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Introduction: Breast cancer (BC) is now the most common type of cancer in

women. Disulfidptosis is a new regulation of cell death (RCD). RCD dysregulation

is causally linked to cancer. However, the comprehensive relationship between

disulfidptosis and BC remains unknown. This study aimed to explore the

predictive value of disulfidptosis-related genes (DRGs) in BC and their

relationship with the TME.

Methods: This study obtained 11 disulfidptosis genes (DGs) from previous

research by Gan et al. RNA sequencing data of BC were downloaded from the

Cancer Genome Atlas (TCGA) and Gene Expression Omnibus database (GEO)

databases. First, we examined the effect of DG gene mutations and copy number

changes on the overall survival of breast cancer samples. We then used the

expression profile data of 11 DGs and survival data for consensus clustering, and

BC patients were divided into two clusters. Survival analysis, gene set variation

analysis (GSVA) and ss GSEA were used to compare the differences between

them. Subsequently, DRGs were identified between the clusters used to perform

Cox regression and least absolute shrinkage and selection operator regression

(LASSO) analyses to construct a prognosis model. Finally, the immune cell

infiltration pattern, immunotherapy response, and drug sensitivity of the two

subtypes were analyzed. CCK-8 and a colony assay obtained by knocking down

genes and gene sequencing were used to validate the model.

Result: Two DG clusters were identified based on the expression of 11DGs. Then,

225 DRGs were identified between them. RS, composed of six genes, showed a

significant relationship with survival, immune cell infiltration, clinical

characteristics, immune checkpoints, immunotherapy response, and drug

sensitivity. Low-RS shows a better prognosis and higher immunotherapy

response than high-RS. A nomogram with perfect stability constructed using
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signature and clinical characteristics can predict the survival of each patient.

CCK-8 and colony assay obtained by knocking down genes have demonstrated

that the knockdown of high-risk genes in the RS model significantly inhibited cell

proliferation.

Discussion: This study elucidates the potential relationship between

disulfidptosis-related genes and breast cancer and provides new guidance for

treating breast cancer.
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1 Introduction

In recent years, the incidence of breast cancer in women has

continued to grow at a rate of 0.5% per year. By 2022, breast

cancer has surpassed lung cancer and has become the world’s

highest incidence of tumors. According to the latest estimates,

there will be 297,790 new breast cancer cases and 43,170 deaths

among women in the United States in 2023, making it the leading

cause of cancer death among women aged 20-49 (1). Many

treatment options for BC have been developed, including

surgery, chemotherapy, endocrine therapy, immune antibody

(trastuzumab) therapy, and radiotherapy, based on disease stage

and pathological characteristics (2, 3). Although the prognosis of

breast cancer has improved significantly in the past few decades,

even if patients pass standard diagnosis and treatment, 20–30% of

BC patients still have distant metastasis, accounting for about 90%

of all breast cancer deaths (2).

As a highly complex and heterogeneous disease with different

molecular spectrums, breast cancer limits the broad application of

classification and standard treatment to some extent. Furthermore,

it is difficult to predict the prognosis of BC (2, 4). Therefore, we

urgently need to explore the characteristics of the high-risk

population of breast cancer patients to obtain the key markers of

prognosis and to find potential therapeutic targets to designate

individualized treatment to improve the prognosis of patients.

SLC7A11-mediated cystine reduction to cysteine highly

depends on the reduced nicotinamide adenine dinucleotide

phosphate (NADPH) generated by the glucose–pentose

phosphate pathway. Under glucose starvation, the NADPH in

SLC7A11-high-expression cells is consumed in large quantities,

and the abnormal accumulation of disulfides, such as those in

cystine, induces disulfide stress. This causes actin filaments to

aggregate and contract rapidly, peeling off the plasma membrane

before apparent cell death, called disulfidptosis. During this process,

SLC7A11 and SLC3A2, which encode the SLC7A11 chaperone

protein, mediate the reduction of ingested cystine to cysteine.

Next, the WAVE regulatory complex (WRC) can activate seven

subunits of actin-related protein 2 and 3 (Arp2/3) complexes to

promote actin polymerization and plate pseudopod formation. This
02
produces a branched cortical actin network under the plasma

membrane, thereby stripping actin filaments from the plasma

membrane. Nck-related protein 1 encoded by NCKAP1 is a WRC

component. Its deletion will reduce the protein levels of other

components in the WRC, including WAVE-2, CYFIP 1, Abi 2, and

HSPC 300, and inhibit disulfidptosis. Similarly, knocking out the

other four components of the WRC will also repress disulfidptosis.

Finally, Rac can activate WRC to promote plate pseudopod

formation and disulfidptosis. Knockout of the RPN1 gene, which

encodes an N-oligosaccharide transferase in the endoplasmic

reticulum, will offer UMRC6 cells stronger resistance

to disulfidptosis.

However, DRGs have not been demonstrated in the survival

prognosis, tumor immune microenvironment, TMB, immunity,

and clinical treatment of BC patients. We still lack direct evidence

of the predictive ability of DRGs for BC prognosis and

immunotherapy. This study aimed to construct a risk score (RS)

model based on DRGs to predict the prognosis of BC patients. In

this study, TCGA and GEO databases were used to obtain DRGs by

analyzing the difference in consensus clustering of DGs. The RS

model of DRGs was built using the LASSO-Cox method. Further,

we verified that this feature could be used as a reliable, independent

predictor of prognosis and immune-sensitive response and could

predict the prognosis of BC patients. Through this model, patients

were divided into high-risk and low-risk groups. The differences in

survival outcomes, tumor immune microenvironment, and

immunotherapy response of BC patients were analyzed.

According to the differences between groups, drug sensitivity

studies were conducted to find sensitive drugs in different

populations, and individualized intervention was implemented to

improve the prognosis of BC patients.
2 Methods

2.1 Data collection and processing

We downloaded and organized 1,180 samples (1,081 tumor and

99 normal samples) from the TCGA database using the
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TCGAbiolinks and SummaryExperiment package in R v.4.2.2

(Supplementary Table 1). We searched the GEO database with

“breast cancer” and “survival information” as keywords and

screened according to the following criteria: first, all samples were

from humans; second, all data sets included matched cancer tissue

samples and clinical information; and third, the data set contained

at least 200 samples. We downloaded the GSE12276 and GSE20685

gene expression profile, GPL570 platform annotation information,

and clinical information using GEOquery, the data transmission

tool of the GDC application. Gene expression profiles were

standardized using the scaling method provided in the limma R

package (5). TCGA and GEO gene expression profile information

and clinical data are publicly available and open access. Therefore,

no ethical issues were involved. Clinicopathologic features include

gender, age, T (tumor) stage, N (lymph node metastasis) status, M

(distant metastasis) status, tumor grade, survival status, and survival

time. The tumor mutation data were derived from TCGA [GDC

(cancer.gov)], and the gene copy number was downloaded from the

Xena database (UCSC Xena). We obtained 11 disulfidptosis genes

(DGs) from a previous study (6). The workflow of the current study

is shown in Figure 1.
Frontiers in Immunology 03
2.2 Survival, TMB, and CNV difference
analysis between DGs

We used the Limma package using wilcox.test to test the difference

in DG expression between tumor and normal samples (p < 0.05). R

package survival and survminer were used for the survival analysis of

DGs. DGs were divided into high- and low-expression groups

according to gene expression. The survival differences between the

two groups were compared (p < 0.05). Tumormutation burden (TMB)

refers to the number of somatic nonsynonymous mutations or all

mutations per megabase in the gene region detected by whole exome

sequencing or targeted sequencing in a tumor sample (7). Mutation

data were downloaded from the Cancer Genome Atlas Breast Cancer

(TCGA-BRCA) collection using the GDCquery package with 988 data

downloads. According to the data.category = Simple Nucleotide

Variation, data.type = Masked Somatic Mutation. The mutation data

were analyzed with the R package maftools (8). The mutation

probability of DGs in each tumor sample was calculated and

analyzed. CNV (Copy Number Variation) is the increase or decrease

in the copy number of genomic fragments caused by genome

rearrangement. Xena downloaded and collated copy number
FIGURE 1

Workflow diagram.
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variation data and used R-package RCircos to visualize the CNV

of DGs.
2.3 Establishment of the disulfidptosis
gene cluster

We used the R software package “ConsensusCluster Plus” for

consensus clustering analysis and identified clusters of BC patients

based on DGs. We set the cluster count (k) between two and nine

and selected the optimal k value based on the sum of squared errors

(SSE) inflection point. The stability of the DG group was verified by

the PCA algorithm. Additionally, Kaplan-Meier survival analysis

evaluated the OS of different DG clusters, and the heat map showed

the degree of difference in DGs between the two groups.
2.4 TME infiltration and functional
enrichment analysis of different clusters

Gene set variation analysis (GSVA) is a particular gene set

enrichment method. This method works on single samples and

enables pathway-centric analyses of molecular data by performing a

conceptually simple but powerful change in the functional unit of

analysis from genes to gene sets. We used the GSVA and GSEABase

packages to evaluate the pathways enriched in groups A and B. We

attempted to explain the reasons for the difference in survival between

the groups from the bioinformatics perspective (9). Single sample gene

set enrichment analysis (ssGSEA) was used to quantitatively analyze the

immune infiltration of the overall sample and to observe the difference in

component immune infiltration (10).We used the “limma”R package to

analyze the DRGs between the two disulfidptosis clusters (p < 0.05, |

logFC| = 0.585). Finally, we used the “ggplot2” package. The gene

ontology (GO) analysis of DRGs was performed, and the histogram,

bubble diagram, and circle diagram were drawn to explore its function

and biological process. The Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analysis, histogram, and bubble diagram

were drawn to explore its function and biological processes.
2.5 Identification of DRGs and construction
of the prognostic signature

Before constructing the risk prediction model, we screened the

features. First, a univariate Cox model was used to explore the

relationship between 225 DRGs and OS of patients. A total of 114

single-factor DRGs related to BC prognosis were obtained. The least

absolute shrinkage and selection operator (LASSO) was used to avoid

overfitting in the TCGA training cohort (11). The prognostic DRG

model was established using multivariate Cox regression analysis and

the step Akaike information standard (stepAIC) value. The RS for each

patient was calculated by combining the expression of each gene (Ei),

LASSO coefficients (Li), and RS = Sni Ei * Li. The patients were divided
into high-risk and low-risk groups according to the median RS. Finally,

the Kaplan–Meier survival curve was used to analyze the difference in

overall survival between the two groups.
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The sensitivity and specificity of the prognostic indicators were

evaluated using the receiver operating characteristic (ROC) curve and

the area under the ROC curve (AUC). A bootstrap method based on

1,000 resamplings was used to obtain the test set (12, 13) to verify the

effectiveness of the prediction model. The training set was a

combined dataset established using TCGA and GEO based on

common genes. In the test set, the AUC of the prognostic model

was calculated using the R package “riskRegression.” Subsequently,

the stability of the ROC model was tested in the separate TCGA and

GEO datasets, and the TCGA and GEO joint datasets merged based

on common genes. Analyze the relationship between RSs and clinical

factors, verify the effectiveness of risk markers, and further compare

the survival prediction ability of prognostic factors. The

independence of the prognostic model was verified using univariate

and multivariate Cox regression analyses by comparing the clinical

characteristics of the patients. At the same time, the nomogram was

constructed with the Cox regression coefficient of the package “rms,”

and the calibration curve was drawn.
2.6 Establishment of DRG cluster

We used the “ConsensusCluster Plus” package for consistency

clustering analysis and identified clusters of BC patients based on

DRGs. We set the cluster count (k) between two and nine and

selected the optimal k value based on the sum of the squared errors

(SSE) inflection point. The stability of the DG group was verified

using a PCA algorithm. Additionally, Kaplan–Meier survival

analysis evaluated the OS of different DG clusters, and the heat

map showed the difference in DGs between groups.
2.7 Different tumor immune
microenvironment patterns with RS

We used the CIBERSORT algorithm to calculate the proportion

of tumor-infiltrating immune cells (14). The difference in the

proportion of tumor-infiltrating immune cells between the high-

and low-risk groups was compared. The ESTIMATE algorithm was

used to evaluate the differences in immune, stromal, and tumor

purity scores between the high- and low-risk groups. The tumor

mutation burden was assessed based on whether the sample was

considered high or low risk. Additionally, we used the Maftools

package to perform somatic mutation analysis on breast cancer

patients to view and analyze somatic mutation data. We also studied

the relationship between BC RSs and cancer stem cells.
2.8 The role of RS based on DRGs in
predicting drug sensitivity and clinical
immune efficacy

For a long time, the research and development of new drugs have

been a hot spot in breast cancer treatment. We used the pRRophetic

package to calculate the half inhibitory concentration (IC50) of

commonly used drugs in breast cancer patients. We screened out
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potential drugs with sensitivity differences between the two groups

according to the risk level of breast cancer patients (p < 0.001) and drew

a box plot. We used ggplot2, ggpubr, limma, and reforme2 R software

packages to analyze the statistical differences in the expression levels of

79 common ICI-related immunosuppressive molecules (15). Tumor

Immune Dysfunction and Exclusion (TIDE) [Tumor Immune

Dysfunction and Exclusion (TIDE) (harvard.edu)] is a simple method

to predict the immune escape of patients based on the evaluation of the

tumor microenvironment using gene expression profiles. Patients with

high TIDE scores have a high chance of antitumor immune escape (16).

We obtained information on the immune escape ability after submitting

the transcriptome data of TCGA-BRCA patients to the website. TCGA

is a quantitative scoring scheme developed by developers using machine

learning: it is a better predictor of anti-cytotoxic T lymphocyte antigen 4

(CTLA-4) and anti-programmed cell death protein 1 (anti-PD-1)

antibody responses. We downloaded BC immunophenotype score

(IPS) from TCIA database (https://tcia.at/). In order to predict the

sensitivity of immunotherapy, we compared the IPS of high and low risk

groups in different immunotherapy decisions (17).
2.9 Cell lines, cell culture, cell transfection,
and real-time quantitative PCR

The Tumor Cell Line Comprehensive Analysis Database (DepMap

Portal) was utilized to screen for cell lines for further experimental

validation (18). Breast cancer cell lines (MDA-MB-468) were obtained

from Sichuan Huijixin Biotechnology Co., Ltd. The MDA-MB-468 cells

were grown in Dulbecco’s Modified Eagle Medium (DMEM) culture

medium, supplemented with 10% Fetal Bovine Serum (FBS) in a

standard humidified incubator with 5% CO2 at 37°C. The

TMEM45A and SHCBP1 specific short hairpin RNAs (shRNAs) were

synthesized from Chengdu Youkangjianxing Biotechnology Co., Ltd.

The sequences of shRNAs are as the following: sh- TMEM45A -1:

5 ′- TGCTGTTGACAGTGAGCGCGGTTAAAGTATTTG

AATTTAATAGTGAAGCCACAGATGTATTAAATTCAAAT

ACTTTAACCATGCCTACTGCCTCGGA-3′; sh- TMEM45A -2:

5′- TGCTGTTGACAGTGAGCGCGGTGTACAAAGAGTATTC

TGATAGTGAAGCCACAGATGTATCAGAATACTCTTT

GTACACCATGCCTACTGCCTCGGA′. sh- SHCBP1 -1: 5′-TGCT
GTTGACAGTGAGCGCCACATTGATTTTTCAATTGA

ATAGTGAAGCCACAGATGTATTCAATTGAAAAATC

AATGTGATGCCTACTGCCTCGGA-3′; sh- SHCBP1 -2: 5′- TGCT
GTTGACAGTGAGCGCCAGCCAAATGTTGATATTAA

ATAGTGAAGCCACAGATGTATTTAATATCAACATTTGGC

TGATGCCTACTGCCTCGGA -3′.
The knockdown efficiency was evaluated using real-time

quantitative PCR (RT-qPCR) after 48 h transfection. The primer

sequences used in the experiment are as follows. For the TMEM45A

gene, the primers include qpcr-TMEM45A-F (forward primer):

TTGGATGCCCACACTATGA and qpcr-TMEM45A-R (reverse

primer): TCCATGGTCAAGGAGTTACA. For the SHCBP1 gene,

the primers consist of qpcr-SHCBP1-F (forward primer):

CTGGAGTTACAGAAGGATGGTG and qpcr-SHCBP1-R (reverse

primer): CCATAGAAGCCTGTGGAATGT. After the knockdown of

TMEM45A and SHCBP1 in cell line MDA-MB-468, total mRNA from
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cells was extracted with TRIzol reagent (TaKaRa, Japan). Then,

concentration and purity were evaluated by Nanodrop 2000 (Thermo

Fisher, USA). After the RNA was reversely transcribed into cDNA with

PrimeScript RT kit (TaKaRa, Japan) according to the instructions, SYBR

Premix Ex Taq TM kit (TaKaRa, Japan) was applied for RT-qPCR, with

b-actin as the endogenous control gene. The RT-qPCR amplification

instrument (ABI StepOne Plus) was used to detect the SYBR Green

fluorescence signal level after each amplification cycle. Data processing

was performed using GraphPad Prism 10.0.0, and T-test was conducted

to compare the experimental group to the control group. This

supplementary material has been reflected in the preceding text.
2.10 Cell proliferation assay

For three days, proliferation assays were conducted daily on BC cells

in 96-well plates using Cell Counting Kit 8 (CCK8) reagent (Beyotime,

China). Incubation occurred at 37°C for 2 h, and the plate was analyzed

with a microplate reader at 450 nm to measure absorbance.
2.11 Colony formation assays

Approximately 500 cells per well were seeded into a 6-well

culture plate and incubated at 37°C for two weeks. After washing

with PBS twice, cells were fixed with 4% paraformaldehyde for

15 min and then dyed with crystal violet. Each experiment was

repeated three times. ImageJ was used for image analysis to convert

images into cellular count data (19). The acquired counts were

normalized by dividing them by the corresponding cell count in the

control group, yielding percentage data. Data and image processing

were performed using GraphPad Prism 10.0.0. The statistical

analysis consisted of a t-test conducted on three replicate datasets,

comparing the experimental and control groups.
2.12 RNA-seq

Cells were used for RNA sequencing after the knockdown of

TMEM45A and SHCBP1 in cell line MDA-MB-468. Approximately

2 mg of total RNA was extracted from each specimen and pretreated

with Epicentre Ribo-zeroTM rRNA Removal Kit. Then, the RNA

expression profile library was constructed in line with the

manufacturer’s protocol of NEBNext R Ultratdirectional RNA

Library Prep Kit(NEB, USA). The steps are as follows: First, RNA

was lysed into small fragments after being treated with NEBNext

first strand synthesis reaction buffer at high-temperature treatment,

and the first strand cDNA was synthesized using random hexmer

primers and M-MULv reverse transcriptase. The second strand

dsDNA was then obtained, and the fragment residues were

converted into blunt ends by exonuclease or polymerase.

Subsequently, the 3’end of each dsDNA fragment was adenylated

and connected to the NEBNext adapter with a hairpin structure.

After purification using the AMPure XP system (Beckman Coulter,

Beverly, USA), 150–200 bp DNA fragments were obtained and

sequenced using HiSeq 2500 (Illumina, CA, USA).
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2.13 RNA-seq data processing and analysis

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/) was utilized to check the sequencing quality of all the sample

data trimmed using the FASTX Toolkit. The sequencing reads against

the human assembly GRCh37 weremapped using TopHat (v 2.0.9).We

perform differential analysis using the gene expression matrix in counts

format. We employed the R package edgeR to perform differential

analysis between snSHCBP1 and NC, as well as snTMEM45A and NC,

using predetermined criteria (fold change > 1, padj < 0.05). Following

this analysis, we created volcano plots to visualize the differential

expression of genes. We conducted an intersection analysis to identify

genes that exhibited consistent differential expression in both replicates.

Subsequently, we performed Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analyses

(p-value < 0.05) on the genes found in the intersection.
3 Results

3.1 11DGs in breast cancer: expression,
genetic variants, and prognostic values

We analyzed the differences between 11 DGs in breast cancer and

normal breast tissue samples. Except for NCKAP1, other genes

significantly differed between tumor and normal groups (p < 0.05).

The expression levels of SLC3A2, RPN1, BRK1, ACTR2, ACTR3,

RAC1, SLC7A11, andWASF2 in the tumor samples were higher than

those in the normal samples. On the other hand, the expression levels

of WASF2, CYFIP1, and ABI2 in the normal samples were higher

(Figure 2A). Of the 911 breast cancer samples of TCGA, 33 samples

had DG mutations. The genes with the highest mutation frequencies

were NCKAP1 and CYFIP1. Still, no base mutation was found in

WASF2 (Figure 2B). The location and copy number changes of DGs

on chromosomes are shown in Figure 2C. Among them, SLC3A2,

BRK1, ABI2, ACTR2, NCKAP1, RAC1, RPN1, SLC7A11, and

ACTR3 are upregulated in breast cancer, while CYFIP1 and

WASF2 were downregulated. COX regression analysis and K-M

survival analysis were performed on the expression of 11 DGs and

the survival time of patients, and the tumor samples were divided into

high- and low-risk groups according to the median value of a single

gene. It can be concluded that SLC7A11, SLC3A2, RPN1, NCKAP1,

BRK1, ACTR2, ACTR3, and RAC1 are single-factor genes that can

predict the survival of patients (p < 0.05, Supplementary Table 2). The

survival analysis was statistically significant, and the gene expression

was negatively correlated with the survival time (Figure 2D). The 11

DGs positively regulated each other (Figure 2E).
3.2 Clusters of DGs identified in
breast cancer

We performed a consistent cluster analysis of the expression levels

of 11 DGs to explore their roles in the occurrence and development of

breast cancer. Among the clustering variables, k = 2 had better

clustering stability, the highest intra-group correlation, and the
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lowest inter-group correlation (Figures 3A–C). Therefore, we divided

all tumor samples into clusters A (n = 339) and B (n = 850). PCA

showed a significant interval between the two groups (Figure 3D).

Survival analysis between groups A and B showed that the prognosis of

group A was significantly better than that of group B, and the survival

difference between the two groups was statistically significant (p < 0.05,

Figure 3E). Additionally, the heat map between the two AB groups

showed significant differences in the expression of 11 DGs between the

two groups, especially between the SLC7A11 groups (Figure 3F).
3.3 TME infiltration and functional
enrichment analysis of different clusters

The samples in the A and B groups were analyzed using GSVA.

From Figure 4A, it can be seen that group B was more active in

arachidonic acid metabolism and taurine and hypotaurine metabolism

pathways than group A. At the same time, group A was active in

nonhomologous end connections, ubiquitin-mediated proteolysis, and

other pathways. We performed a single sample gene set enrichment

analysis (ssGSEA) on groups A and B. From Figure 4B, we can see

Activated.B.cell, Activated.CD8.T.cell, CD56dim.natural.killer.cell,

Eosinophil, MDSC, Macrophage, Mast.cell , Monocyte.

Natural.killer.cell, Neutrophil, Plasmacytoid.dendritic.cell,

T.follicular.helper.cell, Type.1.T.helper.cell, and Type.17.T.helper.cell

were highly expressed in Cluster A and Activated.CD4.T.cell,

Activated.dendritic.cell, Gamma.delta.T.cell, Immature.B.cell,

Immature.dendritic.cell, Regulatory.T.cell, and Type.2.T.helper.cell

were highly expressed in cluster B. We found 225 differential genes

between groups A and B to explore the differences in biological

processes between groups A and B according to the DG grouping.

We performed GO and KEGG enrichment analyses on these

differential genes. As shown in Figures 4C, D, DRGs are mainly

enriched in the nuclear division, chromosome segregation, and

nuclear chromosome segregation in biological processes (BP). In

addition, DRGs were primarily enriched in the spindle, chromosomal

region, and condensed chromosome. Regarding molecular function,

DRGs were mainly enriched in microtubule binding, tubulin binding,

and ATP hydrolysis activity. We also performed a KEGG enrichment

analysis to explore the differential genes in the pathway. The most

enriched pathways were in the cell cycle. Cytokine−cytokine receptor

interaction and human papillomavirus infection were the most

significant enrichments in the cell cycle, PPAR signaling pathway,

and ECM−receptor interaction (Figures 4E, F).
3.4 Clusters of DRGs identified in
breast cancer

Based on a consensus cluster analysis of 225 DRGs, the relationship

between disulfidptosis and BRCA subtypes was explored. K = 3 is the

appropriate choice for the most stable aggregation (Figures 5A–D).

Therefore, we divided all tumor samples into three subgroups: cluster A

(n = 525), cluster B (n = 379), and cluster C (n = 285). 11DGs exhibit

significant differences among clusters A, B, and C (Figure 5E). Figure 5F

shows that the prognosis of group A is the best, followed by group B,
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and the prognosis of group C is relatively poor. From Figure 5G, it can

be seen that there were significant differences in the expression levels of

DRGs between different clusters. The samples of DRG cluster A were

mostly in cluster A of 11 DGs, and the survival prognosis of these two

clusters was significantly better than that of other groups.
3.5 Creating and confirming the
predictive RS

We used univariate Cox regression analysis to extract 114 DRGs

associated with BC prognosis in the preliminary screening
Frontiers in Immunology 07
(Supplementary Table 3). Using the LASSO regression algorithm, 14

BC-related genes were identified based on the minimum partial

likelihood of the best l value and deviation (Figures 6A, B,

Supplementary Table 4). Multivariate Cox regression analysis was

performed on these 14 genes, and a risk model consisting of six

genes was obtained (Figure 6C). Among them, SHCBP and

TMEM45A were molecules that improved prognosis. PIGR, IGLV6-

57, TCN1, and GFRA1 were risk factors. The molecular formula of the

model was as follows: RS = (0.1917 * SHCBP1 + 0.0836 * TMEM45A–

0.0721 * PIGR–0.1633 * IGLV6–57–0.0489 * TCN1-0.0676 * GFRA1).

In the bootstrap set, AUC at one year was 0.767, AUC at three years

was 0.717, and AUC at five years was 0.694 (Figure 6D, Supplementary
B
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FIGURE 2

The analysis of 11 DGs' expression and association in the TCGA cohort. (A) The expression of the 11 DGs in BC tissues and healthy breast tissues
(*p<0.05; ***p< 0.001). (B) Data on the frequency of DGs' mutations for 991 BC patients. (C) The sites of CNV variation in DGs on the 23
chromosomes. (D) The relationship between 8 DGs and overall s survival. (E) The interactions between DGs in BC (the red and blue strings denote
positive and negative correlation, respectively; the intensity of the correlation is indicated by the color shades).
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Table 5). Besides, we used the GEO database GSE20685 for external

data verification. The AUC values of breast cancer patients predicted by

our model were 0.743, 0.650, and 0.615 at one, three, and five years,

respectively (Figure 6E). We validated it separately in the GEO dataset:

AUC at one year was 0.762, AUC at three years was 0.734, AUC at five

years was 0.758, AUC at one year was 0.771, AUC at three years was

0.712, and AUC at five years was 0.652 in TCGA. In the combined

dataset of TCGA and GEO, the AUC at one year was 0.766. The AUC

at three years was 0.716, and the AUC at five years was 0.686

(Figures 6F–H). BC patients were randomly selected for scoring, total

point = point (T) + point (N) + point (RS) + point (stage) + point (age)

below by combining RS and clinicopathological features, using the

nomogram (a quantitative method), as shown in Figure 6I. The total

score corresponds to the scale in the figure. It can predict 1-year, 3-year,

and 5-year OS of BC patients. The calibration curve showed adequate

consistency between the predicted values of the 1-year, 3-year, and 5-

year OS nomograms and the actual observed values (Figure 6J).
3.6 Dividing the high- and low-risk groups
and observing their distribution in clusters

The patients in the TCGA, GEO, and total datasets were divided

into high-risk and low-risk groups according to the median RS value.

The differences between the groups were compared. Figure 7A shows

that the genes (SLC7A11, SLC3A2, BRK1, ACTR2, ACTR3, RPN1, and

NCKAP1) have the K-M survival analysis between the high- and low-

risk groups showed that the survival differences between the high- and

low-risk groups were statistically different (p < 0.001) in the TCGA

dataset, GEO dataset, combined dataset and external validation of the

GEO database. The prognosis of the significantly high-risk group was

poor (Figure 7B). Seven of the 11 disulfide death genes showed
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significant differences in gene expression between high-risk and low-

risk individuals (Figure 7C). Figure 7D illustrates the proportion of

surviving and dying patients in two RS high and low groups, two DGs,

and three DRG subtypes. Figures 7E, F show the RS distribution of two

DG subtypes and three DRG subtypes, respectively. The PCA diagram

shows that RS has an adequate grouping function (Figure 7G).
3.7 Different immune landscapes in the
two risk groups

The CIBERSORT algorithm evaluated the relationship between RS

and the relative number of immune cells. RS was positively correlated

with the number of immune cells, such as Macrophages M0 and M2,

Dendritic cells resting, Mast cells activated, B cells memory, NK cells

resting, T cells CD4 memory resting, B cells naïve, Mast cells resting, and

Monocytes. The expression of immune cells, such as dendritic cells

activated, Plasma cells, MacrophagesM1, and T cells CD8, was negatively

correlated (p < 0.05). The stromal score, immune score, and ESTIMATE

score of the high-risk group were higher. The difference between the

groups was statistically significant (Figure 8A). Our study also examined

the association between six genes and the number of immune cells

(Figure 8B). According to our research, these six genes affect most

immune cells. By observing the mutation frequency of each tumor

sample and the mutation frequency of the gene, the TMB difference

between the high- and low-risk groups was compared. From Figures 8C,

D, it can be seen that the TMB of patients in the high-risk group is higher

than that in the low-risk group, RS is positively correlated with TMB, and

CRGsClusteA is significantly enriched in the low-risk area.

The TMB survival curve showed that patients with low TMB had a

better prognosis (Figure 8E). Compared with other groups, BC patients

with low risk and low TMB had the best prognoses (Figure 8F). The
B C
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FIGURE 3

Biological and clinicopathological characteristics of DG subtypes. (A) The consensus matrix's heatmap of two clusters (k = 2). (B) tracking plot. (C)
Consensus CDF. (D) A considerable transcriptome divergence between the two subtypes is seen by PCA analysis. (E) Subtype-specific Kaplan-Meier
OS curves. (F) DGs expression levels and clinicopathological traits vary across subtypes.
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mutation rate of the low-risk group was 85.81% (Figure 8G). The

mutation rate of the high-risk group was 85.78% (Figure 8H). The

waterfall diagram shows that the mutation genes in the high- and low-

risk groups are mainly PIK3 CA, TP53, TTN, CDH1, GATA3,

MUC16, and MAP3K1, and the mutation rates of these genes are

different in the high- and low-risk groups. PIK3CA had the highest

mutation frequency in the low-risk samples, while TP53 had the

highest in the high-risk groups. The mutation probability of TP53 in

the high-risk group was 43%, while the mutation frequency of TP53 in

the low-risk group was only 29%.
3.8 Drug sensitivity and different
immunotherapy responses in the two
risk groups

There was a positive correlation between RS and stem cells. The

higher the RS, the higher the content of stem cells (p < 0.05)
Frontiers in Immunology 09
(Figure 9A). The TIDE score of the high-risk group was lower than

that of the low-risk group, and the tumor immune escape ability was

weak (Figure 9B). The ESTIMATE results showed that the stromal

immunity and estimated scores of the high-risk group were low

(Figure 9C). The drug treatment of breast cancer has broad research

prospects and has attracted much attention. Therefore, the IC50 value

of chemotherapeutic drugs for BC was calculated, and the relationship

between RS and drug resistance was analyzed. We noted that in

addition to docetaxel (microtubule depolymerization inhibitors) and

parthenolide (NF-kB inhibitors) in high-risk patients with lower IC50.

In contrast, other drugs [ABT.888 (Veliparib, PARP inhibitors)],

AG.014699 (Rucaparib, PARP inhibitors), AMG.706 (Motesanib,

VEGFR inhibitors), ATRA, AUY922 (Luminespib, HSP90

inhibitors), GDC0941 (Pictilisib, PI3K inhibitors), Metformin,

Methotrexate, Nilotinib, Nutlin.3a (MDM2 inhibitors), Roscovitine,

Temsirolimus, and Tipifarnib) had lower IC50 in low-risk patients

(Figure 9D). We performed immune checkpoint analysis on high-risk

and low-risk groups to explore the precise use of immune checkpoint
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FIGURE 4

Disulfidptosis subtypes linked to TME invasion. (A) GSVA of two disulfidptosis subtype-related cellular pathways (Red means activated and blue
means inhibited). (B) Correlations between immune cell infiltration levels in the two subtypes associated with disulfidptosis. (C, D) The GO function
enrichment analyses. (E, F) The KEGG function enrichment analyses.
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FIGURE 5

Biological and clinicopathological characteristics of DRG subtypes. (A) The consensus matrix's heatmap of two clusters (k = 3). (B) Consensus CDF
(C) Delta area. (D) tracking plot Consensus CDF. (E) DRGs expression levels and clinicopathological traits vary across subtypes. (F) Subtype-specific
Kaplan-Meier OS curves. (G) DRGs expression levels and clinicopathological traits vary across subtypes.
B C D

E F G H

I J

A

FIGURE 6

(A, B) LASSO variable trajectory plot for 1,000 cross validations (A) and LASSO coefficient profile (B). (C) Forest Plot for Multifactorial Cox Regression
Analysis. (D) ROC curves and AUCs for 1-, 3-, and 5-year survival rates. (E) ROC curves and AUCs for 1-, 3-, and 5-year survival rates in another
independent GEO dataset. (F) ROC curves and AUCs for 1-, 3-, and 5-year survival rates in the TCGA and GEO merged datasets. (G) ROC curves and
AUCs for 1-, 3-, and 5-year survival rates in TCGA datasets. (H) ROC curves and AUCs for 1-, 3-, and 5-year survival rates in GEO datasets. (I) The
nomogram used to calculate the survival rates of 1-, 3-, and 5-years for patients with BC. (J) Calibration curve for nomograms.
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inhibitors (ICI) in breast cancer patients. Except for the high expression

of the PVR gene in the high-risk group, the other immune checkpoint

genes were increased in the low-risk group. The IPS of the low-risk

group was significantly higher than that of the high-risk group, and the

immunotherapy efficacy of the low-risk group was better (Figure 9E).
Frontiers in Immunology 11
3.9 Knockdown of TMEM45A and SHCBP1
inhibited BC cell proliferation

We conducted a search on the DepMap Portal to assess the

expression levels of TMEM45A and SHCBP1 in various breast
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FIGURE 7

(A) Ranked dot, scatter plots and heat map of the model gene expressions in the TCGA and GEO merged datasets, TCGA datasets and GEO datasets.
(B) Kaplan–Meier analyses of the OS between the TCGA and GEO merged datasets, TCGA datasets, GEO datasets and another independent GEO
dataset. (C) RS score differences in eleven DGs. *p < 0.05, ***p < 0.001. (D) The subtype distributions among groups, risk scores and survival
outcomes. (E) Variations in risk scores among DGs subtypes. (F) Variations in risk scores among CRGs subtypes. (G) Through PCA analysis, it can be
seen that there are large transcriptome differences between high and low groups.
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cancer cell lines. Ultimately, we observed that these two genes exhibited

significantly high expression in the MDA-MB-468 cell line

(Supplementary Figure 1). In our study, we constructed a predictive

model using six dual sulfur death-related genes. We selected the high-

risk genes TMEM45A and SHCBP1 in our model to validate the
Frontiers in Immunology 12
potential for targeted gene therapy. TCGA and GEO data analyses

revealed that TMEM45A and SHCBP1 were highly expressed in breast

cancer. Therefore, we knocked down TMEM45A and SHCBP1 and

further investigated the role of TMEM45A and SHCBP1 inMDA-MB-

468 breast cancer cells in vitro.
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FIGURE 8

Comprehensive analysis of the risk scores in BC. (A) Correlations between immune cell types and risk score. (B) The six genes from the proposed
model are correlated with the number of immune cells. (C) risk score and TMB spearman correlation analysis. (D) The differences in TMB between
high- and low-risk groups. (E) Kaplan–Meier survival curves of BC patients between the H-TMB and L-TMB groups. (F) Kaplan–Meier survival curves
of BC patients across H-TMB + high risk, H-TMB + low risk, L-TMB + high risk, and L-TMB + low risk. TMB, tumor mutational burden; H, high; L,
low. (G, H) The somatic mutation features waterfall plot determined by high and low risk scores. One patient was represented by each column. The
correct number represented each gene's frequency of mutation, and the upper barplot displayed TMB. The proportion of each variant type was
displayed in the right barplot.
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First, we established MDA-MB-468 shTMEM45A and

shSHCBP1 cell lines through lentiviral transduction. As shown in

Figure 10A, the knockdown of TMEM45A and SHCBP1 in MDA-

MB-468 was satisfactory. We further investigated the impact of

TMEM45A and SHCBP1 knockdown on the functionality of breast

cancer cells through CCK-8 and colony formation assays to

determine their effects on BRCA cell proliferation.
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As expected, the CCK-8 assay (Figure 10B) showed that the

knockdown of TMEM45A and SHCBP1 in MDAMB468 similarly

inhibited the proliferation of breast cancer cells. The colony formation

assays (Figure 10C, D) demonstrated that the knockdown of

TMEM45A and SHCBP1 significantly and independently inhibited

cell proliferation (p < 0.05). These results collectively indicate that

TMEM45A and SHCBP1 influence the proliferation of BC cells.
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FIGURE 9

(A) Associates between the CSC index and the risk score. (B) TIDE score between high- and low-risk group. (C) The boxplots for the drug sensitivity
analysis. (D) Differential expression analysis of the immune checkpoint genes between the high-risk and low-risk groups. IC50, the half-maximal
inhibitory concentration; *, p < 0.05; **, p < 0.01; ***, p < 0.001. (E) The difference between anti-PD1 treatment and anti-CTLA-4 treatment between
high and low risk groups.
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3.10 Sequencing and functional
enrichment analysis

The knockdown of SHCBP1 and TMEM45A was achieved by

generating shSHCBP1_1, shSHCBP1_2, shTMEM45A_1, and

shTMEM45A_2. Differential analysis was conducted using the

average counts from three replicate sequencing experiments

(Supplementary Table 6). shSHCBP1_1 exhibited differential

expression in 1171 genes (687 upregulated, 484 downregulated)

compared to the NC group, while shSHCBP1_2 showed differential

expression in 593 genes (421 upregulated, 172 downregulated)

compared to the NC group (Figures 11A–C). shTMEM45A_1

exhibited differential expression in 7710 genes (3896 upregulated,

3814 downregulated) compared to the NC group, while

shSHCBP1_2 showed differential expression in 7272 genes (3683

upregulated, 3589 downregulated) compared to the NC group

(Figures 11F–H). We identified the intersecting genes in the

upregulated and downregulated gene sets from the two

independent replicate experiments and subjected these genes to

GO and KEGG enrichment analyses (Figures 11D, E, I, J).
4 Discussion

Regulated cell death (RCD) is a type of cell death controlled by

specific molecular pathways and regulated by genetic or

pharmacological manipulation (20). Recently, disulfidptosis has
Frontiers in Immunology 14
been defined as a new RCD. Previous studies have suggested that

SLC7A11-mediated cystine intake is critical in promoting

glutathione biosynthesis and inhibiting oxidative stress and

ferroptosis. Subsequently, SLC7A11 was found to significantly

promote cell death under glucose starvation (21–23).

Subsequently, it was found that SLC7A11-mediated reduction of

cystine to cysteine was highly dependent on the reduced

nicotinamide adenine dinucleotide phosphate (NADPH)

produced by the glucose–pentose phosphate pathway (24).

Recently, Liu et al. proposed that disulfidptosis is an abnormal

accumulation of disulfides, such as cystine, which induces disulfide

stress, causes disulfide bond cross-linking and cytoskeleton

contraction of the actin cytoskeleton, and ultimately induces cell

death6. Not only does RCD play a key role in body development

and cell homeostasis, but its dysregulation is also causally linked to

many diseases, including cancer. Escape from cell death is

considered to be one of the core markers of cancer. The

importance of other RCDs in BC has been revealed, but the role

of disulfidptosis in BC remains unclear (25–29). Our study explored

the importance of disulfidptosis in predicting the prognosis,

survival time, immunotherapy response, and chemosensitivity of

BC patients. This result may lay the foundation for precisely

treating BC breast protrusion-related diseases.

We first performed a differential gene expression analysis, gene

copy number mutation between tumor and normal tissues, and

tumor mutation load analysis on 11 DGs. We found that, except for

NCKAP1, the remaining DGs had significant expression differences
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FIGURE 10

(A) The efficiency of silencing TMEM45A and SHCBP1 was indicated by RT-qPCR in MDA-MB-468 cell lines. (B) The MTT assay revealed that, in
comparison to the control group, the proliferation capability of the MDA-MB-468 cell line with TMEM45A and SHCBP1 knockdown significantly
diminished. (C, D) The clonogenic assay revealed that the depletion of TMEM45A and SHCBP1 attenuated the proliferative capacity of MDA-MB-468
cells. The data is presented as the mean from at least three independent experiments. (*p<0.05; **p<0.01; ***p< 0.001; ****p< 0.0001).
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between the two groups. Most of them had increased gene

expression in breast cancer, meaning these genes may be involved

in some BC generation and development processes. In addition to

the decrease in CYFIP1 and WASF2 gene copy numbers in tumor

samples, the copy number of other DGs increased to varying

degrees, consistent with the decline in CYFIP1 and WASF2 gene

expression in BC patients. It has been reported that ABI2 can

promote the growth and metastasis of HCC. In BC patients, the

ABI2 gene copy number increased. Still, gene expression decreased,

indicating that there may be other mechanisms in the body, such as

methylation, acetylation, ubiquitination, and so on, to regulate

ABI2 expression. Among the 911 breast cancer mutation data
Frontiers in Immunology 15
samples, only 33 had DG mutations. The highest mutation

probability was 1% for NCKAP1 and CYFIP1. DGs showed more

specific genetic stability than the 53% mutation rate of high-

mutation genes, such as TP53 and PIK3CA (30). K-M survival

analysis showed that the expression levels of SLC7A11, SLC3A2,

RPN1, NCKAP1, BRK1, ACTR2, ACTR3, and RAC1 could

independently predict the prognosis of patients (p < 0.05).

Among these 11 DGs, SLC7A11 can affect non-small cell lung

cancer (31), renal cell carcinoma (32), prostate cancer progression

through ferroptosis, and WASF2 is associated with poor ovarian

cancer prognosis (33). These results further indicate that DGs play

an important role in the development and progression of tumors.
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FIGURE 11

The volcano plot displays the differentially expressed genes between shSHCBP1_1 (A) and shSHCBP1_2 (B) compared to the NC group. (C) The Venn
diagram shows the overlap in differentially expressed genes between shSHCBP1_1 and shSHCBP1_2 compared to the NC group. (D, E) GO and
KEGG Enrichment Analysis of Overlapping Differentially Expressed Genes in shSHCBP1_1 and shSHCBP1_2 vs. NC. The volcano plot displays the
differentially expressed genes between shTMEM45A_1 (F) and shTMEM45A_2 (G) compared to the NC group. (H) The Venn diagram shows the
overlap in differentially expressed genes between shTMEM45A_1 and shTMEM45A_2 compared to the NC group. (I, J) GO and KEGG Enrichment
Analysis of Overlapping Differentially Expressed Genes in shTMEM45A_1 and shTMEM45A_2 vs. NC.
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Consensus clustering is a standard unsupervised clustering

method for cancer subtype classification research. It can

distinguish samples into several subtypes according to different

omics datasets to find new disease subtypes or compare different

subtypes (34–36). We consistently clustered 11 prognostic DGs in

the TCGA and GEO breast cancer data and identified two DG

clusters. The OS of BC patients was statistically different between

the two clusters, and the OS of group A was longer than that of

group B. GSVA analysis showed that some pathways were enriched

differently between the two DG groups, such as arachidonic acid

metabolism, ubiquitin-mediated proteolysis, and taurine and

hypotaurine metabolism. The ssGSEA analysis showed that most

of the immune cells in group A were widely enriched and infiltrated,

which may inhibit tumor cells through an immune response. In

contrast, the lack of immune cells and immunosuppression in

group B may be related to the poor prognosis of patients. PCA

analysis showed a considerable difference between groups A and B.

A total of 225 DRGs were obtained, and GO and KEGG

enrichment analyses were performed on these genes. GO analysis

showed that these DRGs were mainly enriched in microtubule

binding, tubulin binding, and other biological behaviors closely

related to the construction of the cytoskeleton. Therefore, it can be

speculated that these DRGs may mediate changes in the

cytoskeleton and cause cell death, which is consistent with

previous studies 6. Furthermore, through KEGG enrichment

analysis, these differential genes were mainly enriched in signal

transduction pathways, such as the cell cycle, PPAR signaling

pathway, ECM-receptor interaction, and other pathways,

indicating that intercellular interaction may be a critical link in

disulfidptosis-induced cell death.

One-hundred-and-fourteen of the 225 differential genes were

associated with BC prognosis. According to the expression of these

114 DRGs, breast cancer was divided into three subtypes by

consensus clustering. The prognosis of group A was the best,

followed by group B, and the prognosis of group C was relatively

poor. In this study, we further developed six DRGs (SHCBP,

TMEM45A, PIGR, IGLV6-57, TCN1, GFRA1) to construct RS to

predict the prognosis of BC patients and used TCGA, GEO

separated and TCGA and GEO joint databases to evaluate the

prognostic value of RS through a survival curve, RS map, survival
Frontiers in Immunology 16
state map, and heatmap. RS = (0.1917 * SHCBP1 + 0.0836 *

TMEM45A-0.0721 * PIGR-0.1633 * IGLV6-57-0.0489 * TCN1-

0.0676 * GFRA1). SHCBP1 has been previously reported as an

immune-related biomarker for cancer diagnosis and prognosis and

a potential therapeutic target for tumor immunotherapy (37). Jing

et al. proposed that TMEM45A can be used as an oncogene in

ovarian cancer and that inhibition of TMEM45A may be a

therapeutic strategy for ovarian cancer. Wichitra et al. proposed

that M1 macrophages can cause high expression of PIGR in breast

cancer cells, and high expression of polymeric immunoglobulin

receptor (PIGR) in breast cancer is associated with an increased 5-

year survival rate (38), indicating that PIGR may be a protective

factor for breast cancer. IGLV6-57 is also widely used in cancer

diagnosis (39). TCN1 may play a carcinogenic role in colorectal

cancer by regulating the ITGB4 signaling pathway leading to

cytoskeleton damage and promoting cell death (40). This type of

cell death may be disulfidptosis. Sunil Bhakta et al. proposed that

GFRA1 is associated with targeted therapy for hormone receptor–

positive breast cancer (41). The six genes constructing the model are

inseparable from regulating tumor life activities.

The area under the ROC curve (AUC) was used to evaluate the

predictive ability of RS for patient prognosis (42). A considerable

AUC indicates that the model has good classification ability and can

compare features (43). The AUC of our model was 0.762, 0.734, and

0.758 at one year, three years, and five years, respectively, which was

significantly higher than most prediction models. We integrated all

the essential information of a series of prognostic models, including

author, year, and genetic characteristics, and constructed AUC to

verify the diagnostic performance of the model. After comparison,

we found that our model had the best diagnostic performance

(Table 1). Table 1 shows a metabolic-related 4-gene prognostic

model with AUCs of 0.764, 0.689, and 0.612 for 1-year, 3-year, and

5-year, respectively (44). Another pyroptosis model consisted of 16

genes with AUC of 0.756, 0.752, and 0.723 for 1, 3, and 5 years (45).

Its diagnostic value is almost the same as our model, but it is

composed of 16 genes, while our model has only six genes that can

be better applied in clinical practice. In two cuproptosis-related

prognostic models, 1-year, 3-year, and 5-year AUC values were

0.685, 0.678, and 0.678 (46), and for another 1-, 3-, and 5-year

model, the AUCs were 0.554, 0.527, and 0.649 (47). The AUC of the
TABLE 1 The area under the ROC curve (AUC) showed the sensitivity and specificity of the known gene signatures in predicting the prognosis of BC
patients.

Article Year RCD Model Gene AUC

Our 2023 Disulfidptosis 6 0.762 (1-year), 0.734 (3-year), 0.758 (5-year)

Lu, Liu, and Zhang 2022 (44) 2022 Metabolic 4 0.764 (1-year), 0.689 (3-year), 0.612 (5-year)

Chen, Luo, et al., 2022 (45) 2022 Pyroptosis 16 0.756 (1-year), 0.752 (3-year), 0.723 (5-year)

Li et al., 2022 (46) 2022 Cuproptosis 6 0.685 (1-year), 0.678 (3-year), 0.678 (5-year)

Sha et al., 2022 (47) 2022 Cuproptosis 2 0.554 (1-year), 0.527 (3-year), 0.649 (5-year)

Zhu et al., 2022 (48) 2022 Ferroptosis 6 0.821 (1-year), 0.678 (3-year), 0.651 (5-year)

Yu et al., 2022 (49) 2022 Necroptosis 6 0.701 (1-year), 0.716 (2-year), 0.708 (3-year)

Chen, Yang, et al., 2022 (50) 2022 Necroptosis 7 0.731 (1-year), 0.643 (3-year), 0.641 (5-year)
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ferroptosis model constructed by Zhu et al. was 0.821, 0.678, and

0.651 in 1-, 3-, and 5-years (48). The AUCs of the ferroptosis model

produced by Zhu et al. were 0.821, 0.678, and 0.651 in 1-, 3-, and 5-

year models. Although it had a good prediction effect in the first

year, our model AUC was above 0.734, which was more stable. We

also list other models more concerned with short-term survival

rates, such as the AUC of the necroptosis-related model at 1-, 2-,

and 3-year patients, which were 0.701, 0.716, and 0.708 (49). The

AUC of the necroptosis-related prognostic model constructed by

Chen et al. in 1-, 3-, and 5-year patients were 0.731, 0.643, and

0.641, respectively (50). Our prognostic model has adequate

predictive value. Our model involves only six genes, while other

models tend to have more genes. To a certain extent, our RS model

is more convenient to use. The C-index of the nomogram was 0.762

(95% CI: 0.711–0.813), indicating that the predicted results of 1-, 3-,

and 5-year patients were consistent with the actual results. The

expression of DGs in the high-risk group was significantly

increased, suggesting that genes have an adverse effect on the

prognoses of patients. Therefore, the prognostic model

constructed by DRGs is reliable and accurate. On the other hand,

it also shows the critical role of DGs in the occurrence,

development, and life processes of tumors. In summary, the

model we constructed can be considered a suitable prognostic

signal, and its mechanism of action in BC deserves further

exploration and verification.

Subsequently, we found the immune factors that determined

the prognoses of the high- and low-risk groups through the immune

analysis of the patients. The high-risk group had a large number of

macrophage M2 cell infiltrations. Macrophages M2 increase is

associated with tumor growth and poor prognosis of cancer 48,

and are considered essential biomarkers in cancer diagnosis and a

potential target for cancer treatment (51, 52). T cells CD8 is a

significant member of the low-risk group. In previous reports, T cell

CD8 can prevent tumor growth and promote immune response and

immunotherapy (53). This may be one of the reasons for the

survival difference between high- and low-risk groups. The TMB

study showed that PIK3CA had the highest mutation frequency in

the low-risk samples, while TP53 had the highest mutation

frequency in the high-risk groups. The mutation rate of TP53 in

patients with an increased risk of BC is 43%, while the mutation rate

of TP53 in patients with low risk is only 29%. Previous studies have

reported that the mutation of the TP53 gene is related to the poor

therapeutic effect and prognosis of BC (54, 55), confirming the poor

prognosis of patients with a high TP53 mutation rate in our high-

risk group.

Tumor treatment is an essential field of concern. Through IC 50

screening analysis of potential chemical drugs, we realized that low-

risk patients might be more sensitive to chemotherapy, ABT.888

(Veliparib, PARP inhibitors), AG.014699 (Rucaparib, PARP

inhibitors), AMG.706 (Motesanib, VEGFR inhibitors), ATRA,

and AUY922 (Luminespib, HSP90 inhibitors). GDC0941

(Pictilisib, PI3K inhibitors), Metformin, Methotrexate, Nilotinib,

Nutlin.3a (MDM2 inhibitors), Roscovitine, Temsirolimus,

Tipifarnib, and other drugs had a lower IC50 in the low-risk

group. High-risk patients resisted PARP and VEGFR inhibitors

and other drugs and were sensitive to docetaxel (a microtubule
Frontiers in Immunology 17
depolymerization inhibitor) and parthenolide (NF-kB inhibitors).

Immunotherapy also occupies a crucial position in the treatment of

BC patients. The ESTIMATE results showed that the stromal

immunity and estimated scores of the high-risk group were low.

The TIDE analysis showed that the TIDE immune escape score of

the high-risk group was low. The combination of PD-1 and PDL-1

caused T cells to lose the ability to attack cancer cells, resulting in

the immune escape of tumor cells. The expression of immune

checkpoint genes, such as PD-1 and PDL-1, in high-risk patients,

was low, which may be the reason for the low TIDE immune escape

score in the high-risk group. However, based on the difference in

immune checkpoints between the high- and low-risk groups,

distinguished by the RS model constructed by DRGs, we found

that the expression of immune checkpoint genes in the high-risk

group was significantly lower than that in the low-risk group. It is

speculated that patients in the low-risk group are more likely to

induce an antitumor immune response through immune genes,

thus benefiting from immunotherapy, which is consistent with the

high Stromal Score, Immune Score, and ESTIMATE Score results of

the low-risk population in the previous article. TMB is a reliable

biomarker for predicting treatment outcomes in cancer patients

treated with ICI (56, 57). This is consistent with our earlier results

that ‘RS is significantly associated with TMB. Patients in the high-

risk group had higher TMB, antitumor immune dysfunction, poor

ICI treatment, and poor prognosis. In summary, combined with

drug sensitivity and immune efficacy analysis, we predict that low-

risk patients will benefit more from combining chemotherapy and

immunotherapy, providing a basis for individualized treatment of

BC patients. More drugs are worthy of selection and development

for low-risk patients. The effects of chemotherapy and

immunotherapy in the high-risk group were poor. The high

expression of disulfidptosis genes (e.g., SLC3A2, RPN1, BRK1,

ACTR2, ACTR3, SLC7A11, and NCKAP1) in the KM analysis of

breast cancer indicated the poor prognosis of patients. The

difference analysis between the high- and low-risk groups differed.

These genes were highly expressed in the high-risk group. Through

our study, targeted therapy of the disulfidptosis gene will benefit the

high-risk group.

In addition, we conducted in vitro validation through cell

formation assays and CCK-8 on the high-risk genes (TMEM45A

and SHCBP1) within the RS model. This initial validation provided

preliminary evidence of the feasibility of utilizing these two genes for

targeted therapy in breast cancer (BC). Subsequently, we conducted

cellular sequencing following the gene knockout of TMEM45A and

SHCBP1 to infer their roles in the biological mechanisms.

This study systematically analyzed the role of disulfidptosis-

related genes in the prognosis of breast cancer and their correlation

with the tumor microenvironment and clinical characteristics and

constructed a better prognosis prediction model. The model

performs well in predicting the survival outcome, tumor immune

microenvironment, and immunotherapy response of BC patients.

Furthermore, it expounds on its correlation with TMB, immunity,

and clinical treatment (chemotherapy and immunotherapy),

providing a reference for individualized and precise breast cancer

treatment. Finally, Experimental validation and sequencing were

also conducted to substantiate these findings.
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5 Conclusion

This study has the following contributions. First, this study is

the first to identify the subtypes associated with disulfidptosis and to

create a predictive model based on breast cancer DRGs. Although

disulfidptosis differs from other recognized cell death methods, it

may provide new therapeutic possibilities for cancer treatment.

Second, a variety of different technologies and databases are used to

improve the reliability of the results. We also defined subtypes

associated with disulfidptosis and created a predictive model for the

screening and testing processes. Finally, we first proposed a

disulfidptosis gene-targeted therapy for high-risk BC groups. We

intend to gather further patient samples during subsequent clinical

investigations to substantiate the dependability of our model.
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