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Changes in the molecular
profiles of large-vessel vasculitis
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modifying anti-rheumatic drugs
and Janus kinase inhibitors
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Giant cell arteritis and Takayasu arteritis are two types of primary large-vessel

vasculitis (LVV). Although glucocorticoids (GC) are the standard treatment for

LVV, the disease relapse rates are high. Recent clinical trials on biological

disease-modifying anti-rheumatic drugs (bDMARDs) and Janus kinase (JAK)

inhibitors have demonstrated their efficacy in reducing LVV relapse rates and

GC dosages. However, the control of residual inflammation and degenerative

alterations in the vessel wall remains an outstanding requirement in the clinical

management of LVV. The analysis of immune cell phenotypes in patients with

LVV may predict their response to treatment with bDMARDs and JAK inhibitors

and guide their optimal use. In this mini-review, we focused on molecular

markers, including the immune cell proportions and gene expression, in

patients with LVV and in mouse models of LVV treated with bDMARDs and

JAK inhibitors.
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1 Introduction

Giant cell arteritis (GCA) and Takayasu arteritis (TAK) are two types of primary large-

vessel vasculitis (LVV) characterized by a predominantly granulomatous infiltration of T

cells, macrophages, and multinucleated giant cells (1). The pathophysiology of LVV is not

sufficiently elucidated; however, the involvement of Th1 and Th17 immune-mediated

responses and an imbalance between Th17 and regulatory T (Treg) cells have been

demonstrated in LVV (2–12). Glucocorticoids (GC) are used as a standard treatment for

LVV and are effective in inducing remission. However, relapse during the maintenance

phase is common, and long-term GC use may be associated with substantial negative
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effects (13–15). GC therapy ameliorates vasculitis symptoms, and

the persistence of Th1, Th17, and myeloid cells during treatment

can lead to disease relapse (2–4, 16–20).

Recent clinical trials have demonstrated promising results for

biological disease-modifying anti-rheumatic drugs (bDMARDs)

and Janus kinase (JAK) inhibitors in the reduction of LVV

relapse and tapering of GC dose. However, the response to these

therapies is variable. Therefore, it is essential to identify molecular

signatures that can predict treatment response and guide treatment

optimization. In patients with LVV and in mouse models of LVV,

analysis of immune cell phenotypes can provide insight into the

molecular mechanisms of bDMARDs and JAK inhibitors and

predict treatment response. In this mini-review, we investigated

the longitudinal changes in immune cell phenotypes in patients

with LVV and in mouse models of LVV treated with bDMARDs

and JAK inhibitors.
2 Molecular profile alterations in LVV
under treatment

The molecular profiles of patients with LVV and mouse models

of LVV treated with bDMARDs and JAK inhibitors are presented in

Tables 1, 2, respectively. We reviewed the evidence for the following

treatments: interleukin (IL)-6 receptor antagonists, tumor necrosis

factor (TNF)-a receptor antagonists, IL-1 receptor antagonists,

granulocyte-macrophage colony-stimulating factor (GM-CSF)

receptor antagonists, and JAK inhibitors. Although there are no

established animal models of LVV, studies that used IL-1Ra-

deficient mice and human artery engrafted mice as LVV models

were reviewed. IL-1Ra-deficient mice have autoimmune diseases

similar to those in humans, including aortitis, arthritis, and skin

manifestations (36, 37). Aortitis involves aortic valve wall

thickening and regurgitation and resembles TAK. The human

artery engrafted mouse is a model of GCA in which human
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tempora l ar ter ies are gra f ted into severe combined

immunodeficiency mice (38).
2.1 IL-6 receptor antagonist

In LVV, IL-6 is produced by lymphocytes, macrophages, and

neutrophils and plays a critical role in the pathogenesis of the disease

(4, 39–41). Clinical trials in GCA and TAK have revealed that

tocilizumab (TCZ), an IL-6 receptor antagonist, induces sustained

remission, prolongs relapse time, and reduces the rate of new vascular

events compared to a placebo. At the same time, the effect was more

pronounced in patients with GCA than in those with TAK (42–47).

TCZ inhibits antibody production by B cells in general (48), and

normalized the imbalanced proportion of M0-like monocytes,

activated/resting NK, Treg, Tfh, and Th17 cells in LVV (7, 21). In

addition, TCZ reverses the glycolysis and calcium signaling

abnormalities observed in Treg dysfunction in patients with GCA

(8). However, it is important to note that TCZ has less effect on the

proportion of Th1 and CD8 T cells in the circulation, and that Th1-

and CD8-mediated inflammation may persist under TCZ treatment,

particularly in TAK (10, 11). Th1- and CD8-mediated interferon

(IFN)-g responses are observed in TAK rather than in GCA (2–5).

IFN-g promotes proinflammatory response by exploring Th1

differentiation, cytotoxic T cell proliferation, and M1 macrophage

polarization (49, 50). The incomplete response of TCZ in TAK

pathogenesis is highlighted in IL-1Ra-deficient mice, where

inflammation persists in IL-6 -/- mice and in those treated with

TCZ, but is suppressed in Tnfsf1a (TNF-a) -/- mice (31–33).
2.2 TNF-a receptor antagonist

Available evidence suggests that both TNF-a and IL-6 play

important roles in LVV pathogenesis, but their contributions may
TABLE 1 Molecular profiles in patients with large vessel vasculitis associated with treatments.

GCA TAK

IL-6 receptor
antagonist

• Improved the imbalanced proportions of Th17, Tfh, and Treg (7–11)
• Partially reverse Treg dysfunction (9)
• Normalized the gene expression associated with M0-like monocyte, NK,
Tfh, and Treg (21)

• Improved the imbalanced proportions of Th17, Tfh, and
Treg (10, 11)
• Less effect on the proportion of Th1 and CD8 (10, 11)

TNF-a receptor
antagonist

• Not effective (22–24) • Reduced the residual gene signature under treatment with
glucocorticoids (25)
• Partially reduced the proportion of CCL2-producing
macrophage (26, 27)

IL-1 receptor
antagonist

• Elevated IL-1 signaling pathway was associated with future relapse (25)

GM-CSF receptor
antagonist

• Reduced Th1 differentiation (28)

JAK inhibitors • Type I IFN signature was enriched in the aorta of LV-GCA (29)
• Part of the IFN gene signature was elevated in peripheral blood and
associated with disease relapse (25)

• Type I IFN signature was enriched in CD4 and CD8
lymphocytes at diagnosis (30)
GCA, giant cell arteritis; TAK, Takayasu arteritis; IL, interleukin; TNF, tumor necrosis factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; JAK, Janus kinase; IFN, interferon.
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differ in GCA and TAK. TNF-a inhibition-based treatments such as

infliximab, adalimumab, etanercept, and certolizumab have been

shown to be effective in the treatment of TAK (51–53), suggesting

that TNF-a is a substantial mediator in the pathogenesis of this

disease. Conversely, clinical trials of TNF-a antagonists have failed to

demonstrate efficacy in GCA treatment (22–24). Studies in IL-1Ra-

deficient mice also support the association between TNF-a and TAK

progression, as the mice exhibited significantly reduced aortitis and

arthritis in the absence of TNF-a (32, 33). TNF-a acts in conjunction

with IFN-g to stimulate macrophages and induce the production of

monocyte chemotactic proteins, particularly CCL2, which recruits

monocytes expressing CCR2 to form multinucleated giant cells that

are characteristic of LVV (26, 27, 54–56). Elevated CCL2 serum levels

after treatment with GC suggest that CCL2 may contribute to

treatment failure in LVV (57). At the transcriptome level, TNF-a
inhibition, like TCZ, could improve the residual gene signature

compared to GC monotherapy (25, 58). Methylome profiling of

LVV patients has also revealed novel pathways in the disease

pathogenesis (59); however, there is limited data associated with

TNF-a inhibition. Further secondary analyses of immunocellular

dynamics are required as evidence for the efficacy of TNF-a
inhibition in TAK accumulates.
2.3 IL-1 receptor antagonist

IL-1 b, like IL-6 and TNF-a, is highly expressed in the inflamed

arterial walls of patients with LVV, and may play a role in the disease

pathogenesis (39, 40). Whole blood transcriptome gene expression

analysis revealed that the molecular pathway related to IL-1 was

significantly upregulated in patients with LVV compared to healthy

controls. This correlated with the positron emission tomography

(PET) vascular activity score, a disease extent score based on the

distribution of affected arteries (25). Increased transduction of IL-1

signaling activates CD4+ T cells. Specifically, activated CD4+ T cells

migrate CCR2+ g delta T cells toward CCL2+ inflammatory tissues

(34). Considering that IL-1Ra deficient mice develop TAK-like

aortitis, inhibition of IL-1 signaling may be a promising approach

for the treatment of LVV. While clinical trials evaluating IL-1

receptor antagonists in the LVV are ongoing, previous reports have

shown that anakinra is effective in patients with refractory GCA, with
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improvement in inflammatory biomarker levels and symptoms, and

resolution of arterial inflammation on PET-CT images (60, 61).
2.4 GM-CSF receptor antagonist

CD4+ T cells, macrophages, myofibroblasts, and endothelial

cells produce GM-CSF. The GM-CSF receptor a is highly expressed

in GCA-affected arteries, resulting in an autocrine amplification

loop (28, 62). GM-CSF is a macrophage differentiation factor

fundamentally involved in vascular inflammation. Recent data

have shown that GM-CSF induces the differentiation of CD206+

MMP9+ macrophage, that play a role in arterial wall destruction

during neo-angiogenesis or intimal hyperplasia (63–65). Using an

ex vivo temporal artery culture model, GM-CSF increased

macrophage activation, Th1 cell polarization, neo-angiogenesis,

and tissue injury. Treatment with the GM-CSF receptor

antagonist, mavrilimumab, reduced CD16- and CD3ϵ- positive

cell infiltration and downregulated key molecules involved in T

cell activation and differentiation (28). Among T cells,

mavrilimumab decreased Th1 differentiation by reducing TNF-a
and IFN-g, while a direct effect on Th17 differentiation was not

assessed (28, 55). In a recent phase 2 clinical trial, mavrilimumab

demonstrated superiority over placebo in analyses of the time to

flare and sustained remission in patients with GCA (66).
2.5 JAK inhibitors

As described previously, the pathogenesis of LVV involves

multiple cytokines, including IL-6, TNF-a, IL-1, GM-CSF, and

IFN-g. Inhibition of these cytokines or agents that inhibit

subsequent cellular signaling pathways may effectively treat LVV.

Although JAK/STAT signaling and type I IFN signatures were not

identified as distinct pathways using whole blood RNA sequencing

from patients with GCA-dominant LVV, one of the IFN signature

genes, APOBEC3A, was elevated at diagnosis and was associated with

disease relapse (25). Pathways associated with JAK/STAT signaling

and the type I IFN signature are enriched in CD4 and CD8

lymphocytes in the TAK and the aorta of LV-GCA (29, 30). Type I

IFN transcripts were also shown to increase in the vessel walls of
TABLE 2 Molecular profiles in mouse models of large vessel vasculitis associated with treatments.

Human artery engraftment mice IL-1Ra deficient mice

IL-6 receptor antagonist • Blockade of IL-6 signaling had limited therapeutic effect on inflammation (31, 32)

TNF-a receptor
antagonist

• Reduced aortitis and arthritis in the absence of TNF-a (32, 33)

IL-1 receptor antagonist • Increased transduction of IL-1 signaling activated CD4+ T cells and led to the migration
of gd T cells (34)

GM-CSF receptor
antagonist

JAK inhibitors • Reduced infiltration of T cells and
macrophages (35)
GCA, giant cell arteritis; TAK, Takayasu arteritis; IL, interleukin; TNF, tumor necrosis factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; JAK, Janus kinase.
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immunodeficient mice trans-engrafted with inflamed temporal

arteries from patients with GCA (67). In an experimental animal

model of LVV, inhibition of JAK1/3 effectively suppressed arterial

wall lesioned T cells and inhibited macrophage infiltration and

growth factor production, resulting in reduced neo-angiogenesis

and intimal hyperplasia (35). JAK inhibitors, including baricitinib

(JAK1/2 inhibitor) and tofacitinib (JAK1/2/3 inhibitor), have recently

shown efficacy in pilot studies in patients with LVV (68, 69).

Considering that blocking JAK1/2 may promote upregulation of

Th17- and CD206+ macrophage-mediated inflammatory response

(50, 70), investigation of the clinical efficacy depend on targeted JAK

isoform selectivity is anticipated.
3 Discussion

We investigated alterations in the molecular profiles of patients

with LVV and in mouse models of LVV associated with the following

treatments: IL-6 receptor antagonist, TNF-a receptor antagonist, IL-1

receptor antagonist, GM-CSF receptor antagonist, and JAK inhibitors.

Other potential therapies, including CTLA4-Ig (abatacept), anti-IL-

17A antibody (secukinumab), anti-IL-12/23p40 antibody

(ustekinumab), and anti-CD20 antibody (rituximab), were outside

the scope of this study. Our study demonstrated that bDMARDs

and JAK inhibitors improved the levels of dysregulated molecular

profiles compared to GC monotherapy. These results are consistent

with a study in patients with rheumatoid arthritis, which revealed that

treatment with bDMARDs normalized the molecular signature to a

greater extent than methotrexate monotherapy (71). Using bDMARDs

and JAK inhibitors may induce deep molecular remission in various

inflammatory connective tissue diseases (72–74).

CD4+ and CD8+ T cells play central roles in the pathogenesis of

LVV (75, 76). Recent evidence suggests that Th1- and CD8-mediated

inflammation may be less responsive to TCZ treatment, whereas the

molecular signatures of Th17, Tfh, and Treg cells are improved. The

incomplete response of IL-1Ra deficient mice to TCZ suggests a

limitation of this treatment. Based on clinical evidence which

demonstrated that the effect of TCZ is modest in TAK but dramatic

in GCA, it is inferred that Th1-and CD8-mediated inflammation may

be dominant in TAK. Therefore, targeting the Th1- and CD8-IFN-g
axis may be an important therapeutic strategy in TAK. Based on this

evidence, TNF-a receptor antagonists, IL-1 receptor antagonists, GM-

CSF receptor antagonists, and JAK inhibitors are potential therapies

that may ameliorate residual inflammation in the LVV.
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In this study, we reviewed the alterations in molecular profile of

LVV. Evidence from human and murine studies has revealed

changes in the immune profiles of the LVV following treatment

with bDMARDs and JAK inhibitors. Despite treatment with

bDMARDs and JAK inhibitors, residual immune cell activation

was observed, which contributed to immune cell infiltration and

damage to large arteries, resulting in arterial stenosis, aneurysm,

and potentially life-threatening complications. Further studies are

required to elucidate the molecular mechanisms underlying LVV.
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