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A novel DNA damage repair-
related gene signature predicting
survival, immune infiltration and
drug sensitivity in cervical cancer
based on single cell sequencing

Xiaoqing Xiang1†, Jiawen Kang1†, Jingwen Jiang1,
Yaning Zhang2, Yong Zhang1*, Lesai Li3* and Xiaoning Peng1*

1Department of Internal Medicine, Medical College of Hunan Normal University, Changsha,
Hunan, China, 2The High School Attached to Hunan Normal University, Changsha, China,
3Department of Gynecologic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of
Xiangya School of Medicine, Central South University, Changsha, Hunan, China
Background: Aberrant DNA damage repair (DDR) is one of the hallmarks of

tumors, and therapeutic approaches targeting this feature are gaining increasing

attention. This study aims to develop a signature of DDR-related genes to

evaluate the prognosis of cervical cancer (CC).

Methods: Differentially expressed genes were identified between high and low

DDR groups of cells from the single-cell RNA sequencing dataset GSE168652

based on DDR scores. Using the ssGSEA and WGCNA methods, DDR-related

differentially expressed genes were identified from different patients within the

TCGA-CESC cohort. Using Cox analysis and LASSO regression analysis, a DDR-

related gene signature was constructed based on the intersection of two groups

of differentially expressed genes and DDR-related genes from WGCNA, and

validated in GSE52903. Immune cell infiltration analysis, mutation analysis,

survival analysis, drug sensitivity analysis, etc., were performed in different

groups which were established based on the DDR gene signature scoring. A

key gene affecting prognosis was selected and validated through biological

experiments such as wound healing, migration, invasion, and comet assays.

Results: A novel DDR-related signature was constructed and the nomogram

results showed this signature performed better in predicting prognosis than

other clinical features for CC. The high DDR group exhibited poorer prognosis,

weaker immune cell infiltration in the immune microenvironment, lower

expression of immune checkpoint-related genes, lower gene mutation

frequencies and more sensitivity to drugs such as BI.2536, Bleomycin and etc.

ITGB1, ZC3H13, and TOMM20 were expressed at higher levels in CaSki and HeLa

cells compared to ECT1 cells. Comparedwith the native CaSki and HeLa cells, the

proliferation, migration, invasion and DDR capabilities of CaSki and HeLa cell

lines with ITGB1 suppressed expression were significantly decreased.

Conclusion: The 7 DDR-related gene signature was an independent and

powerful prognostic biomarker that might effectively evaluate the prognosis of
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CC and provide supplementary information for a more personalized evaluation

and precision therapy. ITGB1 was a potential candidate gene that may affect the

DDR capacity of CC cells, and its mechanism of action was worth further in-

depth study.
KEYWORDS

cervical cancer, DNA damage repair, prognostic signature, bulk sequencing, single-cell
RNA sequencing analysis, immune infiltration, drug sensitivity
1 Introduction

According to the 2021 Global Cancer Statistics Report, CC

ranks as the fourth most common cancer in terms of incidence and

the fourth leading cause of cancer death in women. In 2020, an

estimated 604,000 new cases and 342,000 deaths occurred

worldwide (1). Early-stage CC (Ia1-Ib2, IIa1) has a favorable

prognosis, with a 5-year survival rate of over 90% (2). However,

the prognosis for locally advanced stages (IB3, IIa2, IIb-IVA) is not

as promising, with a 5-year survival rate of only 50-70% (3). The

prognosis is even worse for advanced stage CC with distant

metastasis (IVb) or recurrence, with a 5-year survival rate of only

17% (4).

Genomic instability is one of the most common characteristics

of human tumors. Cells in the human body experience tens of

thousands of DNA damage incidents every day, and have evolved

specialized DNA damage repair (DDR) mechanisms to maintain

genomic stability (5). However, when DNA damage accumulates

and leads to genomic instability, tumor development can occur,

which is a hallmark event in cancer (6). Radiotherapy and

chemotherapy are important treatments for CC, based on this

tumor characteristic. In cancer treatment, radiotherapy mainly

induces cancer cell death by ionizing radiation, causing DNA

double-strand breaks (7). Platinum-based drugs primarily enter

tumor cells and form Pt-DNA adducts to induce tumor cell death or

apoptosis, producing anti-cancer effects (8, 9). However, the failure

of radiotherapy and chemotherapy often occurs because tumor cells

activate DDR responses through different signaling pathways,

recognizing DNA damage induced by ionizing radiation or drugs,

and conducting DNA repair, which leads to radiation resistance or

chemotherapy resistance (10, 11).

Furthermore, DDR abnormalities not only lead to a high

genomic mutation rate in tumor cells, but also cause changes in

the tumor immune microenvironment, affecting the therapeutic

efficacy of immune checkpoint inhibitors (ICIs) (12). Studies have

shown that patients with DDR pathway mutations have a

significantly higher average tumor mutation burden (TMB) than

those without mutations, suggesting that DDR mutations may

become a new biomarker for predicting the efficacy of ICIs (13).

Among all DDR pathways, defects in the mismatch repair (MMR)

pathway cause an increase in microsatellite instability, which has

been shown to be related to the efficacy of ICIs, and has been
02
approved by the US Food and Drug Administration as an indicator

for predicting the efficacy of ICIs in cancer. The correlation between

other DDR pathways and the efficacy of ICIs is also being explored

(14). ICIs do not directly target DNA damage and repair, but

increased DNA damage and abnormal repair can lead to enhanced

genomic ins tab i l i ty , changes in the tumor immune

microenvironment, and affect the efficacy of ICIs (15). Therefore,

exploring the characteristic genes that affect DDR, constructing a

prognostic signature based on DDR-related characteristic genes,

will help develop individualized monitoring and treatment plans for

CC patients.

Compared to bulk RNA-seq, which detects RNA expression in

all cells within a lesion, scRNA-seq detects RNA expression within

individual cells. Therefore, the advantage of scRNA-seq is that it can

reveal gene expression differences and higher resolution at the

single-cell level, which provides a more favorable choice for

exploring tumor cell heterogeneity. In this study, we integrated

data obtained from second-generation sequencing technology and

single-cell sequencing technology. We downloaded second-

generation sequencing data from TCGA database of CC patients,

and scRNA-seq GSE168652 dataset from GEO database, and

selected GSE52903 chip dataset of CC patients as the validation

set. We expect to complement the advantages of bulk RNA-

sequence and scRNA-seq to explore genes that affect CC DDR

heterogeneity more deeply and accurately, and then construct a

signature to evaluate CC prognosis. In addition, we will explore the

role of this signature in evaluating the immune microenvironment

and tumor mutation burden, and evaluate patient drug sensitivity

based on DDR, providing a reference for the clinical treatment

of CC.
2 Materials and methods

2.1 Transcriptome data download
and processing

The mRNA counts data obtained from bulk sequencing, and

clinical data of patients with cervical squamous cell carcinoma and

adenocarcinoma (CESC) were downloaded from the TCGA-CESC

project and used as a training cohort for the study (https://portal.

gdc.cancer.gov/). The FPKM values were transformed into
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transcripts per million (TPM) values. Based on the identification of

the TCGA sample code 01, a total of 283 samples were retained

from the original 309 samples for further bioinformatic analysis.

Subsequently, the transcriptome and clinical data used as a

validation cohort were obtained from GSE52903, which was

downloaded from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/). The GSE52903 dataset

included RNA expression and clinical data from 56 CC patients.

The clinical information of the patients in the training and

validation groups has been organized and presented in tabular

form in the supplementary materials. We transformed all data using

log2 for subsequent analysis.
2.2 Single cell RNA sequencing data
download and processing

The scRNA-seq dataset GSE168652 of CC was downloaded

from the GEO database, containing scRNA-seq of CC tissue and

normal adjacent tissue from a CC patient. Samples were integrated

using the tSNE (t-Distributed Stochastic Neighbor Embedding)

method in the R package “Seurat (version 4.3.0)”, and core cells

were obtained by quality control filtering. Initial quality control

filtering was defined using the criteria: ≤10% mitochondrial genes,

≤30% ribosomal genes, ≤5% hemoglobin genes, and 200~7000

genes/cell. We identified 3,000 highly variable genes and

integrated samples using SCT correction. Then, by setting the

“DIMS” parameter to 20, the tSNE method was used to reduce

the dimension of the data, and the “KNN” method was used to set

the resolution to 1.0 for cell clustering. The cells were annotated by

cell surface markers through the R package “singleR (version

1.10.0)”. Afterward, the “PercentFeatureSet” function was applied

to calculate the scores of DDR-related genes in the cell. The cells

from GSE168652 were divided into high and low DDR groups based

on the median of calculated DDR scores.
2.3 The acquisition of DDR related genes

Using “DNA damage repair” as a keyword, 10,526 genes related

to DDR were retrieved from the Genecards database (http://

www.genecards.org), of which 9,723 DDR-related genes with a

correlation coefficient greater than 1.0 were selected.
2.4 Single sample gene set
enrichment analysis

Performed single sample gene set enrichment analysis (ssGSEA)

on samples in the TCGA-CESC cohort using the GSVA package

(version 1.44.5) to obtain each sample’s DDR scores and the

enrichment score of each immune cell. By defining an immune

cell-associated gene set, the enrichment score of the gene set

represents the density of tumor-infiltrating immune cells.

Obtaining feature gene panels for every immune cell type was
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accomplished through previous publications (16). The results were

plotted by ComplexHeatmap (version 2.12.1) package in R.
2.5 Weighted gene co-expression
network analysis

The R package “WGCNA (version 1.71)” was used for weighted

gene co-expression network analysis (WGCNA) in R. First,

hierarchical clustering was performed on the TCGA-CESC cohort

samples, outliers were detected and eliminated. Second, we used the

function pickSoft Threshold to build a scale-free network.

Thereafter, an adjacency matrix was built and transformed into a

topological overlap matrix (TOM), and the gene dendrogram and

module colors were built using the dissimilarity. Then correlations

between modules and DDR phenotypes were then calculated using

the WGCNA package. Modules with high correlation coefficients

(P<0.05) were considered as candidate modules associated with

DDR and were selected for subsequent analysis. In detail, the

modules were constructed with the threshold value of the module

dendrogram of 0.25, the outlier value of 170, and a minimum

module size of 50 genes. Thus, we obtained the module genes that

correlate highly with DDR. Correlation analysis was conducted

using the Spearman correlation test.
2.6 Construction and validation of the
prognostic signature associated with DDR

We performed univariate Cox analysis on the intersection genes

of the gene sets related to DDR obtained from WGCNA analysis

and the gene sets obtained from single-cell differential expression

analysis. To avoid overfitting, the “glmnet (version 4.1-4)” package

was used for Least Absolute Shrinkage and Selection Operator

(LASSO) regression analysis to construct a prognostic DDR-

related gene signature. According to the formula, a prognostic

signature was constructed where the risk score was calculated as

the sum of each gene’s expression value multiplied by its

corresponding LASSO regression coefficient: risk score = exp-gene

1 × b1 + exp-gene 2 × b2 +… + exp-gene n × bn (where “exp-gene

n” represents the expression value of gene n and “b” represents the
corresponding coefficient). According to the calculation method of

the obtained prognostic signature, the DDR scores of each patient

enrolled in the study from the TCGA-CESC cohort was calculated

and ranked. With the median DDR scores as the cutoff, all patients

were allocated into low DDR group or high DDR group

respectively. K-M analysis and ROC curves were used to evaluate

the prognostic value of DDR-related signature. Patient survival

curves were visualized by the R software “survminer (version 0.4.9)”

package. The ROC curves were plotted using the “survivalROC

(version 1.0.3)” package to evaluate the performance of the risk

score in predicting 1, 2, 3, and 5-year overall survival (OS) in

patients with CC. The DDR-related signature was validated using

the external independent validation cohort GSE52903 to confirm its

generalizability. Furthermore, a nomogram was developed that
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combined the DDR scores with clinical characteristics based on

clinicopathological parameters. The nomogram model was plotted

using the “cph” function in R to visualize the prediction model and

predict the likely 1, 3, and 5-year patient mortality. The clinical

utility of the nomogram was assessed using ROC curves and

decision curve analysis (DCA).
2.7 Analysis of immune infiltration
and mutation

Six kinds of immune-related algorithms (“CIBERSORT”,

“EPIC”, “MCP_counter”, “xCell”, “TIMER”, “Quanti-seq”) were

used to analyze the immune landscape between the high- and low-

DDR groups. The association between the DDR scores and immune

cells was assessed using Spearman’s correlation test. The Pearson

correlation coefficient was used to examine the relationship between

the DDR scores and the expression of the immune checkpoint

genes. To further understand the differences in mutations between

high- and low-DDR groups, the gene mutations in different groups

was analyzed using the Maftools (version 2.12.0) package in R.

cBioPortal (http://www.cbioportal.org/) is a database that integrates

various genomic data types, from which we downloaded the

mutation data of TCGA and performed mutation analysis on the

high and low DDR groups. Next, we explored the characteristics of

immune checkpoint-related genes in different groups with limma

(version 3.52.4), ggplot (version 3.4.0), ggpubr (version 0.6.0), and

ggExtra (version 0.1.0) packages. Top 20 genes with the highest

mutation frequency were presented between different groups.
2.8 Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed to identify

enriched pathways associated with key genes to explore potential

molecular mechanisms. We obtained GSEA software (version 3.0)

from the GSEA website (http://software.broadinstitute.org/gsea/

index.jsp). According to the expression level of genes in the

signature, the cut-off value was the median value. The TCGA-

CESC samples were divided into two groups: high and low

expression group, all canonical pathways and the enriched gene

sets in KEGG were selected for analysis. We grouped according to

gene expression profiles and phenotypes with a minimum gene set

of 5 and a maximum gene set of 5000. We performed one thousand

replicate samples to assess relevant pathways and molecular

mechanisms. Five significantly enriched terms or pathways in

each group were selected and visualized.
2.9 Analysis of drug sensitivity

The pRRophetic (R package,version 0.5) was employed for drug

sensitivity prediction, which utilized ridge regression to estimate the

half-maximal inhibitory concentration (IC50) for each patient from

TCGA-CESC. The prediction accuracy was assessed using 10-fold

cross-validation with the Genomics of Drug Sensitivity in Cancer
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(GDSC, https://www.cancerrxgene.org/) training set. The

correlation between DDR-related signatures and the sensitivity of

some antitumor drugs was displayed by ggplot2 (17). Pearson

correlation analysis was conducted to explore the correlations

between different DDR groups and drug sensitivity.
2.10 Cell culture and transfection

HeLa cells derived from human cervical adenocarcinoma were

obtained from the cell bank of Hunan Normal University,

Changsha, China. ECT1 cells derived from human normal cervix

were purchased from the Qingqi (Shanghai, China) Biotechnology

Development Co. HeLa and ECT1 were cultured in DMEM

medium (Procell, Wuhan, China) supplemented with 1%

penicillin-streptomycin (BI, Israel) and 10% fetal bovine serum

(Procell, Wuhan, China). CaSki cells derived from human cervical

squamous carcinoma were purchased from the Fenghui (Changsha,

China) Biotechnology Development Co., and were cultured in

RPMI-1640 medium under the same conditions at 37°C and 5%

CO2. Collect cells in logarithmic growth phase for subsequent

experiments. Cells were transfected with the previously

synthesized sh-ITGB1 (Genechem Inc, Shanghai, China) using the

Lipo8000™ Transfection Reagent (Beyotime Biotechnology,

Shanghai, MA, China) according to the manufacturer’s protocol.

Subsequent experiments were performed 48 hours after transfection

of the cells. The shRNA sequences for ITGB1 are provided in

Supplementary Table S1.
2.11 Quantitative real-time polymerase
chain reaction

We used quantitative real-time polymerase chain reaction

(qRT-PCR) to detect the expression levels of ITGB1, ZC3H13 and

TOMM20 in ECT1, CaSki and HeLa cells, as well as to assess the

effectiveness of the synthesized sh-ITGB1 in inducing knockdown.

According to the manufacturer’s instructions, total RNA was

isolated using Trizol reagent (Vazyme, RNA isolater Total RNA

Extraction Reagent, Nanjing, China). Reverse transcription and

qRT-PCR were performed using PerfectStart Uni RT&qPCR Kit

(TransGen Biotech, Beijing, China). The 2−DDCt method was

employed to calculate the relative expression of genes, with

normalization to glyceraldehyde-3-phosphate dehydrogenase

(GAPDH), respectively. Primers were synthesized by Sangon

Biotect Inc (Shanghai, China), and their sequences were listed in

Supplementary Table S2. All data are presented as the mean ± SD of

three independent experiments.
2.12 Scratch wound healing assay

Scratch wound healing assays were performed in CaSki and

HeLa cells transfected with sh-ITGB1 or transfected control group.

After CaSki and HeLa reached 90-100% in 6-well culture plates, a

line within CaSki and HeLa was scraped using a sterile plastic
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pipette tip in each culture well. After washing with PBS two times,

cells were further cultured in DMEM/1640 medium supplemented

with 10% FBS at 37 °C. The scraped wounds were photographed

under a microscope at 0 and 24 hours. The pictures were then

analyzed using Image J software.
2.13 Migration and invasion assays

For migration assay, CaSki and HeLa were diluted to 1× 105/mL

with serum‐free medium, 200mL cell suspension was added to the

upper transwell chamber, and 800mL medium containing 10% fetal

bovine serum was added to the lower chamber, respectively. The

upper chamber was carefully immersed in the lower chamber liquid

with sterile forceps. The 24‐well plate with transwell chamber was

incubated at 37°C for 24 hours. The liquid was removed from the

upper chamber after 24 hours and washed three times with PBS.

After crystal violet staining, the upper chamber was observed under

the electron microscope and photographed. For invasion assay,

Matrigel (BD Biosciences, Franklin Lakes, NJ, USA) was coated into

transwell chamber and placed in the oven at 37℃ for 2 hours. Then

following steps were the same as the migration experiment. Each

experiment was repeated three times. All data were presented as the

means ± SD of three independent experiments.
2.14 Comet assay

After incubation, the cells were collected and resuspended using

ice-cold PBS. 1 × 105/ml cells were mixed with 0.7% low-melt

agarose at 37°C at a ratio of 1:7.5 (v/v) and immediately pipetted

onto frosted glass slides. To perform neutral comet assay, the glass

slides were placed in the neutral lysis buffer (add 1ml of DMSO

every 9ml before use) at 4°C for 2 h, washed three times in PBS, and

placed in freshly prepared alkaline electrophoresis solution

(1mmol/L EDTA, 300mmol/L NaOH) for 30 min at 37°C. The

slides were treated with 25 V (1 V/cm) electrophoresis and 300 mA

for 25 min. The slides were then neutralized to pH 7.5 in Tris-HCl

buffer and stained for 20 min with DAPI (2.5 µg/ml) in the dark.

The images were viewed under a fluorescence microscope and

further analyzed by OpenComet. According to the methods

described previously (18), we included 100 cells in each group for

statistical analysis.
2.15 Immunohistochemistry

The protein abundance of ITGB1 in CC tissues and normal

cervical tissues was detected using IHC. Primary antibody against

ITGB1 were purchased from ImmunoWay Biotechnology (SuZhou,

China). Tissue samples were fixed with 4% paraformaldehyde and

processed using standard procedures of dehydration, fixation,

embedding, and slicing. The slides were then treated with primary

antibodies at 4°C overnight. Prior to incubating with the secondary

antibody, the slides were washed three times with PBS. The PV-9000

Kit (Zsbio, Beijing, China) was used as the secondary antibody, and
Frontiers in Immunology 05
the slides were incubated for 1 hour at room temperature, protected

from light. The substrate diaminobenzidine (DAB, Beyotime) was

used for antibody detection, and the slides were counterstained with

hematoxylin (Beyotime). The cell nucleus was stained blue by

hematoxylin. The IHC images were obtained using a Zeiss light

microscope and analyzed for mean optical density using Image

J software.
2.16 Statistical analyses

Statistical analysis was calculated using the Student’s t-test when

comparing two groups in cytology experiments. The correlation

analysis between variables was conducted using both Spearman or

Pearson methods. Kaplan-Meier analysis was applied to assess the

difference of overall survival between the high and low DDR groups.

The statistical analysis is carried out using GraphPad Prism (version

8.0) and R software (version 4.2.0). The P-values <0.05 are

considered statistically significant.
3 Results

3.1 Schematic diagram of the study design

Figure 1 displays the flowchart of the entire work.
3.2 Single cell RNA sequencing
data analysis

We first analyzed the single-cell sequencing dataset of CC to

integrate different samples, and tSNE analysis showed that there

was no obvious batch effect of the two samples, as shown in

Figure 2A. Cell cycle genes could be effectively clustered together,

exhibiting no apparent distinction and facilitating subsequent

analysis (Figure 2B). Then, we clustered all cells into 41 clusters

using the k-nearest neighbor (KNN) clustering algorithm

(Figure 2C). Next, we input 9723 DDR-associated genes using the

“PercentFeatureSet” function, and obtained the scores of DDR-

associated genes for each cell. The cells were classified into two

groups, low DDR cells and high DDR cells, according to the median

DDR scores and presented in a tSNE plot (Figure 2D). Based on the

surface marker genes of different cell types (Supplementary Table

S3), we observed their expression in different clusters (Figure 2C),

and identified six cell types, including endothelial cells, fibroblasts,

plasma cells, T cells, macrophages and tumor/epithelial cells

(Figure 2E). Finally, we identified 2175 genes by analyzing the

differentially expressed genes between high and low DDR group

of cells.
3.3 ssGSEA and WGCNA

DDR scores were calculated for each sample in the TCGA

cohort using ssGSEA (Figure 3A). Then, the ssGSEA method was
frontiersin.org
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used to quantify the TCGA-CESC samples to assess the infiltration

level of immune cells (Figure 3B). In the TCGA cohort, gene

modules associated with DDR phenotype were obtained by

WGCNA of 283 samples. A total of 6 non-gray modules were

obtained by setting the module dendrogram of 0.25, the outlier

value of 170, and a minimum module size of 50 genes (Figure 3C).

We found tha t MEg r een , MEbrown , ME l i gh t cy an ,

MEmidnightblue, MEblack, and MEblue were closely related to

the DDR scores in the non-gray modules (Figure 3D). The grey

module contains all genes that were not included in the clustering

and is therefore an invalid module that should not be used in

subsequent analyses. The MEbrown, MEgreen, MElightcyan, and

MEmidnightblue modules had the high correlation (P<0.05) with

the DDR. Therefore, we chose them for the follow up analysis.
3.4 Construction and validation of DDR-
related prognostic signature

First, we collected 381 genes (Supplementary Table S4) from the

intersection of differentially expressed genes obtained from single-

cell sequencing data analysis and DDR-associated genes obtained

from WGCNA for subsequent analysis. In the TCGA cohort, 33

genes (Supplementary Table S5) associated with patient prognosis

were initially obtained by univariate COX analysis at P < 0.05.

Afterward, lasso regression was performed, and the results showed

that gene contraction stabilized when the number of included genes
Frontiers in Immunology 06
was 7 (Figures 4A, B). These 7 genes were EFEMP2, TPM3,

ZC3H13, ITGB1, TOMM20, ROCK2, and TCP1 (Table 1). The

prognostic signature constructed by these 7 genes was calculated

as follows:

DDR=EFEMP2*0.01065267683731472+TPM3*0.004023509277

4 4 4 9 2 2+ZC3H13 * 0 . 0 0 6 3 9 7 3 2 1 0 5 7 2 5 7 9 9 1+ I TGB1 * 0

.0031003552748523713+TOMM20*0.0030558758870910664

+ROCK2*0.0013326606915910497+TCP1*0.0024293569783406395.

The median signature score was used to classify patients into high- or

low-DDR groups. Kaplan–Meier analysis revealed that patients with

high DDR scores suffered worse outcomes in the TCGA training

cohort (P < 0.05, Figure 4C). Similarly, in the GSE52903 validation

cohort, we also observed that the prognosis of high DDR patients was

worse than that of low DDR patients (P < 0.05, Figure 4D). To further

explore the accuracy of DDR-related signature in the prognostic

assessment of CC patients, we performed ROC curve analysis in

both the training cohort and the validation cohort. As shown in

Figure 4E, in the TCGA cohort, the areas under the curve (AUC)

values were 0.644, 0.724, 0.724, and 0.736 for 1, 2, 3, and 5 years,

respectively. In the validation cohort, we found that the regions under

the curve at 2, 3, and 5 years were 0.754, 0.722, and 0.690, respectively

(Figure 4F), indicating that DDR-related prognostic signature has high

accuracy in predicting the prognosis of patients in both cohorts. Finally,

PCA analysis was performed in the training and validation set

signatures, respectively, it was found that the signature could group

CC patients well in both the training cohort and the validation cohort

(Figures 4G, H).
FIGURE 1

The entire work flowchart of this research.
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3.5 Immune infiltration analysis and
mutation landscape

To understand the immune microenvironment in different

DDR status, we explored the immune infiltration levels between

the high- and low-DDR patient groups using six methods. The

results showed that immune cell infiltration was higher in the low

DDR group, including macrophage M1, plasma, T and B cells, as

shown in Figure 5A. Then, we investigated the expression of

different immune cells in the high or low DDR groups, and we

found that CD8+ T cells were highly expressed in the low DDR

group, while NK cells and dendritic cells were highly expressed in

the high DDR group (Figure 5B). After that, the expression of genes

related to immune checkpoints were investigated, as shown in

Figure 5C, and most of the immune checkpoint-related genes,

such as IDO1, CD244, and LAGLS9, were found higher expression
Frontiers in Immunology 07
levels in the low DDR group compared to the high DDR group.

Subsequently, we analyzed the mutations of the top 20 mutated

genes in the high and low DDR groups, respectively. The results

showed that the mutation incidence of the top 20 mutated genes in

the high or low DDR groups was 83.59% and 89.31%, respectively

(Figures 5D, E). The differentially mutated genes in the two groups

were compared shown in Supplementary Figure S1. Finally, we

analyzed the mutations in 7 genes in the signature (Supplementary

Figure S2).
3.6 Cell localization of 7 modeling genes

We used single-cell sequencing data to investigate the

expression of modeling genes in different cell types. As shown in

Figures 6A–H, EFEMP2 was mainly expressed in plasma cells as
B

C

D E

A

FIGURE 2

Single-cell RNA sequencing analysis of GSE168652. (A) The two samples were integrated, and the results showed that the two samples had no
obvious batch effect. (B) Cell cycle genes could be effectively clustered together, exhibiting no apparent distinction and facilitating subsequent
analysis. (C) Dimensionality reduction and cluster analysis. All cells in 2 samples were clustered into 41 clusters. (D) The percentage of DDR genes in
each cell. The cells were divided into high- and low-DDR cells. (E) According to the surface marker genes of different cell types, the cells are
annotated as endothelial cells, fibroblasts, plasma cells, T cells, monocytes and macrophages cells, and tumor/epithelial cells, respectively.
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well as in tumor/epithelial cells, TPM3 was mainly expressed in T

cells, ZC3H13 was mainly expressed in plasma cells, ITGB1 was

mainly expressed in tumor/epithelial cells and plasma cells,

TOMM20 was mainly expressed in macrophages and tumor/

epithelial cells, ROCK2 was mainly expressed in tumor/epithelial

cells, and TCP1 was expressed in plasma cells.
3.7 Nomogram construction
and survival analysis

A nomogram combining clinical data and DDR scores was

constructed to confirm further whether the DDR-related gene

signature could serve as an independent prognostic factor for CC.

The nomogram was created based on the race, T stage, N stage, M

stage, and DDR scores of patients in the TCGA database, and the

mortality rates of patients at 1, 3, and 5 years were estimated to be

0.43, 0.921 and 0.974 (Figure 7A). To assess the accuracy of this

nomogram further, a ROC prognostic analysis was performed. The

results showed that the area under the curve (AUC) was 0.69, 0.76,

and 0.76 at 1, 3, and 5 years, respectively (Figure 7B). We also

performed a decision curve analysis to assess the clinical decision

values by calculating the area of each clinical feature and the
Frontiers in Immunology 08
horizontal axis of none. The findings of the decision curve

analysis indicated that our nomogram might perform better than

other clinical indicators in predicting the survival of CC patients

(Figure 7C). After COX regression and lasso regression analysis, we

screened seven genes and performed survival analysis for each of

these seven genes (Supplementary Figure S3). The results showed

that the prognosis of patients with high expression of ITGB1,

ZC3H13 and TOMM20 was significantly worse than those with

low expression (P<0.05, Figures 7D–F).
3.8 HPA and GSEA analysis

We further used the Human Protein Atlas Database

(www.proteinatlas.org) to visually assess the expression of ITGB1,

ZC3H13, and TOMM20 in CC tissues and normal cervical tissues.

The results showed that ITGB1, ZC3H13, and TOMM20 were

expressed at higher levels in CC tissues than in normal cervical

tissues (Figures 8A–C). These three hub genes were subjected to

GESA analysis separately, and the results are shown in the figure.

The top five most activated Kyoto Encyclopedia of Genes and

Genomes (KEGG) terms involving ITGB1 were insulin signaling

pathway, ERBB signaling pathway, regulation of actin cytoskeleton,
B

C D

A

FIGURE 3

ssGSEA analysis and DDR-related genes were screened by WGCNA. (A) ssGSEA calculates DDR scores in TCGA-CESC cohort. (B) The immune
infiltration levels were quantified using ssGSEA in the TCGA-CESC cohort. (C, D) WGCNA found that MEgreen, MEbrown, MElightcyan,
MEmidnightblue, MEblack, and MEblue modules were closely related to the scores of DDR.
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chronic myeloid leukemia, and neurotrophin signaling pathway

(Figure 8D). The top five most activated KEGG terms involving

ZC3H13 were inositol phosphate metabolism, long term

potentiation, phosphatidylinositol signaling system, adherens

junction, and ribosome (Figure 8E). The top five most activated

KEGG terms involving TOMM20 were spliceosome, RNA

degradation, aminoacyl trna biosynthesis, thyroid cancer, and

ubiquitin mediated proteolysis (Figure 8F).
Frontiers in Immunology 09
3.9 Drug sensitivity analysis

The “pRRophetic” algorithm was applied to evaluate the

sensitivity to antineoplastic drugs in CC patients with different

DDR status (Figure 9). The analysis showed that the IC50 values of

DDR-related drugs such as Veliparib (ABT.888), AKT inhibitor

VIII, CGP.60474, and RO.3306 were higher in the high DDR group

than in the low DDR group (Figures 9A–D). The IC50 values of
B
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E F

G H

A

FIGURE 4

Construction and validation of DDR-related prognostic signature. (A)LASSO coefficient profiles of the seven genes EFEMP2, TPM3, ZC3H13, ITGB1,
TOMM20, ROCK2, and TCP1 in the TCGA cohort. (B) A coefficient profile plot was generated against the log (lambda) sequence. Selection of the
optimal parameter (lambda) in the LASSO model. (C) Survival analysis of TCGA cohort. The prognosis was significantly worse in the high-DDR group
(P<0.001). (D) Survival analysis of GSE52903 Cohort. The prognosis was significantly worse in the high-DDR group (P<0.001). (E) ROC curve of TCGA
cohort. The AUC values of the signature in 1, 2, 3, and 5 years were 0.644, 0.724, 0.724, and 0.736, respectively. (F) ROC curve of GSE52903 cohort.
The AUC values of the signature in 2, 3, and 5 years were 0.745, 0.722, and 0.690, respectively. (G, H) PCA analysis in TCGA cohort and GSE52903
cohort. It was found that the signature could group CC patients well in both the training and validation cohorts.
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Saracatinib(AZD.0530), BI.2536, Bleomycin, Camptothecin,

Cytarabine, Doxorubicin and Gemcitabine were higher in the low

DDR group than in the high DDR group (Figures 9E–K).
3.10 Differential expression of three hub
genes in HeLa, CaSki and ECT1 cells

We used qRT-PCR to detect the mRNA levels of ITGB1,

ZC3H13, and TOMM20 in HeLa, CaSki and ECT1 cells

(Figures 10A–C). We found that all three genes were highly

expressed in HeLa and CaSki cells compared to ECT1 cells.

ITGB1 has the most obviously ratio of expression in CaSki and

HeLa to ECT1 among three genes, so we selected ITGB1 for

subsequent analysis. Subsequently, the results of IHC sections also

showed higher protein level of ITGB1 in CC tissues (Figure 10D).
3.11 ITGB1 knockdown reduces HeLa and
CaSki cell migration and invasion in vitro

To assess the ability of shRNA knockdown of gene ITGB1 in

HeLa and CaSki cell lines, we assessed ITGB1 mRNA levels after

transfected for 48 hours using a qRT-PCRmethod (Figure 10E). We

found that sh-ITGB1-1 could reduce ITGB1 mRNA expression

levels (P<0.05) and could be used for further in vitro experiments.

The migration and invasion ability of HeLa and CaSki cells were

significantly decreased after ITGB1 knockdown. We found that the

percentage of cells migrating through the transwell plate

significantly decreased after shRNA knockdown (Figures 11A, B).

Also, scratch assay results showed that migration ability of HeLa

and CaSki cells was drastically reduced when ITGB1 was

knockdown (Figures 11C, D).
3.12 ITGB1 knockdown reduces the DDR
ability of HeLa and CaSki cells in vitro

In comet assay, the lengthening of cells trails means the weaker

DDR ability. The results showed that after knockdown of ITGB1,

the tailing of HeLa and CaSki cells was prolonged, suggesting that

ITGB1 can weaken the DDR of HeLa and CaSki cells (Figure 11E).
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4 Discussion

In this study, we constructed a DDR-related signature

composed of 7 genes, including EFEMP2, TPM3, ZC3H13,

ITGB1 , TOMM20, ROCK2, and TCP1. We explored the

differences in prognosis, immune microenvironment, mutation

status, and drug sensitivity between high and low DDR groups

based on this signature. We found three key prognostic genes in the

signature, ITGB1, ZC3H13, and TOMM20, and selected the key

gene ITGB1 to verify its impact on the proliferation, migration,

invasion, and DDR capacity of CaSki and HeLa cells.

Due to the tremendous progress in microarray technology and

second-generation sequencing technology, many prognostic models

have been developed to predict the prognosis of cancer patients.

Unfortunately, there is currently a lack of biomarkers or models

that can accurately predict the prognosis of CC (19, 20). We used

single-cell clustering analysis and second-generation sequencing

technology to obtain a DDR-related prognostic signature through

comprehensive analysis. DNA damage response refers to a series of

reactive events to genomic DNA damage, including DNA damage

detection, DDR pathway, and cell fate determination (21, 22). DDR

is part of the DNA damage response, and based on different types of

DNA damage, DDR initiates the repair process through different

pathways (23). According to our DDR scores signature, patients

with low DDR have a higher survival rate than those with high

DDR, providing a basis for further accurate prognostic judgments.

The AUC values for 1 year, 2 years, 3 years, and 5 years in the

TCGA cohort were 0.644, 0.724, 0.724, and 0.736, respectively. The

ROC curve shows that our prognostic signature has good accuracy.

At the same time, the robustness of this signature was validated in

GEO datasets. The results showed that in the GEO external

validation set, the OS of the high DDR group was significantly

lower than that of the low DDR group, and the AUC values for 2

years, 3 years, and 5 years were 0.754, 0.722, and 0.690, respectively.

In addition, by combining T staging, N staging, M staging, race, and

DDR scores, a line chart survival signature was established to

predict 1/3/5-year survival rates. The results showed that DDR

scores can be used as an indicator for predicting patient survival rate

and is superior to TNM staging, which has important guiding

significance for clinical practice.

The 7 genes included in our signature are ITGB1, ZC3H13,

TOMM20, EFEMP2, TPM3, ROCK2, and TCP1. Integrin-b (ITGB)

is a member of the integrin superfamily and plays a crucial role in

cell adhesion, proliferation, and differentiation (24). Previous

studies have found that ITGB1 inhibits radiosensitivity and

enhances DDR in head and neck squamous cell carcinoma,

pancreatic cancer and lung cancer (25–27). However, no

association between ITGB1 and DDR has been found in CC.

ZC3H13 is located on human chromosome 13q14.13 (28) and

mainly promotes CC stemness and chemoresistance by affecting

N6-methyladenosine and mRNA methylation (29). TOMM20 is a

receptor and a critical subunit of the outer mitochondrial

membrane translocase complex (TOM complex). Studies have

shown that TOMM20 expression directly affects mitochondrial

function, including ATP production, membrane potential

maintenance, and regulation of tumor cell activity such as S
TABLE 1 Seven genes were identified by Lasso regression to construct a
prognostic signature.

Gene HR P-value

EFEMP2 1.017 <0.05

TPM3 1.010 <0.05

ZC3H13 1.031 <0.05

ITGBI 1.008 <0.05

TOMM20 1.005 <0.05

ROCK2 1.029 <0.05

TCP1 1.007 <0.05
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phase cell cycle and apoptosis (30). EFEMP2, also known as fibulin-

4, is a member of the fibulin family (31). High expression of

EFEMP2 in CC is associated with lymph node metastasis and

poor prognosis, and may promote angiogenesis (32). TPM is a

filamentous actin-binding protein that can bind to actin. TPM3 is

an important member of the TPM family and stabilizes the cell

skeleton microfilaments (33). Studies on glioma, colon cancer, and

liver cancer have shown that TPM3 affects tumor occurrence and

development through gene fusion and epithelial-mesenchymal
Frontiers in Immunology 11
transition (EMT), and has high expression levels (34). ROCK2 is

a key signaling molecule in the Rho/ROCK signaling pathway and

plays an essential role in regulating gene expression by regulating

the activity or phosphorylation of target proteins (35). Studies have

shown that ROCK2 is critical for cancer cell migration and invasion

(36). TCP1 is one of the subunits of the chaperonin-containing

TCP-1 (CCT) complex and participates in protein folding, cell

proliferation, apoptosis, cell cycle regulation, and drug resistance

(37). TCP1 is a factor that leads to breast and ovarian cancer
B

C

D E

A

FIGURE 5

Immune infiltration analysis and mutation landscape in high and low DDR groups. (A) Heat map of immune cell infiltration in high and low DDR
groups. (B) Expression of immune cells in the high and low DDR groups. (C) Expression of immune checkpoint-related genes in high and low DDR
groups. (D) Mutation in the high DDR group. (E) Mutations in the low DDR group. *P < 0.05, **P < 0.01, ****P < 0.0001; ns, not significant.
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resistance, and upregulation of TCP1 can promote CC progression

(38–40).

Three genes, ITGB1, ZC3H13, and TOMM20, included in the

signature can independently predict prognosis. qRT-PCR results

showed that all three genes were expressed at intermediate to high

levels in CaSki and HeLa cells compared to immortalized cervical

squamous cells ECT1. Additionally, analysis of the HPA database

showed that the protein levels of ITGB1, ZC3H13, and TOMM20

were high in CC tissues. ITGB1 has the most obviously ratio of

expression in CaSki andHeLa to ECT1 among three genes, so we

selected ITGB1 for subsequent analysis. The results of IHC also

proved that ITGB1 was highly expressed in CC tissue, compared

with non-cancer tissues. Cell experiments verified that knockdown

of ITGB1 in CaSki and HeLa cells could significantly inhibit cancer
Frontiers in Immunology 12
cell proliferation, migration, and invasion abilities. Furthermore,

comet assay results showed that knockdown of ITGB1 could inhibit

DDR ability in CaSki and HeLa cells. This provides a potential

therapeutic target for CC.

As our understanding of cancer treatment mechanisms

increases, more and more researches indicate the involvement of

DDR in anti-tumor immune responses (15, 41, 42). Our study

found that compared with the high DDR group, the low DDR group

had stronger immune cell infiltration, with immunosuppressive

cells such as NK cells and M2 macrophages enriched in the high

DDR group, leading to poorer prognosis, while the activated T cells

and B cells were more abundant in the low DDR group, resulting in

a better prognosis. Moreover, in gastric cancer and melanoma, it has

also been found that patients with low DDR scores have
B
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FIGURE 6

Location and expression of 7 genes in prognostic signature at the single-cell level using tSNE plots. (A-H) EFEMP2 was mainly expressed in plasma
cells as well as in tumor/epithelial cells, TPM3 was mainly expressed in T cells, ZC3H13 was mainly expressed in plasma cells, ITGB1 was mainly
expressed in tumor/epithelial cells and plasma cells, TOMM20 was mainly expressed in macrophages and tumor/epithelial cells, ROCK2 was mainly
expressed in tumor/epithelial cells, and TCP1 was expressed in plasma cells.
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significantly increased immune infiltration, consistent with our

results (43, 44). Studies have shown that changes in tumor DDR

pathways are significantly correlated with the response to immune

checkpoint inhibitors (ICIs) and can also affect patient survival (45–

48). We further analyzed the expression of immune checkpoint-

related genes in patients with different DDR groups. Compared

with the high DDR group, most of the immune checkpoint-related

genes, such as IDO1, CD244, and LAGLS9, were highly expressed in

the low DDR group, suggesting that patients in the low DDR group

may be more sensitive to ICIs treatment. Patients with cancer who
Frontiers in Immunology 13
have mutations in the DDR genes can improve clinical outcomes

after receiving ICIs treatment (49, 50). TMB reflects the quantity of

mutations in cancer. These mutations are processed into neo-

antigens and presented by major histocompatibility complex

(MHC) proteins to T-cells (51). Higher TMB results in more neo-

antigens, increasing the chances of T-cell recognition, and clinically

correlates with better ICI outcomes (52). In our results, the TMB in

the low DDR group was higher than that in the high DDR group,

and the expression of mutated genes in tumor cells can generate

neoantigens, indicating that the ability of the low DDR group to
B
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FIGURE 7

The construction of a nomogram and survival analysis. (A) Constructed nomogram based on the race, T stage, N stage, M stage, and DDR scores of
patients in TCGA. The estimated mortality rates for patients at 1, 3, and 5 years were 0.43, 0.921, and 0.974. (B) ROC curve of the nomogram. The
area under the curve (AUC) at 1, 3, and 5 years were 0.69, 0.76, and 0.76, respectively. (C) Decision curve analysis. The effect of this nomogram was
superior to other clinical indicators. (D-F) The survival analysis results demonstrated: ITGB1 (D), ZC3H13 (E), and TOMM20 (F) were identified as
independent risk factors influencing survival outcomes among the prognostic gene signature.
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produce neoantigens is stronger, and the probability of generating

neoantigens is higher, predicting that the immune therapy effect is

better in the low DDR group.

Great progress has been made in the research of targeted DDR

anti-tumor drugs in cancer treatment. Clinically, various selective

and effective DDR inhibitors have emerged, including PARP

inhibitors, DNA damage kinases ATR, CHK1, WEE1, and ATM
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inhibitors (53). These targeted DDR drugs have been studied in

multiple tumors such as ovarian cancer, breast cancer, pancreatic

cancer, and prostate cancer. For example, drugs such as Olaparib and

Niraparib have brought significant changes to the treatment of breast

cancer and ovarian cancer. However, the study of targeted DDR

drugs in CC has just begun (54, 55). We used the IC50 drug

sensitivity analysis method to analyze the drugs that may benefit
B
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FIGURE 8

HPA and GSEA analysis. (A-C) Compared with normal cervical tissues, ITGB1, ZC3H13, and TOMM20 were more highly expressed in CC tissues
(P<0.05). (D) The top five most activated KEGG terms involving ITGB1 were insulin signaling pathway, ERBB signaling pathway, regulation of actin
cytoskeleton, chronic myeloid leukemia, and neurotrophin signaling pathway. (E) The top five most activated KEGG terms involving ZC3H13 were
inositol phosphate metabolism, long term potentiation, phosphatidylinositol signaling system, adherens junction, and ribosome. (F) The top five most
activated KEGG terms involving TOMM20 were spliceosome, RNA degradation, aminoacyl trna biosynthesis, thyroid cancer, and ubiquitin mediated
proteolysis. *P < 0.05, ***P < 0.001.
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CC patients with high/low DDR status. Our study suggests that

patients in the high DDR group may benefit from DNA damage

repair-related drugs such as BI.2536, Bleomycin, Camptothecin,

Cytarabine, and Doxorubicin, while patients in the low DDR group

may benefit from the treatment of Veliparib, AKT inhibitor VIII, and

CGP.60474. BI.2536 is a Plk1 enzyme inhibitor that is believed to

induce mitotic arrest and a subsequent surge in apoptosis (56).

Studies have shown that BI.2536 sensitizes oesophageal squamous
Frontiers in Immunology 15
cell carcinoma cells to cisplatin by inhibiting DDR pathways and

inducing pyroptosis (57), and similar findings were also found in

gastric cancer (58). But the application of BI.2536 in CC has not yet

been discovered. Therefore, we speculate that it may become a

potential new drug for the treatment of refractory CC. Our drug

sensitivity analysis results can provide a basis for selecting targeted

DDR drugs for CC patients and provide new ideas for developing

new DDR-related targeted therapeutic drugs.
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FIGURE 9

Drug sensitivity analysis. Low DDR group presented higher sensitivity to Veliparib (ABT.888) (A), AKT inhibitor VIII (B), CGP.60474 (C), and RO.3306 (D),
and lower sensitivity to Saracatinib(AZD.0530) (E), BI.2536 (F), Bleomycin (G), Camptothecin (H), Cytarabine (I), Doxorubicin (J)and Gemcitabine (K).
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Through integrating second-generation sequencing and single-

cell sequencing technologies, we conducted multi-omics analysis

and constructed a DDR prognostic signature, which can serve as an

independent prognostic indicator for CC patients. In addition, this

signature can also reflect the tumor’s mutation and immune status,

which is closely related to the development of cancer, and will

contribute to the personalized treatment of CC patients. However,

our study has certain limitations, and the clinical utility of key genes

in the signature needs to be further validated in prospective trials. In
Frontiers in Immunology 16
addition, biological experiments are needed to elucidate the

biological mechanisms between key genes in the signature and

cancer markers such as DDR and immune response.
5 Conclusion

We constructed a DDR-related gene prognostic signature in

CC. Using this signature, we can effectively evaluate the prognosis
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FIGURE 10

IHC and qRT-PCR results. (A-C) qRT-PCR detected the mRNA levels of ITGB1, ZC3H13, and TOMM20 in HeLa, CaSki and ECT1 cells. (D) IHC results
showed that ITGB1 was highly expressed in CC tissues compared with normal cervical tissues. (E) qRT-PCR evaluated the level of ITGB1 mRNA 48h
after transfection. And sh-ITGB1-1 had a better knockdown potency, which was used in further in vitro experiments. *P < 0.05, **P < 0.01, ***P < 0.001.
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and immune microenvironment of CC patients, and provide

references for patient treatment. We also demonstrated through

cell experiments the role of ITGB1 in CC and its influence on DDR,

which provides a potential therapeutic target for CC.
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