
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Dongmei Zhang,
Sichuan University, China

REVIEWED BY

Shaohua Chen,
Guangxi Medical University Cancer
Hospital, China
Zheng Yuan,
China Academy of Chinese Medical
Sciences, China
Ting Yu,
Sichuan University, China

*CORRESPONDENCE

Xiaochen Zhao

casslias@126.com

Chihua Wu

18749019@qq.com

†These authors share first authorship

RECEIVED 29 March 2023

ACCEPTED 02 June 2023
PUBLISHED 19 June 2023

CITATION

Li J, Liang Y, Zhao X and Wu C (2023)
Integrating machine learning algorithms to
systematically assess reactive oxygen
species levels to aid prognosis and
novel treatments for triple -negative
breast cancer patients.
Front. Immunol. 14:1196054.
doi: 10.3389/fimmu.2023.1196054

COPYRIGHT

© 2023 Li, Liang, Zhao and Wu. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 19 June 2023

DOI 10.3389/fimmu.2023.1196054
Integrating machine learning
algorithms to systematically
assess reactive oxygen species
levels to aid prognosis and novel
treatments for triple -negative
breast cancer patients

Juan Li1,2†, Yu Liang1,2†, Xiaochen Zhao2,3* and Chihua Wu1,2*

1Department of Breast Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science
and Technology of China, Chengdu, China, 2Chinese Academy of Sciences Sichuan Translational
Medicine Research Hospital, Chengdu, China, 3Department of Hepatobiliary Surgery, Sichuan
Provincial People’s Hospital, University of Electronic Science and Technology of China,
Chengdu, China
Introduction: Breast cancer has become one of the top health concerns for

women, and triple-negative breast cancer (TNBC) leads to treatment resistance

and poor prognosis due to its high degree of heterogeneity and malignancy.

Reactive oxygen species (ROS) have been found to play a dual role in tumors,

and modulating ROS levels may provide new insights into prognosis and

tumor treatment.

Methods: This study attempted to establish a robust and valid ROS signature

(ROSig) to aid in assessing ROS levels. The driver ROS prognostic indicators were

searched based on univariate Cox regression. A well-established pipeline

integrating 9 machine learning algorithms was used to generate the ROSig.

Subsequently, the heterogeneity of different ROSig levels was resolved in terms

of cellular communication crosstalk, biological pathways, immune

microenvironment, genomic variation, and response to chemotherapy and

immunotherapy. In addition, the effect of the core ROS regulator HSF1 on

TNBC cell proliferation was detected by cell counting kit-8 and transwell assays.

Results: A total of 24 prognostic ROS indicators were detected. A combination of

the Coxboost+ Survival Support Vector Machine (survival-SVM) algorithm was

chosen to generate ROSig. ROSig proved to be the superior risk predictor for

TNBC. Cellular assays show that knockdown of HSF1 can reduce the proliferation

and invasion of TNBC cells. The individual risk stratification based on ROSig

showed good predictive accuracy. High ROSig was identified to be associated

with higher cell replication activity, stronger tumor heterogeneity, and an

immunosuppressive microenvironment. In contrast, low ROSig indicated a

more abundant cellular matrix and more active immune signaling. Low ROSig

has a higher tumor mutation load and copy number load. Finally, we found that

low ROSig patients were more sensitive to doxorubicin and immunotherapy.
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Conclusion: In this study, we developed a robust and effective ROSig model that

can be used as a reliable indicator for prognosis and treatment decisions in TNBC

patients. This ROSig also allows a simple assessment of TNBC heterogeneity in

terms of biological function, immune microenvironment, and genomic variation.
KEYWORDS
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Introduction

The incidence of breast cancer (BC) has gradually increased in

recent years and has been recognized as one of the most frequently

diagnosed types of cancer (1, 2). BC is a type of tumor that is highly

heterogeneous, with major molecular subtypes defined according to

different hormone receptor expressions (estrogen receptor (ER),

progesterone receptor (PR), and human epidermal growth factor

receptor 2 (HER2)) (3). Triple-negative breast cancer (TNBC),

which does not overexpress HER2 and is devoid of hormone

receptor expression (ER/PR), is an invasive subtype that usually

exhibits extensive intratumoral heterogeneity (3). Due to the

extensive intratumoral heterogeneity, TNBC lacks effective

biomarkers and poses a difficult challenge for targeted therapy,

with patients often experiencing treatment resistance (4). In clinical

practice, TNBC has a high rate of early recurrence and is more

susceptible to metastasis, making it the BC subtype with the poorest

prognosis (5). Despite emerging research that has made multiple

advances in elucidating the mechanisms of tumor progression, the

clinical outcomes of TNBC remain worrisome. This grim fact

underscores the urgent need to find reliable biomarkers for

TNBC and to develop novel, effective treatments.

Reactive oxygen species (ROS) are byproducts of various

aerobic metabolic pathways and are more reactive but less long-

lived than common oxygen molecules (6). Excessive ROS

enrichment has been detected in various cancers, and a dual role

of ROS in the cancer process has been recognized (7). On the one

hand, ROS can activate protumorigenic signaling, regulate cancer

cell proliferation and differentiation, and drive DNA damage and

chromosomal instability in the nucleus (6). This set of modulations

undoubtedly increases intratumor heterogeneity. On the other

hand, ROS can be involved in multiple cell death pathways by

way of oxidative stress and induce apoptosis in tumor cells (8). In

contrast to normal cells, abnormal oxidation−reduction

homeostasis is maintained within tumor cells, sustaining

activation of pro-tumor pathways and anti-apoptosis (8). In light

of these findings, targeting the ROS pathway has emerged as a new

direction in the treatment of cancer, where modulating tumor cell

ROS levels can induce apoptosis and increase sensitivity to

chemotherapeutic agents (9, 10). In addition, new studies have

focused on immune cells in the microenvironment, proposing that

ROS can regulate the activity and function of a variety of immune

cells (11, 12). For example, excess ROS can act as a potential
02
antigenic stimulus to convene dendritic cells and T cells in the

microenvironment and increase their infiltration levels, thus

effectively increasing antitumor responses (13, 14). In addition, it

has also been found that regulation of ROS concentration can

reduce the secretion of immunosuppressive cytokines and decrease

the summoning of suppressive immune cells, thus avoiding

immune escape (15). Taken together, ROS may also function as

an effective target for immunotherapy. In recent years, targeted

therapies and immunotherapy have become effective complements

to conventional chemotherapy and have amazing potential in

improving the prognosis of TNBC patients. However, further

research is still needed on how to accurately modulate ROS to

increase targeted therapy and immunotherapy, and the

development of effective biomarkers is urgently needed.

In this study, we integrated sequencing data from TCGA and

Metabric to systematically analyze the ROS regulatory pathways in

TNBC and identified 24 potential ROS regulatory factors. An

optimized bioindicator ROS signature (ROSig) was developed

through an integrated machine learning pipeline. The prognostic

significance, biological and immunological heterogeneity, and

clinical application potential of ROSig were subsequently

evaluated in detail. Furthermore, our findings were confirmed by

single-cell sequencing data and cell counting kit-8 (CCK8)

experiments. Our study reveals the possibility of ROS as a novel

TNBC bioindicator, providing new insights into the prognosis and

combination treatment options for TNBC patients.
Methods

Data acquisition and preprocessing

We retrieved BC data from TCGA using the UCSC Xena platform

(https://xena.ucsc.edu/), selected samples with a pathological diagnosis

of TNBC, and enrolled a total of 195 patients as a TCGA-TNBC cohort

after excluding patients with missing clinical information (follow-up,

staging, age). The corresponding RNA-seq, maf mutation data, and

copy number variation (CNV) data processed by Gistic 2.0 were

downloaded. Subsequently, transcriptional profiles and patient

information for the Breast-Metabric cohort were downloaded via the

cBioPortal platform (http://www.cbioportal.org/), a dataset that

included a total of 418 TNBC patients and was used as an external

validation cohort (16).
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To assess the applicability of ROSig for immunotherapy

prediction, we downloaded RNA-seq data from two well-

established immunotherapy cohorts containing clinical follow-up

data as well as detailed records of the number of mutations and

neoantigens: a. the Imvigor210 cohort containing 298 patients with

bladder cancer who received anti-PD-L1 therapy; b. the 121-patient

melanoma Liu David cohort, where patients received anti-PD-1

therapy (17, 18). All RNA-Seq data were log2 normalized and z

scored using the scale function.

Finally, we downloaded the single-cell transcriptome

GSE176078, a dataset containing 10 primary TNBC samples with

a total of 42,112 cells. The “seruat” package was used for

normalization and cell clustering according to the original

parameters (19). Specifically, we retained cells with >200

expressed genes and <20% mitochondrial gene content. Using the

default parameter “NormalizeData” to normalize the expression

profile, 2000 feature genes were selected for dimensionality

reduction. Adjacent modules were identified based on 30

principal components and a resolution of 0.8, and the cell types

were identified according to the original annotation file (19).
Machine learning -based system pipeline
for generating ROSig

We collected ROS-related pathways from the ontology gene set

in the MSIGDB (https://www.gsea-msigdb.org/gsea/msigdb)

database, containing a total of 406 ROS-related genes in 15

pathways (20). A detailed list of ROS pathways is provided in

Table S1. To systematically and efficiently retrieve the best

combination of machine learning models to generate the most

reliable ROSig. We performed the following pipeline: a. Single-

factor Cox regression to retrieve indicators with significant

prognostic efficacy in ROS-regulated pathways (p<0.05); b.

Integration of nine well-established machine-learning algorithms,

including CoxBoost, stepwise Cox, Supervised Principal

Component (SuperPC), Elastic Network (Enet), generalized

augmented regression model (GBM), Random Survival Forest

(RSF), Survival Support Vector Machine (survival-SVM), Lasso-

penalty Cox regression (LASSO), and Ridge. A combination of two

algorithms, one for filtering variables and the other for constructing

the model, was composed, resulting in the final 63 combinations of

algorithms (21). The default parameters were applied, and five

cross-validations were performed to avoid overfitting. c. The

constructed models were used in the Metabric queue to verify the

performance, and the best model was selected by the C-index, with a

higher C-index indicating a more accurate model (22). ROSig for

different datasets was generated using the best model by the predict

function, and high and low ROSig patients were classified according

to the median of ROSig.
Detection of cell proliferation

We purchased two TNBC cell lines (MDA-MB-231 and BT549)

from Shanghai EK Bioscience Co. We then transfected the cells
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using LipofectamineTM 2000 transfection reagent (Invitrogen,

USA) according to the instructions to silence the target genes and

set up a blank control. CCK-8 (Bioss, China) was used to measure

the proliferation rate of TNBC cell lines. Three chambers of

different groups were selected at 0, 12, 24, 48, and 72 hours.

Subsequently, 10 ml of CCK-8 was added and incubated at 37°C

for two hours according to the instructions. The absorbance value at

450 nm was measured to estimate the proliferation rate. All cells

were grown in DMEM containing 10% FBS and incubated in a cell

culture incubator at 37°C with 5% CO2.
Detection of cell invasion

After transfected TNBC cells were cultured for 48 hours, they

were inoculated into the upper chamber of a Transwell plate coated

with Matrigel solution (BD Biocoat, USA). After incubation in the

incubator for 48 h, the cells were fixed with 4% paraformaldehyde

and stained with 0.1% crystalline violet. The invasion level of cells

was observed by light microscopy, and cells were counted by

ImageJ software.
Dissecting the heterogeneity of
biological functions and the
immune microenvironment

Differentially expressed genes (DEGs) from different ROSig

subgroups were screened using the “limma” software package

with a threshold of fold change>2 and adjusted p value<0.05 and

functionally annotated and enriched through the Metascape website

(https://metascape.org/gp). Subsequently, the enriched KEGG

pathway was assessed by GSEA software (version 4.1.0) for

different ROSig subgroups. The relative activity of the

HALLMARK gene set was assessed using the ssGSEA algorithm

based on the “gsva” package. In addition, markers for antitumor

immune circulation were collected according to previous definitions

(23). We then used the “CIBERSORT” algorithm to estimate

the relative infiltration abundance of 22 immune cells in

the microenvironment based on transcriptional profiles (24). The

individual patient’s Estimate score was also estimated by the

“ESTIMATE” algorithm (25). The homologous recombination

defect (HRD) score, intratumor heterogeneity, indel neoantigens,

and SNV neoantigens of TCGA-TNBC patients were retrieved from

the previous literature (26). The “Nebulosa” package was used to

display the density of ROSig in different cells (27). Finally, the

“CellChat” package was used in the single-cell dataset to identify

possible crosstalk between different cells in the tumor

microenvironment of different ROSig subgroups (28).
Dissecting the heterogeneity of
genomic variants

For the maf mutation data, we used the “maftools” package for

processing and analysis (29). The total number of nonsynonymous
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mutations in individual samples was first calculated, and then high

frequency mutated genes were identified based on a threshold of

mutation frequency >5, and differences in mutation frequency

between ROSig groups were assessed . Chromosomal

amplifications and deletions in CNV data were identified

according to a threshold of 0.2. “Complexheatmap” was used to

present CNV profiles of different ROSig groups. The total number

of amplifications and deletions of individual samples were counted

and presented with the ggplot2 package.
Assessing the potential of ROSig for
clinical application

We evaluated the predictive potential of ROSig for chemotherapy,

targeted therapies, and immunotherapy. First, the IC50 values of the

samples for chemotherapeutic agents were predicted using the ridge

regression function in the “pRRophetic” package based on the GDSC

database (version 2016.) (30). Subsequently, the sensitivity of different

ROSig patients to immunotherapy was assessed by the TIDE

algorithm (http://tide.dfci.harvard.edu). We uploaded the top 150

differentially expressed genes to the Cmap database (https://clue.io/)

to predict the potential small molecule agents that may target ROS.

Finally, the predicted sensitivity to immunotherapy was assessed by

ROSig generated in two established immunotherapy cohorts

(Imvigor210 and Liu David).
Statistical analysis

All statistics and plots were performed in the R environment

(version 4.1.0). For the comparison of two groups, Student’s t test or

Wilcoxon’s rank test was chosen according to the data structure.

Fisher’s exact test was used for the comparison of rank data. The

log-rank test was used to detect differences between survival curves.

Correlation analysis was performed by the Pearson coefficient.

Two-tailed P<0.05 was set as the threshold of significance if not

otherwise stated.
Results

Dissecting the transcriptome features of
ROS-regulated genes in TCGA-TNBC

We first searched for indicators of independent prognostic

efficacy in the ROS regulatory pathway and finally identified 24

significant regulators (Figure 1A). Among them, HBA2 and HSF1

were the two most significant risk factors. Subsequently, we mapped

the correlation network of these 24 ROS modifiers, and the results

showed that all 23 indicators except PARP1 were highly positively

correlated (Figure 1B). Interestingly, PARP1 was the only protective

factor. We summarized their mutational landscapes, and the results

showed that missense mutations accounted for the highest percentage

and that PARP1 was the gene with the highest mutation frequency

(Figure 1C). More interestingly, we found that PARP1 and HSF1
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were the most frequently amplified genes, while F2RL1, GPX3, and

PDGFRB were the three genes with the highest deletion frequency

(Figure 1D). Figure 1E shows the CNV profiles of patients with

different stages of TNBC in detail, and we can found that a higher

proportion of TNBC patients in stage II in the entire dataset.
Integrating machine learning pipeline to
build a robust ROS signature

As stated in the methods section, we imported 24 independently

prognostic ROS modulators into the machine learning algorithm

pipeline and performed a 5-fold cross-validation. Based on the

average C-index, we found that Coxboost+survivalSVM was the

best combination (C-index: 0.736 for TCGA; 0.545 for Metabric).

Therefore, we applied this combination to generate ROSig

(Figure 2A) in TCGA and Metabric queues. The results of the

survival analysis indicate a statistically significant impact of risk

stratification utilizing ROSig in both cohorts. Specifically, patients

classified as having a high ROSig exhibited significantly worse

survival outcomes. (Figures 2B, C). ROC analysis showed that

ROSig was an excellent predictor in the TCGA cohort

(Figure 2D). In contrast, in the Metabric cohort, ROSig was

superior at 1 year but poor at 3 and 5 years (Figure 2E). TROC

compared the predictive merits of ROSig with age and stage metrics.

In the TCGA cohort, ROSig outperformed Stage in predictive

efficacy at 4 years with increasing time (Figure 2F), whereas in

the Metabric cohort, ROSig had better predictive performance than

Stage over a five-year period. (Figure 2G).
Knockdown of HSF1 inhibits the
proliferation and invasion of breast cancer
cells in vitro

We then examined the effect of core genes on the malignant

phenotype of BC in the ROSig model in vitro. Specifically, Coxboost

was used as a screening algorithm to select the 9 best indicators,

with HSF1 having the leading edge (Figure 3A). To verify the

promoting effect of HSF1 on tumor progression, we performed a

CCK-8 assay in two BC cell lines (MDA-MB-231 and BT549), and

the results showed a significant downward trend in the cell

proliferation level after knockdown of HSF1 (Figure 3B).

Transwell assays showed that the number of invasive BC cell lines

transfected with si-HSF1 was significantly lower than that of BC cell

lines transfected with si-NC (Figure 3C). In summary, HSF1 can

promote the proliferation and invasion of BC cell lines in vitro.
Systematic evaluation of the predictive
benefit of ROSig

We searched for published gene signatures used to predict the

prognosis of TNBC and collected a total of 38 prediction models based

on RNA transcriptional profiles. The detailed gene signature was

provided in Table S2. We excluded models with <3 valid genes at
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the time of model application and finally compared the advantages of

31 published models with ROSig. The results showed that ROSig was

the best predictor in the TCGA cohort and had significantly higher

predictive efficacy than 19 publicly available models (Figure 4A). In the

Metabric cohort, ROSig was the fourth most effective metric and

showed significant advantages in comparison with the three models

(Figure 4A). Specifically, for our study, the C-index indicated that

ROSig is an indicator with potential for clinical application (Figure 4B).

Subgroup analysis indicated that ROSig performed poorly in predicting

patients in the early stage (Stage 1) but had independent prognostic

efficacy in all other subgroups (Figure 4C). More convincingly, both

univariate and multifactorial Cox regression analyses confirmed ROSig

as an independent prognostic indicator for both TNBC cohorts

(Figures 4D, E).
ROSig-based individual risk stratification

To better facilitate the clinical application of ROSig, we

integrated ROSig, age, and stage and developed a nomogram for
Frontiers in Immunology 05
rapid clinical application (Figure 5A). The calibration curve showed

that the ROSig-based nomogram model showed good predictive

performance at 1, 3, and 5 years (Figure 5B), and the TROC curve

showed that the nomogram model was the best predictor over a 5-

year cancer cycle (Figure 5C). More convincingly, the decision

curve analysis (DCA) curve supports this conclusion, with the

nomogram model having satisfactory decision gains at the 1-year,

3-year and 5-year points (Figure 5D).
ROSig-based heterogeneity at
single-cell resolution

We then used single-cell datasets to resolve the heterogeneity of

the microenvironment in different ROSig groups frommore specific

cellular interactions. We identified 9 cell subtypes based on the

original parameters (Figure 6A). We then found a higher

proportion of low ROSig cells in B and T cells and a higher

proportion of high ROSig cells in cancer epithelial cells, myeloid

cells, and endothelial cells (Figure 6B). Low ROSig cells were more
FIGURE 1

Genomic profiling of the driving ROS indicators. (A) The forest plot shows the results of the univariate Cox regression for the 24 ROS indicators.
(B) The correlation network of 24 ROS indicators in TCGA-TNBC. (C) Summary of single nucleotide variants of 24 ROS indicators in TCGA-TNBC.
(D) Summary of copy number variants of 24 ROS indicators in TCGA-TNBC. (E) The landscape of copy number variants of 24 ROS indicators in
different stage patients.
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FIGURE 3

Knockdown of HSF1 expression affects the proliferation and invasion of breast cancer cell lines. (A) Using the Coxboost algorithm to filter the 9 best
ROS indicators, HSF1 was identified as the core ROS gene. (B) The line graph shows the proliferation levels of different TNBC cell lines after
knockdown of HSF1. (C) Images and statistical analysis of the transwell assay of TNBC cell lines after knockdown of HSF1. *P<0.05, **P<0.01.
FIGURE 2

Systematic pipeline of integrated machine-learning algorithms to construct ROSig. (A) The c-index of a total of 61 algorithm combinations in both
the TCGA and METABRIC cohorts. (B) KM survival curves for the high ROSig and low ROSig groups in the TCGA cohort. (C) KM survival curves for
the high ROSig and low ROSig groups in the Metabric cohort. (D) 1-, 3-, and 5-year ROC curves for ROSig in the TCGA cohort. (E) 1-, 3-, and 5-year
ROC curves for ROSig in the Metabric cohort. (F) TimeROC curves for ROSig and clinical characteristics in the TCGA cohort. (G) TimeROC curves for
ROSig and clinical characteristics in the Metabric cohort.
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predominant in B and T cells, while high ROSig cells were more

abundant in cancer epithelial, myeloid, and endothelial cells

(Figure 6C). The gene expression of the final ROSig model is also

shown in Figure 6D, where HSF1 is expressed at higher levels not

only in epithelial cells but also in T cells. We identified significant

cellular exchange pairs based on a threshold of P<0.05, which

showed that cells with low ROSig had more overall incoming and

outgoing communication pairs (Figure 6E). Figure 6F shows

detailed exchange pathways, there are fewer communicating

pathways in high ROSig cells. In contrast, there are more

communicating pathways in low ROSig cells, and most of them

are related to the immune system (e.g., CXCL, TNF. IL16, etc.)

(31–33).
Frontiers in Immunology 07
Dissecting the biological heterogeneity of
different ROSig groups

We then systematically assessed the potential biological

functional heterogeneity behind different ROSig levels. First, the

DEGs of different ROSig subgroups were functionally enriched.

The results showed that DEGs in the high ROSig group were

mainly involved in cell division, cell cycle-related pathways

(including G2/M checkpoints, etc.) (Figure 7A). DEGs in the low

ROSig group were mainly enriched in the extracellular matrix and

cytoskeleton-related pathways (Figure 7B). GSEA showed that DEGs

in the high ROSig group were mainly enriched in cell cycle-related

pathways such as DNA replication, ribosome, and mismatch repair
FIGURE 4

Evaluation of the ROSig model. (A) Comparing the accuracy of ROSig with 31 published molecular signatures for TNBC. (B) C-index for ROSig and
clinical characteristics in both cohorts. (C) Subgroup analysis of ROSig. (D) Univariate Cox regression analysis of OS in TCGA and meta-GEO cohorts.
(E) Multivariate Cox regression analysis of OS in TCGA and meta-GEO cohorts. *P<0.05, **P<0.01, ***P<0.001.
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(Figure 7C). In contrast, the pathways upregulated in the low ROSig

group were mainly the gap junction, lysosome, and TGF -b pathways

(Figure 7D). Finally, we evaluated the correlation between ROSig and

cancer marker pathways (HALLMARK set) and showed that ROSig

was positively correlated with cell cycle-related pathways and

metabolic-related pathways and negatively correlated with signaling

pathways such as TGF-b, interferon, IL6-JAK-STAT3 and

MYC (Figure 7E).
Dissecting immune heterogeneity at
different ROSig levels

To analyze the balance of the immune microenvironment at

different ROSig levels from multiple perspectives, we analyzed the

relationship between Estimate score, immune cell infiltration

abundance and checkpoint activity with ROSig. Figure 8A

summarizes the immunological profile of ROSig. We found that

high ROSig corresponded to higher tumor purity, stromal score, M2

macrophage abundance, and resting mast cell abundance. In

contrast, the low ROSig group had a higher Estimate score,

plasma cell and activated CD4-T-cell abundance, and higher

LAG-3 expression (Figure 8A). In addition, we found that ROSig

was significantly positively correlated with tumor purity, M2

macrophages, and resting dendritic cells (Figure 8B). Plasma cells,

CD4-T cells, PD-1 and CTLA-4 were significantly negatively

correlated with ROSig (Figure 8B). We then assessed the
Frontiers in Immunology 08
antitumor immune circulating activity in different ROSig groups,

and the results showed that the low ROSig group was more active in

Step 4 B-cell and CD8+ T-cell convening as well as in step 7

(Figure 8C). However, cloud and rain plots showed no significant

difference in homologous chromosome recombination between the

two ROSig subgroups (Figure 8D). However, tumor heterogeneity

was greater in the high ROSig group (Figure 8E), and indel

neoantigens and SNV neoantigens were more frequent in the low

ROSig group (Figures 8F, G).
Dissecting the potential genomic
heterogeneity of ROSig

We resolved the genomic heterogeneity of different ROSig levels

from the perspective of single nucleotide mutations and CNV. First,

the Rainy plot showed that the low ROSig group had a higher

number of nonsynonymous mutations (Figure 9A). Subsequently,

after searching for high-frequency mutated genes, we found four

significant mutations in the low ROSig group: FBXW7, HUWE1,

LYST, and TET3. FLG was a significantly mutated gene in the high

ROSig group (Figure 9B). A detailed mutation landscape of high-

frequency mutated genes was shown by waterfall plots (Figure 9C).

We then summarized the CNV profiles of different ROSig groups,

and the results showed that there were more CNV events in the low

ROSig group. HSF1, in particular, underwent more amplification in

the low ROSig group (Figure 9D). In addition, the overall
FIGURE 5

Individual risk stratification based on ROSig. (A) Constructing a nomogram using ROSig and clinical characteristics for risk stratification of individual
patients. (B) The calibration curves for the nomogram at 1, 3, and 5 years. (C) TimeROC curves comparing the predictive accuracy of the nomogram
and other clinical features. (D) 1-, 3-, and 5-year DCA curves for the nomogram and other clinical characteristics. **P<0.01.
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chromosome amplification number and the number of deletion

segments were also significantly and negatively correlated with

ROSig, and both were upregulated in the low ROSig group

(Figures 9E, F).
Assessment of the clinical application
potential of ROSig

We first evaluated the sensitivity of different ROSig groups to

three first-line TNBC chemotherapeutic agents (docetaxel,

doxorubicin, and paclitaxel). The results showed no significant

difference in the sensitivity of different ROSig groups to docetaxel

and paclitaxel, but the low ROSig group was more sensitive to

doxorubicin (Figure 10A). We also confirmed this finding in the

validation cohort-Metabric (Figure S1A). Subsequently, the TIDE

algorithm showed that more patients in the low ROSig group may

benefit from immunotherapy (Figure 10B), a result that is also

supported in the validation set (Figure S1B). In addition, 47 small
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molecule compounds potentially targeting ROSig were identified

through the Cmap database, acting on 40 different signaling

pathways (Figure 10C). Subsequently, we generated ROSig in two

immunotherapy cohorts (Imvigor210 and Liu David’s) using the

“predict” function. Survival analysis showed that patients with low

ROSig showed better survival in both cohorts (Figures 10D, E). In

addition, we analyzed the association of ROSig with TMB and

neoantigens in both cohorts. The results showed a significant

negative association between ROSig and neoantigens and

increased neoantigens in low ROSig (Figure 10F). However, this

was not observed in Liu David’s cohort (Figure 10G). In both

cohorts, ROSig was not significantly correlated with TMB

(Figures 10H, I).
Pancancer landscape of ROSig

Finally, we sought to assess whether ROSig can be generalized to

all types of solid tumors. We first observed that ROSig was enriched
FIGURE 6

Dissecting cellular interactions of different ROSig groups at single-cell resolution. (A) Nine identified cell types are shown based on Umap
descending. (B) Density of ROSig in different cell clusters. (C) Proportion of ROSig groups in different cell types. (D) Expression of nine indicators of
the ROSig model in different cell subgroups. (E) Overall cellular communication intensity in cells with high ROSig (left) and low ROSig (right).
(F) Specific communication pathways between cells with high ROSig (left) and low ROSig (right).
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in renal clear cell carcinoma and glioma and that ROSig could serve

as an accurate and robust risk factor in most types of solid tumors

(Figure 11A). We also compared ROSig differences between normal

and cancerous organs. The results showed that most organs caused

an increase in ROSig after carcinogenesis, except for the kidney and

pancreas (Figure 11B). Finally, we evaluated the association of

ROSig with immune cell infiltration from a pancancer perspective

and showed that ROSig was significantly positively associated with

M2 macrophages in most cancer types. In particular, low levels of

ROSig predicted high levels of effector cell infiltration (including

M1 macrophages, T cells, and NK cells) in patients with lung

cancer (Figure 11C).
Discussion

BC has emerged as a major tumor type that affects women’s

health (1, 2). As the most heterogeneous and aggressive molecular

subtype, patients with TNBC often have difficulty responding to

conventional therapies and pose a difficult challenge for targeted

therapies (3). Fortunately, rapid advances in transcriptomics and

single-cell genomics have provided powerful instruments for
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research in the field of precision medicine, and there is hope that

we can find proven biomarkers to assist in prognosis and treatment

decisions for TNBC patients. With the increased understanding of

ROS, it is now believed that modulating ROS levels not only

enhances chemotherapy sensitivity and induces apoptosis in

tumor cells but also modulates immune cell activity to generate

stronger antitumor immunity (11). Here, we sought to explore the

key regulators of ROS in TNBC as effective biomarkers through a

systematic multiomics study.

In this study, we systematically searched the transcriptional

profile of TCGA-TNBC and identified 24 potential ROS regulators.

We noted that all ROS regulators except PARP1 were risk factors.

Interestingly, the frequency of PARP1 mutations as well as

segmental amplification events were the most common. It was

concluded that PARP1 has prognostic value in a variety of solid

tumors and is involved in maintaining the stability of genomic

genetic material (34). Thus, phenotypic alterations of PARP1 due to

mutations and amplifications may be a factor in TNBC

heterogeneity and poorer prognosis. Advances in machine

learning provide effective new tools for diagnosis, prognosis, and

treatment in clinical oncology (35). We subsequently developed

ROSig for individual patient risk stratification via an integrated
FIGURE 7

Dissecting the functional heterogeneity of ROSig. (A) Bar plot showing the biological pathways of upregulated gene enrichment in the high ROSig
group. (B) Bar plot showing the biological pathways of upregulated gene enrichment in the low ROSig group. (C) GSEA revealed the top five
enriched KEGG pathways in the high ROSig group. (D) GSEA revealed the top five enriched KEGG pathways in the low ROSig group. (E) The
correlation network between ROSig and the activity of 50 hallmark pathways.
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machine-learning pipeline. We confirmed that ROSig is a robust

prognostic indicator of OS in TNBC patients with excellent

predictive performance in different TNBC cohorts. More

convincingly, we compared the prognostic efficacy of ROSig with

31 published molecular signatures and found that ROSig has

leading predictive accuracy. In addition, we also confirmed

through CCK8 that the core ROS regulator HSF1 plays a

protumor proliferation role in BC cell lines.

ROS have clear regulatory effects on a variety of pro-tumor

signals, and manipulation of ROS levels in tumor tissues is expected

to be a novel option for cancer treatment. Therefore, we

subsequently resolved the differences in biological pathways

between different ROSig subgroups from a single-cell perspective

and a bulk perspective. Overall, patients in the high ROSig group

had less crosstalk between cells, whereas patients in the low ROSig

group had abundant communication between tumor cells and cells

in the microenvironment. Specifically, the MIF and MAPK

pathways were more active in the high ROSig group. In contrast,

most antitumor immune signaling pathways (e.g., TNF, CXCL,

IL16, and IFN-g) were active in the low ROSig group. In addition,
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functional enrichment analysis also confirmed that patients in the

high ROSig group were mainly enriched in cell cycle-related

pathways. Patients with low ROSig were more enriched in

immune-related pathways. ROS induce more antigenic stimuli at

appropriate levels to stimulate antitumor immunity (36, 37), and

more antitumor immune signals undoubtedly enhance tumor

killing by effector immune cells (38, 39). Therefore, we

hypothesize that the good prognosis of patients with low ROSig

may be due to an appropriate “ROS-immune” balance that allows

for an enhanced antitumor immune response. This may be a new

inspiration for targeting ROS as an adjunct to immunotherapy.

To explore how ROSig characterizes the different immune

microenvironments, we then evaluated the microenvironmental

composition of patients in different ROSig groups in detail. We

found a significant increase in tumor purity, stromal score and M2

macrophage abundance in high ROSig. Previous studies have

demonstrated the suppressive effect of M2 macrophages on

antitumor immune responses, and abundant tumor cells may also

secrete more suppressive cytokines to promote immune escape (40,

41). This ultimately leads to high ROSig corresponding to more
FIGURE 8

Dissecting the immune heterogeneity of ROSig. (A) Complex heatmap showing the ROSig landscape in the tumor immune microenvironment,
including the ESTIMATE score, immune cell infiltration, and immune checkpoint expression. (B) The correlation between ROSig and immune
indicators (including ESTIMATE score, immune cell infiltration, and immune checkpoint expression). (C) Cumulative distribution plots showing the
difference in the anticancer immune cycle between different ROSig subgroups. Violin plot displaying the difference in (D) HRD score, (E) intratumor
heterogeneity, (F) indel neoantigens, and (G) SNV neoantigens between different ROSig subgroups. *: P<0.05, ***: P<0.001, ns: not significant.
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heterogeneity and poorer prognosis of TNBC patients. In contrast,

more checkpoint expression and neoantigens were present in the

low ROSig group, which may promote the response of immune cells

to checkpoint inhibitors (35). Therefore, we hypothesize that

pat ients in the low ROSig group are more suitable

for immunotherapy.

Alterations in the genetic material of the genome have a huge

impact on the function of proteins and ultimately cause phenotypic

changes. In addition, tumor mutations may generate more specific

antigenic peptides to enhance immunotherapy sensitivity.

Therefore, we subsequently analyzed the differences in genomic

variants in patients from different ROSig groups. Surprisingly,

patients with low ROSig had a higher tumor mutation load and

significantly higher amplified and deletion segments on
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chromosomes, which are possible markers for the benefit of

immunotherapy in clinical practice. In particular, significant FLG

mutations were found in the high ROSig group, and studies suggest

that loss of FLG function due to mutations may increase the risk of

basal cell carcinoma, which may also be a mechanism for the worse

prognosis of patients in the high ROSig group.

Finally, we evaluated the potential of ROSig for clinical

application from multiple perspectives. First, TNBC patients with

low ROSig had lower IC50 values for doxorubicin, suggesting a

clinical search for TNBC patients suitable for doxorubicin regimens

based on ROSig levels. In addition, the TIDE algorithm confirmed

the presence of a greater immunotherapy response in the low ROSig

patient group. To validate the sensitivity of immunotherapy, we

generated ROSig in the immunotherapy IMvigor210 cohort and Liu
FIGURE 9

Dissecting the genomic mutational heterogeneity of ROSig. (A) Violin plot showing the difference in nonsynonymous mutations between different
ROSig subgroups. (B) Forest plot showing statistically significant differences in high-frequency mutated genes between the high- and low-ROSig
subgroups. (C) Waterfall plot of high-frequency mutated genes between the high- and low-ROSig subgroups. (D) Complex heatmap displaying the
CNV landscape between high- and low-ROSig subgroups. Box plots and scatter plots show the correlation between ROSig and (E) Amplifications
and (F) Delections. *P<0.05, **P<0.01.
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David’s cohort and demonstrated that ROSig is an unfavorable

prognostic factor for OS. However, we did not find a potential

correlation between ROSig and tumor mutations and neoantigens.

More studies are needed to elucidate how different levels of ROS

affect sensitivity to immunotherapy.

ROSig has a surprisingly promising clinical application and can

be detected in actual clinical practice by simple PCR to generate

ROSig. Although the clinical application of ROSig in TNBC is

exciting, we should also acknowledge some limitations of the study.

First, the final model containing ROS genes should be further

reduced to minimize financial expenses and facilitate rapid

detection. Second, our analysis and predictions are based on
Frontiers in Immunology 13
retrospective data, and further multicenter real-world studies are

needed to confirm the reliability of the model. Finally, the dataset

only records a portion of the genomic data, and the actual genomic

dynamic changes need more assays to assess, and our study may

have overlooked some potential crosstalk and targets.
Conclusion

In summary, we systematically evaluated potential ROS

regulators in TNBC and developed a stable and efficient ROSig

based on large-scale transcriptomic data and a well-established
FIGURE 10

Assessing the potential of ROSig for clinical applications. (A) Box plots display the predicted IC50 values for three first-line drugs of TNBC in the
high- and low-ROSig groups in the TCGA cohort. (B) Response rates to immunotherapy in different ROSig groups based on TIDE predictions in the
TCGA cohort. (C) Forty-seven potential small molecule drugs targeting ROSig and their targeting pathways based on the Cmap database. KM survival
curves for patients in the high- and low-ROSig subgroups in (D) Imvigor210 and (E) Liu David’s cohort. Box plots and scatter plots show the
correlation between ROSig and neoantigens in (F) Imvigor210 and (G) Liu David’s cohort. Box plots and scatter plots show the correlation between
ROSig and TMB in (H) Imvigor210 and (I) Liu David’s cohort. *P<0.05.
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machine-learning pipeline to assist in risk stratification and

treatment decisions for TNBC patients. This ROSig also allows a

simple assessment of TNBC heterogeneity in terms of biological

function, immune microenvironment, and genomic variation.
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Validation of ROSig-based treatment prediction. (A) Box plots displayed the

predicted IC50 values for three first-line drugs of TNBC in high- and low-
ROSig groups in theMetabric cohort. (B) Response rates to immunotherapy in

different ROSig groups based on TIDE predictions in the Metabric cohort.
FIGURE 11

Pancancer application potential of ROSig. (A) Density and univariate Cox regression analysis of ROSig in 32 solid tumors. (B) Differentiation of ROSig
in normal and cancerous organs or tissues. (C) The correlation between ROSig and immune cell infiltration in 32 solid tumors.
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