Figures 9E, F).

Assessment of the clinical application
potential of ROSig

We first evaluated the sensitivity of different ROSig groups to
three first-line TNBC chemotherapeutic agents (docetaxel,
doxorubicin, and paclitaxel). The results showed no significant
difference in the sensitivity of different ROSig groups to docetaxel
and paclitaxel, but the low ROSig group was more sensitive to
doxorubicin (Figure 10A). We also confirmed this finding in the
validation cohort-Metabric (Figure S1A). Subsequently, the TIDE
algorithm showed that more patients in the low ROSig group may
benefit from immunotherapy (Figure 10B), a result that is also
supported in the validation set (Figure S1B). In addition, 47 small
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molecule compounds potentially targeting ROSig were identified
through the Cmap database, acting on 40 different signaling
pathways (Figure 10C). Subsequently, we generated ROSig in two
immunotherapy cohorts (Imvigor210 and Liu David’s) using the
“predict” function. Survival analysis showed that patients with low
ROSig showed better survival in both cohorts (Figures 10D, E). In
addition, we analyzed the association of ROSig with TMB and
neoantigens in both cohorts. The results showed a significant
negative association between ROSig and neoantigens and
increased neoantigens in low ROSig (Figure 10F). However, this
was not observed in Liu David’s cohort (Figure 10G). In both
cohorts, ROSig was not significantly correlated with TMB
(Figures 10H, I).

Pancancer landscape of ROSig

Finally, we sought to assess whether ROSig can be generalized to
all types of solid tumors. We first observed that ROSig was enriched
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in renal clear cell carcinoma and glioma and that ROSig could serve
as an accurate and robust risk factor in most types of solid tumors
(Figure 11A). We also compared ROSig differences between normal
and cancerous organs. The results showed that most organs caused
an increase in ROSig after carcinogenesis, except for the kidney and
pancreas (Figure 11B). Finally, we evaluated the association of
ROSig with immune cell infiltration from a pancancer perspective
and showed that ROSig was significantly positively associated with
M2 macrophages in most cancer types. In particular, low levels of
ROSig predicted high levels of effector cell infiltration (including
M1 macrophages, T cells, and NK cells) in patients with lung
cancer (Figure 11C).

Discussion

BC has emerged as a major tumor type that affects women’s
health (1, 2). As the most heterogeneous and aggressive molecular
subtype, patients with TNBC often have difficulty responding to
conventional therapies and pose a difficult challenge for targeted
therapies (3). Fortunately, rapid advances in transcriptomics and
single-cell genomics have provided powerful instruments for
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research in the field of precision medicine, and there is hope that
we can find proven biomarkers to assist in prognosis and treatment
decisions for TNBC patients. With the increased understanding of
ROS, it is now believed that modulating ROS levels not only
enhances chemotherapy sensitivity and induces apoptosis in
tumor cells but also modulates immune cell activity to generate
stronger antitumor immunity (11). Here, we sought to explore the
key regulators of ROS in TNBC as effective biomarkers through a
systematic multiomics study.

In this study, we systematically searched the transcriptional
profile of TCGA-TNBC and identified 24 potential ROS regulators.
We noted that all ROS regulators except PARP1 were risk factors.
Interestingly, the frequency of PARP1 mutations as well as
segmental amplification events were the most common. It was
concluded that PARP1 has prognostic value in a variety of solid
tumors and is involved in maintaining the stability of genomic
genetic material (34). Thus, phenotypic alterations of PARP1 due to
mutations and amplifications may be a factor in TNBC
heterogeneity and poorer prognosis. Advances in machine
learning provide effective new tools for diagnosis, prognosis, and
treatment in clinical oncology (35). We subsequently developed
ROSig for individual patient risk stratification via an integrated
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machine-learning pipeline. We confirmed that ROSig is a robust
prognostic indicator of OS in TNBC patients with excellent
predictive performance in different TNBC cohorts. More
convincingly, we compared the prognostic efficacy of ROSig with
31 published molecular signatures and found that ROSig has
leading predictive accuracy. In addition, we also confirmed
through CCK8 that the core ROS regulator HSF1 plays a
protumor proliferation role in BC cell lines.

ROS have clear regulatory effects on a variety of pro-tumor
signals, and manipulation of ROS levels in tumor tissues is expected
to be a novel option for cancer treatment. Therefore, we
subsequently resolved the differences in biological pathways
between different ROSig subgroups from a single-cell perspective
and a bulk perspective. Overall, patients in the high ROSig group
had less crosstalk between cells, whereas patients in the low ROSig
group had abundant communication between tumor cells and cells
in the microenvironment. Specifically, the MIF and MAPK
pathways were more active in the high ROSig group. In contrast,
most antitumor immune signaling pathways (e.g., TNF, CXCL,
IL16, and IFN-y) were active in the low ROSig group. In addition,
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functional enrichment analysis also confirmed that patients in the
high ROSig group were mainly enriched in cell cycle-related
pathways. Patients with low ROSig were more enriched in
immune-related pathways. ROS induce more antigenic stimuli at
appropriate levels to stimulate antitumor immunity (36, 37), and
more antitumor immune signals undoubtedly enhance tumor
killing by effector immune cells (38, 39). Therefore, we
hypothesize that the good prognosis of patients with low ROSig
may be due to an appropriate “ROS-immune” balance that allows
for an enhanced antitumor immune response. This may be a new
inspiration for targeting ROS as an adjunct to immunotherapy.
To explore how ROSig characterizes the different immune
microenvironments, we then evaluated the microenvironmental
composition of patients in different ROSig groups in detail. We
found a significant increase in tumor purity, stromal score and M2
macrophage abundance in high ROSig. Previous studies have
demonstrated the suppressive effect of M2 macrophages on
antitumor immune responses, and abundant tumor cells may also
secrete more suppressive cytokines to promote immune escape (40,
41). This ultimately leads to high ROSig corresponding to more
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heterogeneity and poorer prognosis of TNBC patients. In contrast,
more checkpoint expression and neoantigens were present in the
low ROSig group, which may promote the response of immune cells
to checkpoint inhibitors (35). Therefore, we hypothesize that
patients in the low ROSig group are more suitable
for immunotherapy.

Alterations in the genetic material of the genome have a huge
impact on the function of proteins and ultimately cause phenotypic
changes. In addition, tumor mutations may generate more specific
antigenic peptides to enhance immunotherapy sensitivity.
Therefore, we subsequently analyzed the differences in genomic
variants in patients from different ROSig groups. Surprisingly,
patients with low ROSig had a higher tumor mutation load and
significantly higher amplified and deletion segments on
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chromosomes, which are possible markers for the benefit of
immunotherapy in clinical practice. In particular, significant FLG
mutations were found in the high ROSig group, and studies suggest
that loss of FLG function due to mutations may increase the risk of
basal cell carcinoma, which may also be a mechanism for the worse
prognosis of patients in the high ROSig group.

Finally, we evaluated the potential of ROSig for clinical
application from multiple perspectives. First, TNBC patients with
low ROSig had lower IC50 values for doxorubicin, suggesting a
clinical search for TNBC patients suitable for doxorubicin regimens
based on ROSig levels. In addition, the TIDE algorithm confirmed
the presence of a greater immunotherapy response in the low ROSig
patient group. To validate the sensitivity of immunotherapy, we
generated ROSig in the immunotherapy IMvigor210 cohort and Liu
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David’s cohort and demonstrated that ROSig is an unfavorable
prognostic factor for OS. However, we did not find a potential
correlation between ROSig and tumor mutations and neoantigens.
More studies are needed to elucidate how different levels of ROS
affect sensitivity to immunotherapy.

ROSig has a surprisingly promising clinical application and can
be detected in actual clinical practice by simple PCR to generate
ROSig. Although the clinical application of ROSig in TNBC is
exciting, we should also acknowledge some limitations of the study.
First, the final model containing ROS genes should be further
reduced to minimize financial expenses and facilitate rapid
detection. Second, our analysis and predictions are based on
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retrospective data, and further multicenter real-world studies are
needed to confirm the reliability of the model. Finally, the dataset
only records a portion of the genomic data, and the actual genomic
dynamic changes need more assays to assess, and our study may
have overlooked some potential crosstalk and targets.

Conclusion

In summary, we systematically evaluated potential ROS
regulators in TNBC and developed a stable and efficient ROSig
based on large-scale transcriptomic data and a well-established
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machine-learning pipeline to assist in risk stratification and
treatment decisions for TNBC patients. This ROSig also allows a
simple assessment of TNBC heterogeneity in terms of biological
function, immune microenvironment, and genomic variation.
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