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Leveraging a disulfidptosis-based
signature to improve the survival
and drug sensitivity of bladder
cancer patients

Hualin Chen, Wenjie Yang, Yingjie Li , Lin Ma and Zhigang Ji*

Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China
Background: Disulfidptosis is a recently discovered form of cell death. However,

its biological mechanisms in bladder cancer (BCa) are yet to be understood.

Methods: Disulfidptosis-related clusters were identified by consensus clustering.

A disulfidptosis-related gene (DRG) prognostic model was established and

verified in various datasets. A series of experiments including qRT-PCR,

immunoblotting, IHC, CCK-8, EdU, wound-healing, transwell, dual-luciferase

reporter, and ChIP assays were used to study the biological functions.

Results:We identified two DRG clusters, which exhibited distinct clinicopathological

features, prognosis, and tumor immunemicroenvironment (TIME) landscapes. ADRG

prognostic model with ten features (DCBLD2, JAM3, CSPG4, SCEL, GOLGA8A,

CNTN1, APLP1, PTPRR, POU5F1, CTSE) was established and verified in several

external datasets in terms of prognosis and immunotherapy response prediction.

BCa patients with high DRG scores may be characterized by declined survival,

inflamed TIME, and elevated tumor mutation burden. Besides, the correlation

between DRG score and immune checkpoint genes and chemoradiotherapy-

related genes indicated the implication of the model in personalized therapy.

Furthermore, random survival forest analysis was performed to select the top

important features within the model: POU5F1 and CTSE. qRT-PCR,

immunoblotting, and immunohistochemistry assays showed the enhanced

expression of CTSE in BCa tumor tissues. A series of phenotypic assays revealed

the oncogenetic roles of CTSE in BCa cells. Mechanically, POU5F1 can transactivate

CTSE, promoting BCa cell proliferation and metastasis.

Conclusions: Our study highlighted the disulfidptosis in the regulation of tumor

progression, sensitivity to therapy, and survival of BCa patients. POU5F1 and

CTSE may be potential therapeutic targets for the clinical treatment of BCa.

KEYWORDS

disulfidptosis, bladder cancer, molecular clusters, tumor immune microenvironment,
prognostic model, POU5F1, CTSE
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1 Introduction

Bladder cancer (BCa) is the most common urological neoplasm,

with a significant impact on public health worldwide. There were

over 570,000 new cases and 210,000 deaths from BCa globally in

2020 (1, 2). BCa can be categorized into non-muscle-invasive and

muscle-invasive BCa. While muscle-invasive BCa accounts for only

about 30% of newly diagnosed cases, its aggressive nature,

propensity for metastasis, drug resistance, and high rate of

recurrence contribute to reduced cancer-specific survival after R0

resection (3, 4). Hence, elucidating the molecular mechanisms

underlying the progression of BCa is of paramount importance.

Recently, Liu and colleagues uncovered a novel form of cell

death, disulfidptosis, which has not been characterized previously

(5). Disulfidptosis is induced by the accumulation of intracellular

disulfides in glucose-starved cells with overexpressed SLC7A11 (6).

Unlike ferroptosis and apoptosis, disulfidptosis is mediated by the

susceptibility of the actin cytoskeleton to disulfide stress. The study

also shows that glucose transporter inhibitors trigger disulfidptosis

and control tumor proliferation, suggesting the significance of

disulfidptosis in cancer management. Overall, the study sheds

light on the role of disulfidptosis in controlling tumor progression.

In the study, we aimed to comprehensively investigate the role

of DRGs in the prognosis, TIME landscapes, and drug resistance in

BCa. We developed and validated a DRG-related prognostic model,

which demonstrated high accuracy in predicting prognosis and

response to immunotherapy across various independent cohorts.

POU5F1 and CTSE were the top two important features within the

model. Mechanistically, POU5F1 can transactivate CTSE and

promote the proliferation and metastasis of BCa. These results

suggested potential therapeutic targets for BCa treatment.
2 Methods

2.1 Data collection, tumor somatic
mutation analysis, and protein-protein
interaction analysis

The BCa datasets were obtained from the TCGA-BLCA and GEO

databases (GSE13507, GSE32548, and GSE32894), as previously

described (7). Additional immune checkpoint blockade (ICB)

-treated datasets, including the Mariathasan BCa cohort (8), Braun

RCC cohort (9), and Liu SKCM cohort (10), were obtained from

original publications. The details of these included datasets were

provided in Table S1. The details of DRGs were provided in Table S2.

Gene Ontology Biological Processes (GO-BP), KEGG, and

cancer hallmarks were obtained from the MSigDB (https://

www.gsea-msigdb.org/gsea/msigdb/) (11). Immunohistochemistry

(IHC) images of proteins were procured from the Human Protein

Atlas (https://www.proteinatlas.org/) (12).

The mutational landscape of all TCGA-BLCA patients and the

mutation of DRGs were analyzed using the “maftool” package (13).

Online tool GeneMANIA was employed to construct the PPI

network of 14 DRGs (http://genemania.org/) (14).
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2.2 Unsupervised consensus clustering,
differential analysis, enrichment analysis,
and TIME landscape estimation

Unsupervised consensus clustering analysis of the TCGA-

BLCA cohort was conducted based on the expression profiles of

14 DRGs using the “ConsensusClusterPlus” package (15).

Differentially expressed genes (DEGs) between DRG-based

molecular clusters were identified using the “limma” package

(16). DEGs with P value (adjusted)< 0.01 and |logFC [fold

change] | > 1 were considered significant. The details of DEGs

were provided in Table S2.

The enrichment analysis (GO, KEGG, and gene set enrichment

analysis [GSEA]) was employed via the “clusterProfiler” package as

described previously (7, 17). The activity of GO-BP and KEGG

terms for each sample was quantified by the “GSVA” package (18).

TIME scores including stromal, immune, and ESTIMATE

scores were determined by the “ESTIMATE” package (19). The

infiltration levels of 22 immune cell subsets were estimated by the

“CIBERSORT” package (20).
2.3 Establishment and verification of a
disulfidptosis−related prognostic model

The model was developed and validated as described in our

previous study (21). In brief, the TCGA-BLCA dataset was

considered as the training cohort, while the three GEO BCa

datasets were external validation cohorts. Univariate Cox

regression analysis was first used to identify overall survival (OS)-

related DEGs (OS-DEGs). The details of OS-DEGs were provided in

Table S2. The least absolute shrinkage and selection operator

(LASSO) Cox regression analysis was then employed to reduce

the dimensionality of high latitude data. The disulfidptosis-related

predictive model was finally constructed using multivariate Cox

regression analysis. Each BCa sample of TCGA-BLCA was assigned

a DRG score using the formula: DRG score = o
n

i=1
ki ∗Xi, where k_i

represents the regression coefficient and X_i represents the relative

expression level of gene i.

BCa samples were divided into high- and low-risk groups

according to the median value of the DRG scores. Kaplan-Meier

curves with the log-rank test were utilized to determine the OS and

progression-free survival (PFS) between the two groups. The

performance of the model was estimated by the time-dependent

receiver operating characteristic (ROC) analysis.

R packages “survival”, “survminer”, and “timeROC” were used

in these analyses (22, 23).
2.4 Tissue samples

The study protocol was approved by the Institutional Ethics

Committee of Peking Union Medical College Hospital and we

performed these experiments adhered to the principles of the

Declaration of Helsinki. Tumor tissues of BCa and adjacent para-
frontiersin.org

https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.proteinatlas.org/
http://genemania.org/
https://doi.org/10.3389/fimmu.2023.1198878
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2023.1198878
cancerous tissues were procured following radical surgery and

histological confirmation. Written informed consent was obtained

from all participants.
2.5 Cell culture and transfection

SV-HUC-1, T24, 5637, J82, and RT4 were purchased from the

Cancer Institute of the Chinese Academy of Medical Sciences

(Beijing, China). Cells were cultured in complete RPMI 1640 or

DMEM supplemented with 10% fetal bovine serum (FBS) and 1%

penicillin/streptomycin (Beyotime, Shanghai, China).

The siRNAs compounds targeting CTSE (siCTSE-1: 5’- CAAC

UACUUGGAUAUGGAAUA- 3’; siCTSE-2: 5’ – CAAUCUUUCUC

CAUUCAGUAU – 3’) were designed byGenePharma (Suzhou, China).

Transfection was performed using lipofectamine 3000 (Invitrogen)

following the manufacturer’s instructions. Overexpression plasmid

pcDNA3.1-POU5F1 and corresponding empty vector were purchased

from Obio Technology Corp.
2.6 qRT-PCR, immunoblotting, and IHC

These assays were performed according to our previous studies

(7, 17, 24). The primer sequences for qRT-PCR analysis were listed

in Table S3. The information on all the antibodies used in the study

was presented in Table S4.
2.7 Dual-luciferase reporter assay and
chromatin immunoprecipitation

These procedures were performed as previously described (25).

In brief, wild-type (CTSE-WT) and mutant-type (CTSE-Mut)

sequences of the POU5F1 binding site in the promoter of CTSE

were designed and cloned into the luciferase vectors (Beyotime,

Shanghai, China). The overexpression vector or empty vector of

POU5F1 was co-transfected into plated cells. After being cultured

for 48 hours, dual luciferase activities were then evaluated by Dual-

Luciferase Reporter Gene Assay Kit (Beyotime, Shanghai, China)

following the manufacturer’s standard.

ChIP assay was employed using ChIP Assay Kit (Beyotime,

Shanghai, China) following the instructions. After the cross-link,

the anti-POU5F1 antibody was used to immunoprecipitate the

corresponding genomic sequences. Then the sequences were

analyzed by qPCR assay. The primer sequences for the CTSE

promoter were provided in Table S1.
2.8 CCK-8, wound-healing, and transwell
invasion assays

These phenotypic assays were performed as described in our

previous studies (7, 17).
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2.9 Statistical analyses

R 4.1.2 and GraphPad Prism 9.2.0 were employed for all

statistical analyses. The correlation between the two variables was

determined by the Spearman correlation coefficient. Student’s

T-Test or Mann–Whitney U tests were used for continuous

variables. Chi-Square Tests were utilized for categorized variables.

A two-tailed p-value< 0.05 was considered statistically significant.
3 Results

3.1 Genetic and transcriptional
characteristics of DRGs

First, we analyzed the somatic mutation landscapes of BCa

patients, revealing that 94.69% of BCa samples showed somatic

mutations (Figure 1A). Next, the somatic mutation pattern of 14

DRGs was also estimated (Figure 1B). Our results showed that

DRGs in 112 out of 414 BCa samples (27.05%) had somatic

mutations, primarily driven by missense mutations. In particular,

MYH9, MYH10, ACTB, FLNB, and TLN1 showed the highest

incidence of missense mutations, while MYH9 and ACTB had the

highest incidence of nonsense mutations and in-frame deletions,

respectively. To investigate the interactions between the 14 DRGs,

the PPI network was constructed by the GeneMANIA online tool,

which revealed that FLNA, MYH9, IQGAP1, CAPZB, and DSTN

were regarded as the hub genes (Figure 1C).

We also analyzed the expression profiles of the 14 DRGs in the

TCGA-BLCA cohort. Results showed that ACTB, DSTN, FLNA,

IQGAP1, MYL6, and TLN1 were overexpressed in normal tissues,

while CD2AP and INF2 were overexpressed in tumor tissues

(Figure 1D). We further found that ACTB, DSTN, FLNA, and

TLN1 were upregulated in high-grade and high-stage (stage III and

IV) BCa tissues, indicating their association with BCa progression

(Figures S1A, B). Finally, representative IHC images demonstrated

the protein levels of the four genes (Figure S1C).
3.2 DRG-based molecular clusters with
distinct clinical features and TIME
landscapes

To investigate the biological roles of DRGs in BCa, we employed

an unsupervised consensus clustering algorithm to categorize BCa

samples of the TCGA-BLCA cohort based on the expression profiles

of 14 DRGs. As indicated by the CDF curves and the PAC test, the

optimal clustering number was 2 (Figures S2A–C). The expression

levels of DRGs were higher in BCa samples of C1 compared to those of

C2 (Figure 2A). In terms of clinical features, the proportion of patients

with age > 65, male gender, and stage III and IV was relatively higher

in C1 than in C2 (Figures 2A; S2D–F). Moreover, patients in C1 had a

poorer prognosis compared to those in C2 (Figure 2B).
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Next, we evaluated the expression levels of immune checkpoint

genes (ICGs, Table S5) and chemoradiotherapy-related genes (CRGs,

Table S5), as well as the TIME scores between two DRG-based

clusters. As presented in Figure 2C, SOX2, EZH2, EGFR,

and AKR1C1 of the CRGs had distinct expression patterns between

the two DRG-based clusters. Specifically, AKR1C1 and SOX2 were

downregulated in C1, whereas EGFR and EZH2 were overexpressed

in C1. Regarding the TIME landscapes, we observed that samples of

C1 had overexpressed ICGs (Figure 2D), a higher TIME score

(Figure 2E), and higher infiltration levels of macrophages and

activated memory CD4+ T cells (Figure 2F). However, samples of

C2 had higher abundances of regulatory T cells, activated dendritic

cells, monocytes, infiltrated memory B cells, and neutrophils.
3.3 DRGs-based molecular clusters with
dysregulated pathways and biological
process

To investigate the pathways and biological processes between

the two DRG clusters, a series of enrichment analyses were

employed, including GSVA, GSEA, and over-representation

analysis (ORA). The results of GO-BP GSVA showed that DRG

C1 was enriched in cellular structure-related processes, including

podosome assembly, membrane raft assembly, regulation of protein

maturation, and cortical cytoskeleton organization (Figure 3A).

KEGG term results revealed that DRG C1 was abundant in
Frontiers in Immunology 04
immunity-related pathways, including focal adhesion and

NOD-like receptor signaling pathway (Figure 3B). GSEA

subsequently uncovered that DRG C1 was significantly linked

to cancer hallmarks, including the cell cycle (G2M checkpoint

and mitotic spindle, Figure 3C) and cancergenesis and

progression (epithelial-mesenchymal transition [EMT], hypoxia,

and angiogenesis, Figure 3D). In contrast, DRG C2 was associated

with metabolism, specifically oxidative phosphorylation and fatty

acid metabolism (Figure 3E).

We then identified DRGs cluster-related DEGs to verify the

findings above. Consistently, cellular structure and immunity-

related biological processes and pathways were mainly enriched

(Figures 3F, G).
3.4 Detection of gene clusters related to
disulfidptosis in BCa

First, prognosis-related DEGs were screened out by univariate

Cox regression analysis. A hierarchical clustering algorithm was

then used to classify the BCa samples into three gene clusters

(Figure 4A). We observed that DRG C1 was highly correlated with

gene cluster 1 while C2 was mostly related to gene cluster 3.

Consistently, BCa patients in gene cluster 1 had a worse

prognosis compared to those in gene cluster 3 (Figure 4B).

Additionally, the majority of DRGs had significantly varied

expression levels among the three gene clusters (Figure 4C).
A B

DC

FIGURE 1

Genetic and transcriptional characteristics of DRGs. (A) Somatic mutation landscape of all patients. (B) Somatic mutation of 14 DRGs. (C) PPI network of
14 DRGs by GeneMANIA. (D) mRNA levels of 14 DRGs. ns, not significance, *p< 0.05, ***p< 0.001, ****p< 0.0001. ns, not significance.
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3.5 Development and validation of a
disulfidptosis-related prognostic model

Based on the OS-related DEGs, a disulfidptosis-related

prognostic model was established for potential clinical

application. The TCGA-BLCA cohort was used as the training set

whereas three GEO datasets (GSE13507, GSE32548, and

GSE32894) were regarded as the testing sets. Followed by LASSO

and multivariate Cox regression analysis, a model with ten genes

was constructed, including DCBLD2, JAM3, CSPG4, SCEL,

GOLGA8A, CNTN1, APLP1, PTPRR, POU5F1, CTSE (Figure

S3). The DRG score of each BCa sample was: DRG score =0.034

58897* DCBLD2 + 0.03469218* JAM3 + 0.05195818* CSPG4 + 0.0

4814716* SCEL - 0.14422347* GOLGA8A + 0.02423207* CNTN1 +

0.09220036* APLP1 - 0.05143026* PTPRR + 0.02817304* POU5F1

+ 0.03568603* CTSE.
Frontiers in Immunology 05
Next, we aimed to investigate the correlation between DRG

clusters (C1 and C2), gene clusters (1, 2, and 3), and DRG scores.

Our findings indicated that DRG scores were considerably higher in

DRG C1 than in C2. Moreover, the expression of DRGs was higher

in BCa patients from the high-risk group (Figures 4D, E). We also

discovered that the DRG score in gene clusters followed a rank

order of 1 > 2 > 3, as illustrated in Figure 4F.

As illustrated in the risk plot, the DRG score was linked to

higher mortality and decreased survival (Figure 5A). BCa patients of

the high-risk group had poorer OS than those of the low-risk group

(Figure 5B). Time-dependent ROC analysis showed excellent

performance of the model in predicting the prognosis: AUC of

0.837, 0.833, and 0.83 at 1-, 3-, and 5-year time points,

respectively (Figure 5C).

To further verify the performance, we tested it on three external

validation cohorts. Similarly, a declined survival was observed in
A B

D

E

F

C

FIGURE 2

DRG-based molecular clusters with distinct clinical features and TIME landscapes. (A) Expression profiles of DRGs and clinicopathological characteristics
between clusters. (B) Survival analysis between C1 and C2. (C) Expression levels of CRGs between clusters. (D) Expression profiles of ICGs and
clinicopathological characteristics between clusters. (E) Differences in TIME scores between clusters. (F) Abundances of infiltrating immune cells between
clusters. ns, not significance, *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001. ns, not significance.
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BCa patients of the high-risk group (Figures 5D, F, H). High AUC

value from time-dependent ROC analysis also suggested the

prognostic performance of the established model (Figures 5E, G, I).
3.6 Estimation of DRG score in immune
infiltration

The biological features of BCa samples in high- and low-risk

groups were assessed by GSEA (Figures S4A, B). The analysis revealed

that cellular structure-related activities such as external encapsulating

structure organization and collagen fibril organization, as well as

inflammation-related GO-BP including leukocyte migration,

inflammatory response, and neutrophil chemotaxis, were highly

activated in the high-risk group. Conversely, metabolism-related

biological processes, such as long-chain fatty acid and arachidonic

acid metabolic processes, were suppressed in the high-risk group
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(Figure S4A). Furthermore, the results of GSEA on cancer hallmarks

indicated that a high DRG score was linked to cell cycle (G2M

checkpoint and E2F target), tumor progression (EMT, hypoxia, and

angiogenesis), as well as inflammation and immunity (inflammatory

response and TNFA signaling via NF-kappa B) (Figure S4B).

TIME scores including immune, stromal, and ESTIMATE scores

were remarkably elevated in the high-risk group (Figure S4C). The

correlation between immune infiltration and ten model genes was

assessed (Figure S4D). Macrophages showed a positive correlation

with DRG score, whereas CD8+ T cells, follicular helper T cells (Tfh

cells), and Tregs exhibited a negative correlation with DRG score

(Figure S4E).

Cancer stem cells possess self-renewal, multipotent, and tumor-

initiating abilities, leading to tumor growth, recurrence, and

resistance to current treatments. To evaluate the relationship

between the DRG score and the CSC index, both were combined,

revealing a weak negative correlation (Figure S4F).
A B

D E

F G

C

FIGURE 3

DRGs-based molecular clusters with dysregulated pathways and biological process. (A, B) GSVA of GO-BP (A) and KEGG (B) terms between clusters.
(C–E) GSEA of significant hallmarks enriched in DRG C1 (C, D) and C2 (E). (F, G) GO (F) and KEGG (G) analysis of cluster DEGs.
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3.7 Correlations between DRG score and
ICGs and tumor mutational burden

Patients in the high-risk group (52%) exhibited a higher

frequency of TP53 mutations than those in the low-risk group

(45%) (Figures S5A, B). Additionally, Patients in the high-risk

group had significantly higher TMB scores compared to those in

the low-risk group (Figure S5C).
Frontiers in Immunology 07
Given the reported association between ICB therapy and the

expressions of ICGs, we next evaluated the association between

the ICGs and DRG score. Our findings indicated a significant

negative correlation between most ICGs and the ten model genes

(Figure S5D). Specifically, the expressions of PVR, CD276, and

SIRPA increased as the DRG score increased, while the

expressions of TNFRSF14 and CD96 had the opposite trends

(Figure S5E).
A B

D

E F

C

FIGURE 4

Detection of gene clusters related to disulfidptosis. (A) The expression profiles of DEGs and the distribution of DRG clusters among gene clusters 1 to 3.
(B) Survival analysis among three gene cluster. (C) mRNA levels of 14 DRGs among gene clusters 1 to 3. (D) Distribution of DRG scores between DRG
clusters. (E) mRNA levels of 14 DRGs between groups. (F) Distribution of DRG scores among three gene clusters. ns, not significance, **p< 0.01, ***p<
0.001, ****p< 0.0001.
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3.8 Evaluation of the model in ICB-treated
cohorts

Our previous findings demonstrated a potential correlation

between DRG scores and the expression of ICGs. To further

investigate the predictive ability of our developed model in

immunotherapy response, we analyzed three ICB-treated cohorts

comprising different types of tumors. Within the Mariathasan

cohort, the high-risk group was associated with a worse prognosis

(Figure 6A). Non-responders had significantly higher risk scores

compared to responders (Figure 6B), and the high-risk group had a

lower proportion of responders and a higher proportion of non-

responders than the low-risk group (Figure 6C). The ROC analysis

revealed a high predictive performance of the model (Figure 6D).

Additionally, the risk score gradually decreased from the desert

immune phenotype to the inflamed phenotype (Figure 6E).
Frontiers in Immunology 08
Within the Braun cohort, renal cell carcinoma (RCC) patients in

the high-risk group suffered from worse OS and PFS (Figures 6F, G).

Non-responders had significantly higher risk scores compared to

responders (Figure 6H), and the high-risk group had a lower

proportion of responders and a higher proportion of non-

responders compared to the low-risk group (Figure 6I). The ROC

analysis uncovered a high predictive performance of the model

(Figure 6J). Similar findings were observed in the Liu cohort of

patients with skin cutaneous melanoma (SKCM) (Figures 6K–O).
3.9 Correlation between DRG score and
CRGs and chemotherapeutic sensitivity

Except for MGMT and AKR1C1, a negative correlation was

observed between the expressions of CRGs and the ten model genes
A B

D

E

F

G I

H

C

FIGURE 5

Development and validation of the disulfidptosis-related prognostic model. (A) Upper panel: Survival time and status between risk groups. The
red dots represent dead BCa patients whereas the others indicate the alive. Bottom panel: Distribution of the DRG scores in TCGA-BLCA cohort.
(B) Survival analysis between risk groups. (C) Prognostic performance of the model. (D, F, H) Survival analysis between risk groups in the GSE13507
(D), GSE32548 (F), and GSE32894 (H). (E, G, I) Prognostic performance of the model in GSE13507 (E), GSE32548 (G), and GSE32894 (I).
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(Figure S6A). Additionally, EZH2, EGFR, TBX5, and SOX2 were

positively correlated with the DRG score (Figure S6B). These

findings suggested that the DRG score may be able to predict the

chemotherapeutic response. To verify the findings, drug sensitivity

analysis was performed using six frequently used chemotherapeutic

agents in BCa patients. The results demonstrated that BCa patients

in the high-risk group exhibited resistance to cisplatin, doxorubicin,

gemcitabine, methotrexate, paclitaxel, and vinblastine (Figure S6C).
3.10 POU5F1 transactivates CTSE by
directly binding to its promoter

The random survival forests (RSF) algorithm was utilized to

ascertain the relative importance of each gene in the model. As

presented in Figure 7A, POU5F1 displayed the highest degree of

significance, followed by CTSE, DCBLD2, and GOLGA8A. Our

correlation analysis indicated that POU5F1 was positively

correlated exclusively with CTSE (R = 0.39, Figure 7B).

Furthermore, this result was consistent with the outcomes

obtained through analysis of the GEPIA online tool (Figure 7C).

POU5F1, also known as OCT4, is a transcriptional factor that has

been linked with tumor proliferation, migration, and therapy

resistance (26). Previous research has thoroughly explored the

oncogenic phenotypes of POU5F1 in various human cancers,
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including BCa (27). Additionally, Fristrup et al. examined the

protein levels of CTSE (Cathepsin E) in a large, multicenter

cohort and found that CTSE levels were significantly associated

with progression to stage T2-T4 BCa (28). Nonetheless, the

functional roles of CTSE in BCa remain poorly understood. In

light of the positive correlation between POU5F1 and CTSE, we

hypothesized that POU5F1 might transactivate CTSE to promote

BCa progression.

First, we investigated the expression levels of CTSE in clinical

BCa tissues and BCa cell lines. In 106 pairs of BCa tissues, we

observed an upregulation of both CTSE mRNA and protein levels in

tumor tissues (Figures 7D, E), which was further supported by

representative IHC images (Figure 7F). In particular, CTSE was

found to be overexpressed in BCa cell lines, especially in 5637

(Figure 7G). To gain insights into the biological functions of CTSE

in BCa, a series of phenotypic assays were conducted in 5637 cells.

We verified the efficacy of CTSE knockdown using qRT-PCR and

immunoblotting assays (Figure 7H). CTSE deficiency was found to

inhibit 5637 cell line proliferation (Figures 7I, J), as well as wound-

healing migration and transwell invasion assays (Figures 7K, L).

Overall, the upregulation of CTSE drives the progression of BCa

cells in vitro.

Next, we investigated the regulatory mechanisms between the

transcription factor POU5F1 and the gene CTSE. A previous study

reported the existence of a transcriptional binding site for POU5F1
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FIGURE 6

The performance of the model in predicting immunotherapeutic response in ICB-treated cohorts. (A) Survival analysis between risk groups.
(B) Distribution of the DRG score between responders and non-responders. (C) Distribution of the responders and non-responders between risk
groups. (D) The immunotherapeutic response prediction performance of the model. (E) Distribution of the DRG score among three immune
phenotypes. (A–E) Data was analyzed in the Mariathasan cohort. (F, K, G, I) The Kaplan–Meier OS (F, K) and PFS (G, I) curves between risk groups.
(H, M) Distribution of the DRG score between responders and non-responders. (I, N) Distribution of the responders and non-responders between
high- and low-risk group. (J, O) The immunotherapeutic response prediction performance of the model. (F-J) Data was analyzed in the Braun RCC
cohort. (K-O) Data was analyzed in the Liu SKCM cohort.
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FIGURE 7

POU5F1 promoted BCa proliferation and metastasis by transactivating CTSE. (A) The relative importance of ten model genes. (B) Correlation among
the ten model genes. (C) Spearman correlation between POU5F1 and CTSE by GEPIA. (D, E) Relative expression levels of CTSE in BCa tumor and
adjacent normal tissues. (F). Representative IHC images of CTSE in BCa tissues and adjacent normal tissues. (G) Expression levels of CTSE in several
BCa cell lines by qRT-PCR and immunoblotting. (H) Immunoblotting and qRT-PCR validated the knockdown efficacy of siRNAs targeting CTSE in
5637 cell line. (I, J) Deficient CTSE inhibited 5637 proliferation as indicated by CCK-8 (I) and EdU (J) assays. (K, L) Deficient CTSE inhibited 5637
migration (K) and invasion (L). (M) Diagram illustrated the predicted binding site of POU5F1 to CTSE promoter. (N) Luciferase activity of the POU5F1/
CTSE promoter reporter was examined. (O) Luciferase assay with different doses of POU5F1 overexpression plasmid. (P) ChIP analysis indicated the
enrichment of POU5F1 on the gene promoter region of CTSE. (Q) qRT-PCR and immunoblotting detected CTSE expression following POU5F1
depletion. (R) Rescuing CCK-8 assays. (S) Rescuing wound-healing assays. (T) Rescuing transwell invasion assays. (N-T) Assays were performed in
5637 cells. *p< 0.05, **p< 0.01, ***p< 0.001.
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(29). We then identified a potential binding site for POU5F1 at the

promoter of CTSE (Figure 7M). To investigate the functional

significance of this binding site, we conducted luciferase assays in

5637 cells. We found that co-transfection of POU5F1 significantly

stimulated the luciferase activity of the CTSE-WT promoter

(Figure 7N). Moreover, increasing the dose of POU5F1 resulted

in a gradual enhancement of luciferase activity (Figure 7O). Next, a

ChIP assay was employed to validate the enrichment of POU5F1 on

the promoter of CTSE (Figure 7M) and found that exogenous

POU5F1 promoted more POU5F1 enrichment on the CTSE

promoter compared to the vector group (Figure 7P). Our results

demonstrate that POU5F1 transactivates CTSE by directly binding

to its promoter, which has regulatory effects on both mRNA and

protein levels (Figure 7Q).
3.11 POU5F1 promotes BCa proliferation
and metastasis by transactivating CTSE

We examined the functional association between POU5F1 and

CTSE through phenotypic assays as POU5F1 was capable of

regulating CTSE by physically binding to its promoter. The CCK-

8 assay demonstrated that overexpression of POU5F1 enhanced the

proliferation of 5637, while deficiency of CTSE inhibited it

(Figure 7R). Similar outcomes were observed in wound-healing

migration (Figure 7S) and transwell invasion assays (Figure 7T). In

summary, our findings suggested that POU5F1 boosts the

proliferation and metastasis of BCa cells by transactivating CTSE.
4 Discussion

Cell death is a crucial factor in regulating tumor proliferation

(30). Previous research has established a strong association between

cell death and cancer cell metabolism (31). However, the underlying

mechanisms linking cell death and metabolism in BCa remain

poorly understood.

Disulfidptosis, initially proposed by Xiaoguang Liu, has provided

new insights into the role of disulfides and glucose metabolism

dysregulation in cell death. However, the landscapes of DRGs in

BCa remain unclear. In this study, we conducted a systematic

investigation of the genetic and transcriptional changes of 14 DRGs

in BCa. We also established a disulfidptosis-related prognostic model

with 10 features which exhibited excellent performance in predicting

prognosis and immunotherapeutic response.

By deciphering the genetic and transcriptional landscapes of

DRGs in BCa, we found that only 27.05% of BCa samples had

genetic mutations in DRGs. Surprisingly, six DRGs (ACTB, DSTN,

FLNA, IQGAP1, MYL6, and TLN1) were downregulated in BCa

compared to normal tissues, while CD2AP and INF2 were

upregulated. Most of these downregulated DRGs (except for

IQGAP1) were overexpressed in high-grade tumor tissues.

Additionally, mRNA levels of ACTB, DSTN, FLNA, and TLN1

increased gradually with the tumor stage. Besides, protein levels of
Frontiers in Immunology 11
these genes were higher in BCa tumor tissues than in normal tissues,

indicating post-translational modifications (32–35).

Based on the expression pattern of DRGs, two disulfidptosis-

related molecular clusters of the TCGA-BLCA cohort were

identified. BCa patients in DRG C1 were characterized by

decreased survival and advanced clinicopathological features.

Further decoding of the TIME unraveled that C1 was featured by

the inflamed TIME in terms of upregulated expression profiles of

ICGs, elevated TIME scores, and infiltrated immune cell subsets. As

evidenced by previous BCa studies, tumors with distinct TIME

landscapes may hold different sensitivities to chemotherapy and

immunotherapy (7, 17, 36, 37). Consistently, the expression levels

of CRGs and ICGs varied significantly between DRG clusters,

indicating varied therapeutic responses between DRG clusters.

These findings indicated the importance of disulfidptosis in

driving BCa.

Further, a disulfidptosis-related prognostic model was

developed based on the OS-DEGs of the DRG clusters.

Deciphering the TIME of BCa unveiled that a high DRG score

was linked to the inflamed phenotype which had significant effects

on the cancer treatment. Furthermore, a higher RNA stemness

score was detected in the high-risk group, indicating the crucial role

of disulfidptosis patterns in maintaining BCa tumors.

Using the RFS method, we identified an exclusively positive

correlation between two critical genes, POU5F1 and CTSE.

POU5F1, also known as OCT4, encodes a transcription factor

regulating stem cell pluripotency via the POU homeodomain.

POU5F1 regulates the characteristics of tumor-initiating cells in

terms of survival, self-renewal, resistance to drugs, and EMT (38).

Roundhill et al. studied the role of POU5F1 in Ewing sarcoma and

found that POU5F1 intensely interacted with stemness and

chemoresistance genes (39). Mitchell and colleagues addressed the

critical roles of POU5F1 in WDR5-induced glioblastoma

progression (40). As for CTSE (Cathepsin E), its biological

characteristics have been addressed in various tumors including

pancreatic cancer (41), prostate cancer (42), and gastric cancer (43).

In our study, we observed higher expression levels of CTSE at both

mRNA and protein levels in BCa tumor tissues. Moreover,

overexpression of CTSE promoted the proliferation, migration,

and invasion of BCa cells. Mechanistically, we found that

POU5F1 directly binds to the promoter of CTSE, leading to its

transactivation and promotion of BCa progression.
5 Conclusion

In the study, we comprehensively investigated the DRG profiles

in BCa and established a disulfidptosis-related prognostic model

which exhibited excellent performance in predicting prognosis and

immunotherapeutic response. BCa sample of different DRG scores

was also characterized by distinct TIME landscape, response to

immunotherapy and chemotherapy, and dysregulated pathways

and biological processes. Furthermore, we found that POU5F1

and CTSE were critical components of the prognostic model. We
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also conducted further investigations to uncover the regulatory

mechanisms underlying the relationship between POU5F1

and CTSE.
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The correlation between the DRG score and TIME score. (A, B) The activated
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between TIME scores and DRG scores. (D) The correlations between the ten

model genes and infiltration of 22 immune cell subsets. (E, F) Correlations
between the DRG score and the abundances of immune cells (E) and the

stem index (F).

SUPPLEMENTARY FIGURE 5

Genetic variations and ICGs. (A, B) The mutation features of BCa patients in

low- (A) and high-risk (B) groups. (C) Distribution of TMB between risk

groups. (D) Correlations between ICGs and ten model genes. (E)
Correlations between ICGs and the DRG score.
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The correlation between DRG score and CRGs. (A) The correlations between
ten model genes and CRGs. (B) The correlations between CRGs and the DRG

score. (C) Predicted IC50 between risk groups.
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