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Divergent proinflammatory
immune responses associated
with the differential susceptibility
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Tuberculosis (TB) in the bovine is one of the most predominant chronic

debilitating infectious diseases primarily caused by Mycobacterium bovis.

Besides, the incidence of TB in humans due to M. bovis, and that in bovines

(bovine TB, bTB) due to M. tuberculosis- indicates cattle as a major reservoir of

zoonotic TB. While India accounts for the highest global burden of both TB and

multidrug-resistant TB in humans, systematic evaluation of bTB prevalence in

India is largely lacking. Recent reports emphasized markedly greater bTB

prevalence in exotic and crossbred cattle compared to indigenous cattle

breeds that represent more than one-third of the total cattle population in

India, which is the largest globally. This study aimed at elucidating the immune

responses underlying the differential bTB incidence in prominent indigenous

(Sahiwal), and crossbred (Sahiwal x Holstein Friesian) cattle reared in India.

Employing the standard Single Intradermal Tuberculin Test (SITT), and

mycobacterial gene-targeting single as well as multiplex-PCR-based screening

revealed higher incidences of bovine tuberculin reactors as well as

Mycobacterium tuberculosis Complex specific PCR positivity amongst the

crossbred cattle. Further, ex vivo mycobacterial infection in cultures of bovine

peripheral blood mononuclear cells (PBMC) from SITT, and myco-PCR negative

healthy cattle exhibited significantly higher intracellular growth of M. bovis BCG,

and M. tuberculosis H37Ra in the crossbred cattle PBMCs compared to native

cattle. In addition, native cattle PBMCs induced higher pro-inflammatory

cytokines and signaling pathways, such as interferon-gamma (IFN-g),
interleukin-17 (IL-17), tank binding kinase-1 (TBK-1), and nitric oxide (NO) upon

exposure to live mycobacterial infection in comparison to PBMCs from

crossbred cattle that exhibited higher expression of IL-1b transcripts. Together,

these findings highlight that differences in the innate immune responses of these

cattle breeds might be contributing to the differential susceptibility to bTB

infection, and the resultant disparity in bTB incidence amongst indigenous, and

crossbred cattle.
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Introduction

Bovine tuberculosis (bTB) is a globally prevalent chronic

debilitating infectious disease of cattle with a considerable impact

on the public health and farm economy. Of the 188 countries and

territories globally reporting their bovine TB (bTB) situation to the

World Organisation of Animal Health (OIE), 82 countries (44%)

reported bTB prevalence (1). Notably, while 97.6% of the affected

countries reported bTB prevalence in livestock, 35.4% of countries

documented bTB presence in both livestock and wildlife animals

(1). In addition, the incidence of TB in humans and bovines due to

either the human or bovine tubercle bacilli signifies the impact of

bTB on livestock farming, and highlights its transmission between

cattle and humans (2–4). Since, about 54.6% of the total workforce

in India is engaged in agriculture and animal husbandry, and

livestock provides livelihood to two third of the rural community,

therefore, bTB exerts a hugely adverse effect on public health (3, 5).

Bovine TB has been largely controlled in many high-income

countries due to strict implementation of bTB control programs

and policies, whereas in lower, and lower-middle-income countries,

control of bTB still poses a major challenge (6, 7). This is largely

because of unhygienic farm management practices, lack of regular

surveillance, and lack of strict prevention, and control policies.

While a meta-analysis of published literature on bTB reported

prevalence rates of 2-50% in cattle in India, the true incidence of

bTB in India remains ambiguous in the absence of routine national

bTB surveillance (8). Seminal findings in the past showed lower

incidences of bTB in the indigenous Indian zebu cattle (Bos indicus)

compared to exotic European cattle (Bos taurus) (9–14).

Susceptibility to bTB has also been estimated to be influenced by

various factors such as herd size, nutritional requirement, age, sex,

and dairy farm management practices (9, 15, 16). A recent study

reported significantly higher bTB prevalence in exotic and

crossbred cattle than in indigenous cattle breeds (17). A plethora

of studies in the mouse model as well as in humans has indicated

that the genetic makeup of a host substantially influences the

intracellular survival of mycobacteria by inducing differential

immune responses (18–23). However, a systematic study to
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compare the underlying immune responses amongst indigenous

Indian cattle, and crossbred cattle has not been reported. We

hypothesized that higher incidences of bTB in the crossbred cattle

might be arising due to inadequate immune response to bTB

infection compared to the native cattle breeds. To compare the

innate cellular responses, first, we segregated the healthy, single

intradermal tuberculin test (SITT) negative, and myco-PCR [PCR

targeting M. tuberculosis, M. bovis, M. orygis, Mycobacterium

tuberculos i s complex (MTC)] and Non-Tuberculous

Mycobacteria (NTM) negative cattle from two prominent breeds-

indigenous breed Sahiwal, and crossbred- Sahiwal x Holstein

Friesian (SHF). Subsequently, we performed a comparative

mycobacterial growth assay in the PBMCs isolated from these

healthy mycobacterium-naive cattle. Concurrently, we compared

the innate immune cytokine responses induced by the PBMCs upon

mycobacterial infection and antigenic stimulation. We identified

considerable differences in key pro-inflammatory cytokine

responses between these breeds that potentially contribute to the

differential susceptibility to mycobacterial infection and varied

incidence of bTB in these breeds of cattle in India.
Results

Higher incidence of tuberculin
reactors and myco-PCR positivity in
crossbred cattle

To identify, and segregate bTB-negative animals we performed

standard SITT, and myco-PCR-based screening of both indigenous

Sahiwal breed, and SHF crossbred cattle from a dairy herd (Figure 1).

Comparison of SITT response to bovine tuberculin was performed on

24 Sahiwal, and 26 SHF cattle. A total of 9 animals were found to be

bovine tuberculin reactors equating to SITT positivity of 18% (9/50)

(Figure 1A). Estimation of the breed-specific tuberculin reactors

revealed 8.33% (2/24) positivity among Sahiwal cattle, whereas

26.92% (7/26) positivity in the case of crossbred SHF cattle.

Concurrently, our myco-PCR methodology that involves a
A B

FIGURE 1

Single Intradermal Tuberculin Test, and PCR-based detection of mycobacterial DNA. (A) The pie chart depicts the incidence of SITT positivity in
cattle. A total of 50 cattle were analyzed by SITT. Out of 50 cattle, 9 (18%) were tuberculin reactors. Out of 9 SITT+ cattle, 7 cattle (14%) belonged to
Cross Breed and the remaining 2 (4%) were Sahiwal cattle. (B) Agarose gel electrophoresis image of the multiplex PCR using a combination of, - a
primer pair targeting specific DNA sequence of the Region of Difference-1 (RD-1) that detects both M. bovis, and M. tuberculosis but not BCG, or
NTMs, - a primer pair targeting the upstream and downstream sequences of the RD-4 region specifically detecting BCG, and M. bovis DNA but not
M. tuberculosis or NTMs, and – a primer pair that detects the presence of pan NTMs DNA. NTC, no treatment control.
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combination of singlet PCRs using previously published primers that

detect M. bovis, M. tuberculosis, M. orygis, MTC, and pan non-

tuberculous mycobacterial (NTM) DNA including the

Mycobacterium avium complex (MAC) (Supplementary Figure S1),

and an in-house assembledmultiplex-PCR that simultaneously detects

and differentiate M. bovis, M. bovis BCG, M. tuberculosis and pan

NTM DNA in the cattle milk and urine samples (Figure 1B) revealed

presences of 4% of M. bovis positivity (2/50, RD1+, RD4+), 6% M.

tuberculosis positivity (3/50, RD1+, RD4-), 14% MTC positivity (7/

50), and 32% NTM positivity (16/50) (Table 1) (24–27). Altogether, a

considerably higher number of crossbred cattle was found to be myco-

PCR positive (8/26) compared to the native Sahiwal breed (1/24).

Supplementary Table S1 depicts the detailed distribution of SITT and

myco-PCR assay results among all the animals. The primers targeting

different mycobacteria are listed in Supplementary Table S2. We have

excluded animals showing SITT positivity, or PCR positivity to any of

the mycobacterial species screened in this study for the subsequent

evaluation of mycobacterial growth, host cellular responses to

mycobacterial infection, and antigenic stimulation (Table 1 and

Supplementary Table S1). These SITT-negative and Mycobacterial-

PCR-negative cattle were considered mycobacteria-naïve animals that

are expected to show primary immune responses when exposed to

mycobacterial infection of antigenic stimulation.
Crossbred cattle PBMCs are conducive to
mycobacterial replication

For a comparative evaluation of the permissiveness of the two

breeds of cattle to mycobacterial infection, a bovine PBMC-

mycobacteria in vitro infection assay was established. First, we

generated reporter strains of M. bovis BCG, and M. tuberculosis

H37Ra expressing mCherry and tdTomato via episomal plasmids

pMSP12::mCherry and pTEC27-Hyg, respectively (Supplementary

Table S3) (28). The correlation of the fluorescence of the reporter

mycobacterial strains to the CFU was evaluated both in the 7H9

broth culture (Supplementary Figures S2A, B), as well as in the

bovine macrophage cells (BOMAC) (Supplementary Figures S2C,

D) (29, 30). The association of the reporter mycobacterial number

to total fluorescence was found to be in strong agreement, and a

bacterial number-dependent increase in the total fluorescence was

observed over five days in both broth culture and BOMAC cell

culture (Supplementary Figure S2). A pre-calibrated MOI of 1:10

(Cell: Bacteria) was used for a 5 days-long bovine PBMC culture

along with fluorescence measurement at an interval of 24 hours

following infection to evaluate the comparative mycobacterial

growth in two breeds of cattle (Figure 2). The mean fluorescence
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of M. bovis BCG in the SHF derived PBMC exhibited increasing

trend compared to the PBMCs derived from Sahiwal breed of cattle,

and at day-5 post-infection the bacterial fluorescence was found to

be significantly higher in the former group compared to the later

(Figure 2A). Further, PBMCs from Sahiwal breed showed a

considerably lower fluorescence for M. tuberculosis H37Ra over

the course of infection which is significantly lower at day-4 and day-

5 post-infection highlighting restricted growth of the bacteria in

comparison to the PBMCs from the crossbred SHF cattle

(Figure 2B). These observations clearly indicate that indigenous

Sahiwal breed of cattle possess significantly greater control over the

growth ofM. bovis, andM. tuberculosis strains in comparison to the

crossbred SHF cattle.
Higher IFN-g production by PBMCs
from indigenous cattle breed upon
mycobacterial infection, and
antigenic stimulation

IFN-g is an important cytokine that regulates innate as well as

acquired cell-mediated and humoral immunity to infection by

eliciting a number of biological responses in several cell types (31,

32). IFN-g plays a pivotal role in exerting the host’s protective

immunity against Mycobacterial infection (33, 34). Evaluation of

the protein level of IFN-g by ELISA in the bPBMC culture media at

24-hour post-infection with M. bovis BCG, and M. tuberculosis

H37Ra revealed a significant difference between Sahiwal and SHF

cattle (Figure 3). In the first set of experiments, PBMCs from

Sahiwal cattle showed a higher production of IFN-g than SHF

cattle when exposed to M. bovis BCG, and M. tuberculosis H37Ra

infection (Figure 3A), while LPS stimulation resulted in a

comparable level of IFN-g production by PBMCs from both the

sources. This observation was reconfirmed by subsequent

experiments wherein in addition to M. bovis BCG, M. tuberculosis

H37Ra infection, bPBMC were also stimulated with bovine PPD

(PPD-B), avium PPD (PPD-A), M. tuberculosis- whole cell lysate

(WCL), cell wall (CW), and lipoarabinomannan (LAM). We

observed that the IFN-g levels at 24-hour post-infection were

significantly higher in PBMCs from Sahiwal cattle than SHF cattle

in the case of M. bovis BCG, and M. tuberculosis H37Ra infection,

and PPD-B stimulation (Figure 3B). For the rest of the stimulant

groups no considerable difference was observed. These observations

indicate higher induction of IFN-g by PBMC from indigenous

Sahiwal cattle during infection might contribute to the restriction

of mycobacterial growth and the resultant lower incidence of bTB in

this breed of cattle.
TABLE 1 Distribution of SITT and myco-PCR positivity across all the cattle.

Categories RD1+ RD4+ RD1+
RD4+

MTC+ NTM+ SITT+ SITT+
RD1/
RD4/
MTC+

SITT+ or
RD1/
RD4/
MTC +

SITT+
RD1/
RD4/
MTC -

SITT-
RD1/
RD4/
MTC +

Any
positive

No. of cattle 5 2 2 7 16 9 5 15 4 6 20
fro
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Transcriptional induction of pro-
inflammatory immuno-signature by
indigenous cattle PBMCs

Pathogenesis of pulmonary TB largely depends on the

orchestration of the players of the cellular immune system and a

synchronized interaction of various pro- and anti-inflammatory

cytokines at the site of infection (18, 31, 33). A fine-tuning of

multiple cytokines is essential to an effective clearance of the

pathogen (35–37). RNA extracted from the PBMCs from the

above experiment at 24 hours post-infection were analyzed for
Frontiers in Immunology 04
several major cytokines, and signaling molecules by real-time RT-

PCR using gene-specific primers (Supplementary Table S4). These

includes IFN-g, IL-17, TNF-a, IFN-b, IL-1b, IL-6, IL-10, cGAS,
STING, TBK1, IRF3, and IRF7. Figure 4 depicts the relative

expression of relevant immune-response genes in bar diagrams.

Of these various immunological mediators, significantly higher

transcriptional induction of IFN-g was observed in case of

PBMCs from Sahiwal cattle than crossbred cattle when infected

with M. bovis BCG and M. tuberculosis H37Ra, (Figure 4A). In

addition, a similar pattern of significantly higher induction was

observed in case of IL-17 gene expression by PBMCs from Sahiwal
A B

FIGURE 3

IFN-g response of bovine PBMC to mycobacterial infection and antigenic stimulation. Two separate sets of experiments were performed at an interval of
six months using freshly prepared PBMCs from same cohort of cattle. In the first set of experiment, (A) the PBMCs obtained from SITT and myco-PCR
negative Sahiwal and SHF cattle were infected with M. bovis BCG or M. tuberculosis H37Ra at an MOI of 1:10 (cell: bacteria) or stimulated with
Lipopolysaccharide (LPS, 5ug/ml). The bar graph represents IFN-g level in the culture supernatant (pg/ml). Data is mean ± SEM, n=3 animals per group, *,
p<0.05. In the second set of experiment, (B) PBMC were either infected with M. bovis BCG or M. tuberculosis H37Ra at an MOI of 1:10 (cell: bacteria) or
stimulated with bovine PPD (PPD-B, 300 IU/ml), Avian PPD (PPD-A, 250 IU/ml), M. tuberculosis whole cell lysate (WCL, 5 ug/ml), cell wall (CW, 5 ug/ml)
and lipoarabinomannan (LAM, 5ug/ml). IFN-g level was measured at 24 hours post-infection and graphically represented by a box plot, wherein median
values are denoted by the horizontal line, the mean is represented by ‘+’, the interquartile range by boxes, and the maximum and minimum values by
whiskers. n=6 animals per group. *, P < 0.05; **, P < 0.01; ***, P < 0.001 (t-test). The data is representative of two experiments. NTC, no treatment control.
A B

FIGURE 2

Growth of mycobacteria in bovine PBMC. PBMC from Sahiwal and SHF cattle were infected with fluorescence reporter (A) M. bovis BCG-mCherry;
lex:587nm and lem:610nm, and (B) M. tuberculosis H37Ra-tdTomato; lex:554nm and lem:583nm at an MOI of 1:10 (cell: bacteria). The fluorescence
intensity of reporter mycobacteria strains was monitored every 24 hours for 5 days post-infection, and data is depicted as line plots by adjoining the
mean ± SEM fluorescence/well measured every day for each mycobacterial strain. n = 6, *,p<0.05 (t-test). The data is representative of two experiments.
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cattle compared to the PBMCs from crossbred SHF cattle when

exposed to M. bovis BCG and M. tuberculosis H37Ra infection

(Figure 4B). The serine/threonine kinase TBK-1, which is known

for its involvement in the innate immune response to infection by

mediating the cGAS-STING-IFN-b axis of cytosolic surveillance

pathway, was also found to be significantly upregulated following

M. bovis BCG infection of the PBMCs from Sahiwal cattle in

comparison to the PBMCs from crossbred cattle (Figure 4C). In

contrast, IL-1b expression was significantly higher in crossbred

cattle PBMCs upon infection with both M. bovis BCG and M.

tuberculosis H37Ra. (Figure 4D). Rest of the genes analyzed in this

study exhibited a comparable expression pattern in case of both the

breeds of cattle (Supplementary Figure S3). Stimulation with PPD-

B, PPD-A, WCL, CW, and LAM did not exhibit a considerable

difference in gene expression between the two breeds of cattle (data

not shown). Our findings from quantitative real-time PCR indicates

differential transcriptional regulation of important cytokines and

signaling pathway such as IFN-g, IL-17, IL-1b, and TBK-1 upon
Frontiers in Immunology 05
mycobacterial infection may contribute to the differential

permissiveness of the two breeds of cattle to bTB infection.
Higher nitric oxide production by PBMCs
from indigenous cattle

Production of NO by macrophages represents an important

defense mechanism against M. tuberculosis and contributes to the

host’s ability to control and combat the infection (38, 39). We

measured nitrite levels in the PBMC culture supernatants, which is

an indirect measure of NO production. As shown in Figure 5,

PBMCs from the Sahiwal cattle produced relatively higher levels of

NO over the crossbred cattle PBMCs upon Mycobacterial infection

or antigenic stimulation. Notably, a statistically significant

difference was observed in the case of M. tuberculosis H37Ra

infection and PPD-A stimulation.
A B

DC

FIGURE 4

Modulation of host gene expression in bovine PBMC by mycobacterial infection and antigenic stimulation. Expression of various cytokines and
immunity-related genes were measured on the RNA extracted from PBMC infected with M. bovis BCG or M. tuberculosis H37Ra at an MOI of 1:10
(cell: bacteria) or stimulated with bovine PPD (PPD-B, 300 IU/ml) and Avium PPD (PPD-A, 250 IU/ml at 24-hour post-infection by semi-quantitative
real-time RT-PCR using gene-specific primers. (A) IFN-g, (B) IL-17, (C) TBK-1 and (D) IL-1b. The data were normalized to RPLP0 expression levels
and then normalized to the values of uninfected/unstimulated cells to obtain ddCT values. Data is represented as a bar diagram of mean ± SEM of
2-ddCT values as relative expression, n=3, *, p<0.05 (t-test); **, p<0.01.
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Discussion

The susceptibility and/or resistance of a host to TB is influenced

by multiple factors which include: the nutritional status of the host,

age, sex, underlying diseases, host genetic traits, and interaction

between the host and the environment (16). Numerous studies have

indicated that genetic diversity among organisms contributes

immensely to the differential immune response (21, 22). A

number of studies reported that bTB was more prevalent in

crossbred cattle compared to the indigenous cattle breeds in India

(17, 40). Thakur and colleagues investigated the prevalence of bTB

in an organized farm, and a cow shelter in northern India and

reported higher bTB positivity in Jersey crossbreds (40). Das and

colleagues reported markedly higher incidences of bTB in exotic

and crossbred cattle (34.6%) compared to indigenous cattle (10.5%)

in India (17). A higher incidence and severity of pathology of bTB in

the Holsteins breed compared to Zebu breeds was reported in a

study conducted in central Ethiopia (10). As it is apparent that

indigenous breeds of cattle have a markedly lower incidence of bTB

compared to the exotic and crossbred cattle, a comparison of

immune responses to bTB infection in these cattle may discern

the clue of protective immune signature to bTB in cattle.

India is home to the largest cattle population in the world with

an array of indigenous, and crossbred varieties with enormous

genetic variability. Cross-breeding practices remained a preferred
Frontiers in Immunology 06
approach to enhance the milk yield of indigenous dairy breeds of

cattle for more than half a century in India (41). Especially, the use

of European donor breeds such as Holstein Friesian, Jersey, Brown

Swiss, Red Dane, etc. for improving non-descript Indian cattle as

well as pure-breed indigenous cattle, and the impact of cross-

breeding on milk production, reproductive performance, and

sustainability in Indian agro-climatic conditions were thoroughly

studied via a number of cattle development programs. Exotic

inheritance of 1/2 and 5/8 was found to be superior in milk

production and sustainability parameters in the majority of the

studies compared to other genetic grades (41, 42). Lower or higher

exotic inheritance than the above-mentioned grades did not result

in any economic benefit from such cross-breeding practices but

rather resulted in unsustainable breed quality in the Indian agro-

climatic conditions. As per the last livestock census, crossbred cattle

represent more than one-third of India’s total cattle population and

contribute to nearly 48% of total cow milk (43). However, how

cross-breeding has influenced the susceptibility and/or resistance

trait to different infectious diseases, and the underlying genetic and

immunological mechanisms are rarely evaluated systematically.

Here, we studied two of the most prominent dairy breeds of

cattle in India, indigenous Sahiwal and crossbred SHF. The

crossbred SHF animals included in this study possess 50%-62.5%

exotic inheritance. Using myco-PCR alone, and a combination of

both standard SITT assay and myco-PCR, we found a significantly

(p<.05 and p<.01, respectively) higher incidence of tuberculin

reactors-cum-PCR positivity in SHF cattle compared to Sahiwal

cattle (Table 2). Our findings are in accordance with the previous

studies where a higher percentage of tuberculin reactors was seen in

exotic/crossbred cattle than in native cattle (10, 15, 44, 45). Further,

the Mycobacterial-PCR assays enabled us to detect the presence of

MTC and NTM genomic DNA in the milk and urine samples

isolated from cattle. The presence of NTM may interfere not only

with the SITT readout but also may affect the cellular immune

responses of PBMCs isolated from the cattle. Application of such

PCR assays provides a cost-effective method to detect not only the

species of the infecting mycobacteria in the clinical settings but also

allowed us to identify mycobacterial infection-free cattle to be

included in the subsequent ex vivo PBMC-based experiments.

IFN-g is the key cytokine indispensable in defence against TB.

IFN-g activated macrophages enhance the microbicidal activity of

macrophages by allowing the formation of phagolysosomes wherein

the mycobacteria are deprived of essential nutrients such as iron,

and exposed to anti-microbial peptides, and reactive oxygen or

nitrogen intermediates (46–48). Lower production of IFN-g
indicates a reduced activity of macrophages which promotes

mycobacterial growth (32, 37). The findings from ELISA and

real-time RT-PCR indicated a significantly higher induction of

IFN-g response by PBMCs from Sahiwal cattle compared to

crossbreed cattle PBMCs indicating induction of superior anti-TB

immune responses in the native Sahiwal cattle (Figures 3, 4). This

observation was supported by the lower growth of both M. bovis

BCG and M. tuberculosis H37Ra strains in the PBMC cultures of

Sahiwal cattle compared to the crossbred SHF cattle (Figure 2).

Notably, only live Mycobacterial infection and PPD-B stimulation

resulted in differences in IFN-g levels, whereas neither LPS
FIGURE 5

Nitric Oxide production by bovine PBMCs upon Mycobacterial
infection and antigenic stimulation. PBMC were either infected with
M. bovis BCG or M. tuberculosis H37Ra at an MOI of 1:10 (cell:
bacteria) or stimulated with bovine PPD (PPD-B, 300 IU/ml), Avian
PPD (PPD-A, 250 IU/ml). Culture supernatant was separated at 24
hours post-infection and subjected to Griess assay for nitrite, a
stable metabolite of NO. The bar diagram depicts the Mean ± SEM
of Nitrite levels in the culture media. n=3 animals per group. *, P <
0.05, **, P < 0.01, (t-test). NTC, No treatment control. The data are
representative of two similar experiments.
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stimulation nor stimulation with other M. tuberculosis derived

antigen complexes such as LAM, CW, and WCL showed any

differences between the breeds. This may be due to the

upregulation and secretion of immunodominant antigens during

live bacilli infection, and the dominant presence of such antigens in

PPD-B, resulting in differential immune activation by PBMCs from

the two cattle breeds through a mechanism that is yet to be

identified. Additionally, comparable immune responses to LPS

suggest the presence of similar TLR-4 mediated responses by

PBMCs from both cattle breeds.

Although IFN-g plays a key role in the defence against TB, this

cytokine alone can’t generate the necessary immune response to

provide protection against TB. The TB disease progression is

controlled by a coordinated network of several different cytokines,

chemokines, and signaling molecules. We analyzed the mRNA

levels of a number of pro-inflammatory, anti-inflammatory, and

immuno-regulatory mediators in addition to IFN-g such as IL-17,

TNF-a, IFN-b, IL-1b, IL-10, cGAS, STING, TBK1, IL-6, IRF3, and
IRF7. While IL-17, IL-1b, and TBK1 exhibited considerable

differential regulation in the mRNA levels, a comparable level of

expression was observed for the rest of the immune mediators

(Figure 4). A significantly higher induction of IL-17 was exhibited

by PBMCs from Sahiwal cattle compared to crossbreed cattle

PBMCs (Figure 4B). IL-17 is another key cytokine involved in

exhibiting protective immunity against M. tuberculosis infection. It

plays a major role in combating the growth of the tubercle bacilli by

promoting a Th1-biased immune response (49). The differentiation

of Th17 cells occurs as a result of an increase in the level of pro-

inflammatory cytokines such as IL-6, IL-23, IL-1b, and TNF-a (36,

49–51). IL-17 induces the recruitment of neutrophils, macrophages,

and Th1 cells to the site of inflammation. IL-17 also restricts the

growth of Mycobacteria by inducing the expression of various

chemokines, and by recruiting IFN-g-producing cells (35). In

contrast, IL-1b expression was significantly higher in crossbred
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cattle PBMCs upon mycobacterial infection (Figure 4D). While

IFN-g and IL-17 primarily promote macrophage activation,

granuloma formation, and clearance of intracellular tubercle

bacilli, IL-1b has been implicated in aggravated inflammation

(52). Further, phosphorylation of TBK-1 is involved in a plethora

of intracellular signaling events including the cGAS-STING-IFN-b
axis of the cytosolic surveillance pathway of the host to respond to

invading infectious agents including regulation of cell proliferation,

autophagy, and apoptosis (53, 54). While the role of TBK-1 in

antiviral response is well documented, divergent views on the anti-

bacterial effect especially anti-mycobacterial responses are linked to

this cytosolic kinase (55–58). Several studies reported the

essentiality of the TBK-1 phosphorylation-mediated activation of

the IRF-1 pathway for mycobacterial clearance, while others

associated it with higher immunopathology (56, 57). These

observations indicate the necessity of tightly regulated TBK-1-

mediated signaling for a host-favored immune response.

During M. tuberculosis infection, the association of increased

IFN-g and with increased NO production by macrophages plays a

critical role in host defense against the pathogen (38, 39). IFN-g is a
pro-inflammatory cytokine produced by activated T cells and

natural killer cells, and it stimulates macrophages to enhance

their antimicrobial activities (46). When macrophages encounter

M. tuberculosis, the production of IFN-g is triggered, leading to the

activation of macrophages. Activated macrophages then produce

increased levels of NO through the inducible nitric oxide synthase

pathway, which serves as a potent bactericidal agent against M.

tuberculosis. Thus, increased IFN-g levels coupled with enhanced

NO production by PBMCs from Sahiwal cattle represents a crucial

immune r e spons e tha t a id s in the con t ro l o f th e

Mycobacterial growth.

In some, our study elucidated the association of important

mediators of immune responses with the differential bTB

susceptibility phenotype of the indigenous Sahiwal cattle and the
TABLE 2 Influence of breed variation on the incidence of bTB in cattle.

Distribution of number of cattle showing positive and negative test results

Breed SITT Myco-PCR Combined SITT and Myco-PCR

+ - Total + - Total + - Total

Sahiwal 2 22 24 1 23 24 2 22 24

Sahiwal x HF 7 19 26 8 18 26 13 13 26

Total 9 41 50 9 41 50 15 35 50

Statistical significance of difference of bTB incidence between breeds

Level of significance (p value)

Types of Significance tests SITT Myco-PCR Combined SITT and Myco-PCR

Pearson Chi-square 0.087 0.014* 0.001**

Fisher’s Exact Test 0.089 0.016* 0.001**

Phi-coefficient 0.087 0.014* 0.001**

Cramer’s V 0.087 0.014* 0.001**
fronti
*p < 0.05, **p < 0.01, Statistical package SPSS Vr.25 was used for the analysis.
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crossbred SHF cattle by employing ex vivo bovine PBMC-

mycobacterial infection model using M. bovis BCG vaccine strain,

and M. tuberculosis H37Ra strain. Especially, our study highlighted

that divergence in the expression of host factors such as IFN-g, IL-
17, IL-1b, and TBK-1 potentially play a major role in determining

the degree of susceptibility to mycobacterial infection in cattle. In

addition, heightened activation of macrophages as evident from

increased IFN-g, and NO levels in the Sahiwal cattle might be

contributing to a greater control ofMycobacterial growth. However,

it is important to acknowledge certain limitations to this study that

require further investigation. Based on our use of BSL2 grade

mycobacteria- M. bovis BCG and M. tuberculosis H37Ra, this

study primarily serves as a proof-of-principle that susceptibility to

bTB is higher in crossbred SHF cattle compared to native Sahiwal

cattle. Further studies with virulent human and bovine tubercle

bacilli, a greater number of indigenous and crossbred cattle, and

application of genomic, transcriptomic and proteomic approaches

would elucidate the association of the global immune response

signature to bTB susceptibility and/or resistance in cattle.

Our study also highlighted the importance of the use of PCR-

based mycobacterial DNA detection and differentiation of

mycobacteria species in studies that allow the identification of

mycobacterial infection-naïve cattle to evaluate the innate

immune response of PBMCs to mycobacterial stimulation or

infection. Further, a highly sensitive multiplex-PCR-based assay

would be immensely useful for screening cattle herds as well as

human clinical TB cases that would aid in the epidemiological

characterization of causative mycobacterial species and devising

appropriate treatment strategies.

Finally, this study is an important step forward toward

identifying the association of bTB susceptibility to the underlying

innate immune responses in indigenous and crossbred cattle in

India. This study addresses an extremely important yet untouched

aspect of the bTB scenario in Indian cattle which is identifying host

factors conferring susceptibility and/or resistance to bTB that

remained one of the biggest public health problems for centuries.

Our results not only provide proof-of-concept data for the

hypothesis that genetic variability of bovine due to breed

variation influences bTB susceptibility and resistance but also

provide a reason for adopting an appropriate crossbreeding policy

that balances production and disease resistance traits for sustainable

livestock farming.
Materials and methods

Bacteria, plasmids, and generation of
reporter mycobacterial strains

The mycobacterial strains and plasmids used in the study are

listed in Supplementary Table S1. M. bovis BCG (Danish 1331 sub-

strain), and M. tuberculosis H37Ra strain was kindly provided by

Prof. S. Banerjee, University of Hyderabad, India. Non-Tuberculous

Mycobacteria (NTM) M. fortuitum was procured form MTCC,

CSIR-IMTECH, Chandigarh, India. Mycobacterial strains were

grown to mid-log phase in Middle Brook (MB) 7H9 media and
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glycerol stocks were prepared and stored at -80°C as described

earlier (59). For in vitro infection, fresh bacterial cultures were

grown to the mid-log phase, and bacterial cells were washed

thoroughly with 1XPBS, and finally resuspended in cell-culture

media following pre-calibrated dilutions, as described previously

(56). For generating Mycobacterial reporter strains first,

electrocompetent cells of M. bovis BCG and M. tuberculosis were

prepared as described previously (56), and transformed with

pMSP12::mCherry (was a gift from Lalita Ramakrishnan,

Addgene plasmid # 30169; http://n2t.net/addgene:30169), and

pTEC27-Hyg (was a gift from Lalita Ramakrishnan, Addgene

plasmid # 30182; http://n2t.net/addgene:30182) (28). Briefly,

100µl of competent Mycobacterial cells were mixed with 100ng of

plasmid DNA, and transferred to a Micro Pulser Electroporation

cuvette (Biorad # 1652086 with 0.2 cm gap) and pulsed at 2500V,

25uF capacitance, and 1000 W resistance using an electroporator

(Gene Pulser Xcell Microbial System #1652662, Bio-Rad). The cells

were immediately aspirated and inoculated in 2ml of MB-7H9

broth without any selective antibiotics and incubated at 37°C under

shaking conditions for 48 hours. Subsequently, bacterial cells are

plated onto MB-7H11 agar containing selective antibiotics- 25 µg/

ml of Kanamycin, and 150 µg/ml of Hygromycin, respectively, and

incubated at 37°C for 4 weeks. Transformed bacterial clones grown

on the selective plates were detected by colored colonies, and also

confirmed for the presence of plasmid by colony PCR, and

subsequently confirmed by fluorescence microscopy. Glycerol

stocks of the reporter mycobacterial strains were prepared, and

stored for future use. All the mycobacterial strains used in this study

were of the BSL-2 category, and these are cultured in a BSL-

2 laboratory.
Genomic DNA extraction
from mycobacteria

Standard methodology was followed for genomic DNA

extraction from various mycobacteria as described previously

(60). Briefly, the bacterial culture was incubated with 1% glycine

in a 37°C shaker for 24 hours. After incubation, the cells were

harvested by centrifuging the bacteria at 8000 rpm for 10 minutes.

The cells were resuspended in 5ml of TEG (Tris 25mM pH 8.0,

EDTA 10mM pH 8.0, Glucose 50 mM) solution and mixed gently.

500µ of lysozyme (10mg/ml) was added to this suspension and

incubated overnight at 37°C a shaker incubator. Later, 1 ml of 10%

SDS and 500µl of Proteinase K (20mg/ml) were added to the cell

lysate and incubated at 55°C for 40 minutes. Subsequently, a

solution comprising 2ml of 5M NaCl and 1.6ml of pre-warmed

10% CTAB was added to the cell lysate which was later incubated at

65°C for 10 minutes. The suspension was then centrifuged at 12000

rpm for 30 minutes at room temperature. The supernatant was

subjected to phenol-chloroform extraction twice, and genomic

DNA was precipitated by the addition of isopropanol. The DNA

pellet was washed twice with 70% ethanol, air dried, and

resuspended in autoclaved distilled water and stored at -20°C.

The genomic DNA was used as a template for PCR experiments.

Genomic DNA from Mycobacterium bovis BCG, M. tuberculosis
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H37Ra, and M. fortuitum were extracted by the above method.

Genomic DNA extracted from Mycobacterium bovis irradiated

whole cells (#NR-31210), and purified Genomic DNA of M.

tuberculosis H37Rv strain (#NR-13648) procured from BEI

resources, USA was used as PCR templates.
Animals

For this study, we selected cattle herds from two neighboring

organized dairy farms in the Nadia district of West Bengal, India.

Both farms follow similar feeding and management practices, and

both raise a mixed population of Sahiwal and SHF crossbred cattle.

We selected cattle (cows) that were over two years old, not pregnant

during the study period, and had not undergone any tuberculin

testing in the previous one year. Based on these criteria, a total of 50

cattle were included in the study, consisting of 24 Sahiwal and 26

SHF cattle.
DNA extraction from cow milk and urine

Genomic DNA was isolated from cow milk and urine samples

as described previously (2). Briefly, milk samples were centrifuged

at 12,000 x g for 20 minutes at room temperature. A sterile cotton

swab was used to remove the fat layer, and the supernatant was

discarded. The pellet was vortexed and subsequently resuspended in

500µl of IRS [Inhibitory Removing Solution with pH (7.4)

containing 25M guanidium isothiocyanate, 0.025M EDTA, 0.05M

Tris, 0.5% Sarkosyl and 0.186M b-mercaptoethanol]. Later the

samples were incubated at 37°C for 60 minutes. After incubation,

the samples were again centrifuged at 12,000 x g for 10 minutes and

the supernatant was discarded. The pellet was washed with water

once and resuspended in 100µl of lysis buffer (10% Chelex 100, 0.3%

tween 20, 0.03% Triton X100). The samples were then incubated at

90°C for 40 minutes and subjected to another round of

centrifugation at 10,000 x g for 10 minutes at room temperature.

The supernatant was collected and used as template DNA for PCR

reactions, or stored at -20°C for future use.
Single and multiplex- PCR assay for
mycobacterial DNA detection

PCR assays were carried out targeting the genomic DNA of

single mycobacterial species as well as multiple species in a single

reaction. We observed higher sensitivity of single species/gene-

specific PCR compared to the multiplex-PCR assay. Comparative

genomics has revealed that based on the presence or absence of

regions of difference (RD) mycobacterial species or strains can be

differentiated. In this study, a combination of previously published

primers targeting specific sequences of RD1, RD4, RD12, and rpoB

gene was used to develop the single and multiplex- PCR to detect

and differentiate M. tuberculosis,M. bovis,M. bovis BCG,M. orygis,

pan-MTC and pan-NTM (including MACs) in the cattle samples

(Supplementary Figure S1). Supplementary Table S1 shows the list
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The PCR protocol was executed using the Sapphire PCRmaster mix

(TAKARA) following manufacturer protocol. Subsequently, PCR

amplicons were analyzed by agarose gel electrophoresis and

visualized using a UV trans-illuminator. The expected size of

amplicons with RD1, RD4, RD12-M. orygis, MTC, and NTM

primers are 110bp, 176bp, 264bp, 235bp, and 134bp, respectively

(Supplementary Figure S1). While the multiplex-PCR could detect

mycobacteria in 0.1ng of template DNA, the single species PCR

could detect mycobacteria in 0.01ng of total genomic DNA

extracted from cattle milk or urine.
Single intradermal tuberculin test

Fifty cows from two adjacent herds were subjected to the single

intradermal tuberculin test. The neck region of the animals was

shaved and the thickness of the skin was measured with the use of a

caliper before injecting bPPD. One hundred microliters (0.1ml) of

bovine PPD (2,000 U/animal of bPPD) (obtained from Indian

Veterinary Research Institute, Izatnagar, India; 1mg protein/ml)

was injected into the skin of the cervical region. Seventy-two-hour

post bPPD injection skin induration was evaluated by measuring

the skin thickness with a caliper. The result was graded as bPPD

positive reactor when differences in the skin thickness at the

injection sites are at least 5 mm or greater.
In vitro bovine macrophage cell culture
and mycobacterial growth assay

Bovine macrophage cell line- BOMAC was used for calibrating

the infection dose (MOI), and evaluating the association of

fluorescence measurements of the reporter mycobacterial strains

with the number of bacteria over the period of infection (29, 30).

BOMAC cells were maintained in DMEM supplemented with 10%

heat-inactivated Fetal Bovine Serum (FBS). BOMAC cells were

infected with the reporter strains of M. tuberculosis H37Ra-

tdTomato, and M. bovis BCG-mCherry at different MOIs. The

cells were infected for 3 hours, subsequently, the cells were

washed thoroughly, and incubated in a TC incubator in fresh

media. The fluorescence intensity was measured at lex/lem 554/

581nm (M. tuberculosis H37Ra-pTEC27), and 587/610nm (M. bovis

BCG-mCherry) respectively at an interval of 24 hours daily for 5

days using a fluorescence multimode plate reader (Biorad). An MOI

of 1: 10 was considered for ex vivo mycobacterial growth in

the bPBMC.
Ex vivo bovine PBMC culture and
mycobacterial growth assay

Blood samples were collected from clinically healthy, SITT-

negative, and myco-PCR-negative cattle. Five ml of blood was

collected from the jugular vein of each animal, and bPBMC was

isolated using Histopaque®-1077 (Sigma) following manufacturer
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recommendations. Briefly, blood was diluted with DPBS at a ratio of

1:1. The sample was layered slowly on top of the Ficoll density

gradient buffer (5 ml diluted Blood on 3 ml Ficoll) and centrifuged

at 400 x g for 30 minutes. The monocyte layer was carefully

separated and washed twice with DPBS at 200 x g for 10 minutes.

Contaminating RBCs were removed from the cell suspension by

adding RBC lysis buffer (Sigma-Aldrich) and following

manufacturer protocol. Purified bPBMC were then finally

suspended in 5ml of DMEM complete media containing

antibiotics, and added to an ultra-low attachment 6-well plate.

The cells were incubated in a TC incubator for 24 hours. For

mycobacterial growth assay, bPBMC were seeded on to 96-well TC

plate at a density of 5X104 cells/well. The cells were infected with

mid-log phase cultures of reporter mycobacteria (M. tuberculosis

H37Ra-pTEC27 and M. bovis BCG-mCherry) at a pre-calibrated

MOI of 1:10 and were incubated in a TC incubator. The

fluorescence intensity was measured at lex/lem 554/581nm (M.

tuberculosis H37Ra-pTEC27), and 587/610nm (M. bovis BCG-

mCherry) respectively at an interval of 24 hours daily for 5 days

using a fluorescence multimode plate reader.
Infection and antigenic stimulation of
bovine PBMC for evaluation of innate
immune responses

For the evaluation of innate immune responses, bPBMC were

seeded onto 24-well TC plates at a density of 2X105 cells/well, and

infected with either of the mycobacteria (M. tuberculosis H37Ra, or

M. bovis BCG) at a pre-calibrated MOI of 1:10, or cells were

stimulated with LPS (1µg/ml), PPD-B (300 IU/ml), PPD-A (250

IU/ml), M. tuberculosis H37Rv Whole Cell Lysate (WCL, 5 µg/ml),

cell wall (CW, 5 µg/ml) and purified Lipoarabinomannan (LAM,

5µg/ml). Twenty-four hours post-infection cell culture supernatants

were separated for measurement of IFN-g protein levels, and total

RNA was extracted from bPBMC for measurement of the mRNA

transcripts levels of major cytokines, chemokines, and innate

immune-signaling mediators.
RNA extraction, and real-time RT-PCR

Total RNA was extracted from bPBMC using RNeasy Plus Kit

(Qiagen Inc, CA, USA) following manufacturer protocol.

Contaminating genomic DNA was removed by additional

treatment with RNase-free DNase (Qiagen Inc, CA, USA). The

quality and quantity of RNA were analyzed using a NanoDrop

Spectrophotometer (Thermo Scientific). cDNA was synthesized

from RNA using the Prime script 1st-strand cDNA synthesis kit

(Takara) as per the manufacturer’s instructions and using a mixture

of random hexamer and oligo dT primers. Primers were designed

for bovine gene targets (IFN-g, IL-17, TNF-a, IFN-b, IL-1b, IL-6,
IL-10, cGAS, STING, TBK1, IRF3, and IRF7) (Supplementary Table

S4) using Primer-BLAST (NCBI) and real-time PCR was performed

using a CFX96 Touch System (Biorad). Real-time PCR protocol
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for 2 minutes followed by 40 cycles of denaturation at 95°C for 15

seconds, annealing and extension were carried out for 1 minute at a

temperature ranging from 55°C to 65°C (based on the target gene).

Melt curve analysis was performed by heating the samples from 65°

C to 95°C with an increment of 0.5 and fluorescence was recorded.

Relative gene expression of the target genes was calculated using the

2–DDCT method with RPLP0 as an internal control.
Bovine cytokine enzyme-linked
immunosorbent assay

Twenty-four hours post-infection cell culture supernatants were

separated, filtered through 0.2 µ membrane plate filters, and

subjected to ELISA for the measurement of IFN-g protein levels

using bovine IFN-g specific sandwich ELISA kit as per the

manufacturer protocol (K04-0002, Krishgen Biosystems). The

absolute concentrations were estimated by referring to a standard

curve and expressed as picogram per millilitre.
Nitric oxide measurement by Griess assay

The NO levels were determined using Griess reagent (# 35657,

Sisco Research Laboratories Pvt. Ltd.) according to the method

described previously (61). Briefly, the assay was performed in 96-

well microtiter plate format using cell culture supernatants collected

24 hours post-infection and filtered through 0.2 µ membrane plate

filters. 100ml of the culture supernatants were mixed with 100ml of
Griess Reagent (0.1% naphthylethylene diamine dihydrochloric

acid and 1% sulphanilamide in 5% phosphoric acid) and added to

each well in technical duplicates. The samples were incubated at

room temperature (25-30°C) for 10 minutes, and optical density

was measured with a spectrophotometer at 546nm and the nitrite

levels (as an indirect measure of NO) in the samples were quantified

according to the standard graph for sodium nitrite.
Statistical analysis

GraphPad Prism 9 was used to perform the statistical analysis

and preparation of the graphs. For comparison of group means

Student’s t-tests were performed, and differences were considered

significant when p<0.05. All the results are shown as the mean ±

SEM unless otherwise described in the figure legends. For

comparison of SITT, Myco-PCR, and combined tests data, SPSS

vr.25 software was used for performing statistical significance tests.
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