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Introduction: Lipid metabolic reprogramming is gaining attention as a hallmark

of cancers. Recent mounting evidence indicates that the malignant behavior of

breast cancer (BC) is closely related to lipid metabolism. Here, we focus on the

estrogen receptor-positive (ER+) subtype, the most common subgroup of BC, to

explore immunometabolism landscapes and prognostic significance according

to lipid metabolism-related genes (LMRGs).

Methods: Samples from The Cancer Genome Atlas (TCGA) database were used

as training cohort, and samples from the Molecular Taxonomy of Breast Cancer

International Consortium (METABRIC), Gene Expression Omnibus (GEO)

datasets and our cohort were applied for external validation. The survival-

related LMRG molecular pattern and signature were constructed by

unsupervised consensus clustering and least absolute shrinkage and selection

operator (LASSO) analysis. A lipid metabolism-related clinicopathologic

nomogram was established. Gene enrichment and pathway analysis were

performed to explore the underlying mechanism. Immune landscapes,

immunotherapy and chemotherapy response were further explored. Moreover,

the relationship between gene expression and clinicopathological features was

assessed by immunohistochemistry.

Results: Two LMRG molecular patterns were identified and associated with

distinct prognoses and immune cell infiltration. Next, a prognostic signature

based on nine survival-related LMRGs was established and validated. The

signature was confirmed to be an independent prognostic factor and an

optimal nomogram incorporating age and T stage (AUC of 5-year overall

survival: 0.778). Pathway enrichment analysis revealed differences in immune

activities, lipid biosynthesis and drug metabolism by comparing groups with low-

and high-risk scores. Further exploration verified different immune

microenvironment profiles, immune checkpoint expression, and sensitivity to

immunotherapy and chemotherapy between the two groups. Finally,
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arachidonate 15-lipoxygenase (ALOX15) was selected as the most prominent

differentially expressed gene between the two groups. Its expression was

positively related to larger tumor size, more advanced tumor stage and

vascular invasion in our cohort (n = 149).

Discussion: This is the first lipid metabolism-based signature with value for

prognosis prediction and immunotherapy or chemotherapy guidance for ER+ BC.
KEYWORDS

lipid metabolism, estrogen receptor-positive breast cancer, prognostic signature,
tumor immune microenvironment, therapy response
1 Introduction

Breast cancer (BC) is the most common tumor and

predominant cause of tumor-related death among women

worldwide (1). As the most common subtype, estrogen receptor-

positive (ER+) BC comprises approximately 75% of BC cases (2).

Although patients with ER+ BC have a relatively favorable

prognosis compared to those with other subtypes, 30–40% are

still at risk of relapse due to resistance to endocrine regimens or

chemotherapy, which may be related to clinical and biological

heterogeneity (3, 4). Thus, there is an urgent need to develop

novel biomarkers to identify patients with high-risk ER+ BC and

to optimize individual therapeutic strategies, which will ultimately

lead to prolonged survival.

Lipids, comprising fatty acids, phospholipids, cholesterol, and

triglycerides, are required for energy generation, membrane

formation, and transduction of biological signals. In recent years,

lipid metabolic reprogramming has progressively been recognized as

a hallmark of malignancy (5, 6). Moreover, it has been recognized that

lipid metabolism is intimately linked to oxidative stress, which often

features a relative excess of reactive oxygen species (ROS) over

antioxidants (7). For example, several lipid metabolism pathways are

involved in ferroptosis, a unique iron-dependent cell death pathway

characterized by oxidative stress and lipid peroxidation (8, 9). Previous

metabolic studies have noted that each subtype of BC displays distinct

metabolic alterations. Triple-negative BC (TNBC) tends to utilize

exogenous fatty acids, whereas luminal subtypes appear to depend

on a balance between oxidation and de novo fatty acid synthesis as

energy sources, and human epidermal growth factor receptor 2-

positive (HER2+) BC displays upregulated lipid biosynthesis (10–12).

To date, there are no available studies focusing on the differences in

lipid metabolism between specific BC subtypes.

The tumor microenvironment (TME) represents a unique

metabolic niche that contains not only tumor cells but also

stromal cells, immune cells and the extracellular matrix (13).

Although ER+ BC is generally considered a “cold tumor” with

low immune infiltration, a recent study using imaging mass

cytometry revealed a subset of ER+ BCs containing immune-

enriched areas (14). Therefore, it is meaningful to explore
02
immune infiltration in ER+ BC, as immune infiltration patterns

can be significantly associated with patient prognosis (15). Notably,

an increasing number of studies have elucidated the relationship

between dysfunctional immunity and abnormal lipid metabolism.

For instance, lipid uptake mediated by the scavenger receptor CD36

was found to support regulatory T-cell (Treg) function and survival

in the TME but impair the antitumor ability of CD8+ T cells

through lipid peroxidation (16–18). Moreover, fatty acid oxidation

(FAO) is required to activate immunosuppressive Treg cells and M2

macrophages and maintain memory T cells (19, 20). Nevertheless, a

comprehensive depiction of the relationship between lipid

metabolism and the TME in BC is currently lacking. In addition,

lipid metabolism reprogramming of tumor cells markedly affects

therapeutic efficiency (21). Because of the low sensitivity of ER+ BC

to chemotherapy (22, 23), it is critical to identify a reliable

biomarker to predict chemotherapy response and identify patients

who are likely to benefit from neoadjuvant chemotherapy to avoid

unnecessary treatment.

In the present study, a variety of bioinformatic approaches were

used to examine the different features of lipidmetabolism in ER+ BC. A

reliable lipid metabolism-related gene (LMRG) signature for predicting

the survival of patients with ER+ BC was established and validated.

Then, we sought to explore the underlying relationships of this

signature with the lipid metabolism landscape and TME factors,

including immune infiltration and immune checkpoint expression.

Moreover, the potential of our signature to predict immunotherapy

and chemotherapy response was evaluated. Our results improve the

understanding of the lipid metabolism features of ER+ tumors and

promote individualized treatment for ER+ BC patients.
2 Materials and methods

2.1 Data acquisition

A total of 2780 ER+ BC samples from six independent

datasets were included in this research. Transcriptome data and

clinicopathologic information were obtained from The Cancer

Genome Atlas (TCGA) database (802 ER+ BC cases), the
frontiersin.org
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Molecular Taxonomy of Breast Cancer International Consortium

(METABRIC) database (1444 ER+ BC cases), and GSE7390 (134 ER

+ BC cases), GSE1456 (62 ER+ BC cases), GSE25066 (298 ER+ BC

cases), and GSE4779 (40 ER+ BC cases) from Gene Expression

Omnibus (GEO). The specific clinical information can be found in

Table S1. The raw microarray mRNA data were quantile-

normalized and log2-transformed, and genes with more than one

probe were averaged.
2.2 Collection of LMRGs

A total of 1034 LMRGs were extracted from one fatty acid

metabolism hallmark gene set from the Gene Set Enrichment

Analysis (GSEA) database, 12 LMRG sets from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database, and 22

LMRG sets from the REACTOME database after removing

overlapping genes (Table S2).
2.3 Unsupervised consensus clustering
based on survival-associ1ated LMRGs

Univariate Cox regression analysis was first performed to

identify overall survival (OS)-related LMRGs, and genes with a p

value < 0.05 were selected for further evaluation. Unsupervised

consensus clustering was applied to explore lipid metabolism-

associated molecular characteristics of ER+ BC patients based on

survival-related LMRGs using the “ConsensusClusterPlus” R

package (24); 1000 iterations were performed to obtain stable

classifications, and a maximum of k = 6 clusters were used.
2.4 Construction and validation of the
LMRG-based prognostic signature

The log-rank test was used to identify LMRGs associated with

unfavorable prognosis, and genes with a p value ≥ 0.05 were

removed. Then, least absolute shrinkage and selection operator

(LASSO) regression analysis was applied to select significant

prognostic LMRGs and develop an LMRG-based risk signature. A

risk score for each patient was calculated with a formula considering

the optimized gene expression values (Ei) and estimated Cox

regression correlation coefficients (bi) using the “glmnet” R

package (25): risk score = ∑ Ei * bi. The survival risk score of our

study was calculated as follows: Risk score = (0.2317 * HIBCH) +

(0.2823 * OSBPL10) + (0.1183 * FIG4) + (0.2407 * OCRL) + (0.1499

* CPT1A) + (0.0423 * INPP5F) + (0.2273 * PTGES3) + (0.0177 *

HSP90AA1) + (0.1636 * ALOX15). Univariate and multivariate Cox

regression analyses, receiver operating characteristic (ROC) curve

analysis and Kaplan‐Meier (K-M) analysis were used to check the
Frontiers in Immunology 03
stability and suitability of the model in the prediction of OS in four

datasets separately.
2.5 DNA methylation of LMRGs

DNA methylation is a critical epigenetic modification affecting

gene expression and cancer development (26). The correlation

between DNA methylation and gene expression was analyzed

by DNMIVE (27), and survival analysis based on single CpG

methylation was performed with MethSurv (https://biit.cs.ut.ee/

methsurv/) (28).
2.6 Development and evaluation of
a lipid metabolism-related
clinicopathologic nomogram

Independent prognostic predictors were identified using the Cox

proportional hazards model. A novel lipid metabolism-related

nomogram considering the risk score and two clinical factors (age

and T stage) was constructed using TCGA cohort data with the

“regplot” and “rms” R packages (29). Calibration curves of 1-, 3-,

and 5-year OS were generated to assess the accuracy of our nomogram

(30). To further examine the clinical significance of the risk score,

boxplots of Wilcoxon test values were generated to visualize differences

in risk scores across diverse clinicopathologic parameters.
2.7 Gene enrichment and pathway analysis

Gene Ontology (GO) biological process and KEGG pathway

enrichment analyses of survival-related LMRGs and differentially

expressed genes (DEGs) were performed with the “clusterProfiler”

R package (31). GSEA was performed using GSEA software (version

4.2.3). To explore the correlation between the lipid metabolism-

based signature and immune-related metagenes (32), gene set

scores of samples for each cluster were calculated by gene set

variation analysis (GSVA) in the “GSVA” R package (33). DEGs

between the high- and low-risk groups with log2 (fold change) > 1

and p value < 0.05 were identified using the “limma” R package.
2.8 Estimation of the tumor immune
microenvironment landscape

The CIBERSORT (34) and xCell (35) algorithms were used to

quantify the relative abundances of tumor immune-infiltrating cells

(TIICs) in tumor samples. Using the ESTIMATE algorithm (36), we

also calculated the immune and stromal scores of ER+ BC patients

from TCGA, which reflect enrichment of gene signatures related to
frontiersin.org
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immune and stromal cells. Moreover, according to a study by

Thorsson et al. (37), we generated boxplots of risk scores in

diverse immune and cancer subtypes.
2.9 Potential implications of the signature
for immunotherapy

Great progress has been made recently in immunotherapy

for BC, but reliable biomarkers for assessing response to

immunotherapy still need to be identified. Therefore, we sought

to predict the effect of immunotherapy based on the lipid

metabolism-related signature. The expression levels of several

immune checkpoints were assessed and compared between the

two risk groups. These candidate checkpoints are listed in Table

S3. Additionally, TCGA somatic mutation data for ER+ BC were

downloaded. As a widely used predictor of the checkpoint inhibitor

response (38), tumor mutation burden (TMB) was defined as the

sum of all nonsynonymous mutations in each sample.
2.10 Prediction of chemotherapeutic
response

The Genomics of Drug Sensitivity in Cancer (GDSC) database

(39) and the Cancer Cell Line Encyclopedia (CCLE) database (40)

were used to estimate individual chemotherapeutic responses.

Three commonly used chemotherapy drugs for BC were selected:

docetaxel, doxorubicin, and cisplatin. Then, the half-maximal

inhibitory concentration (IC50) of each drug was assessed via

the “pRRophetic” R package (41). Previous studies have proven

that chemoresistance is associated with cancer stemness and

chromosomal instability features, including copy number

variation (CNV) (42–44). The mRNA stemness index (mRNAsi)

was calculated as described by Malta et al. (45), and the most

frequently mutated genes were identified using the “maftools” R

package (46).
2.11 Connections between small molecules
and DEGs

The Connectivity Map (CMap) database (https://clue.io/) (47),

a compilation of reference gene expression profiles from human

cells treated with small bioactive molecules or drug molecules, was

used to discover possible connections between the DEGs and small

compounds based on gene expression profile similarities.
2.12 Histological validation and clinical
data collection

We collected formalin-fixed paraffin-embedded sections from

149 patients who underwent surgical treatment and were confirmed
Frontiers in Immunology 04
to have ER+ BC at the Second Affiliated Hospital of Zhejiang

University School of Medicine from January 2014 to June 2017. The

inclusion criteria were defined as follows: (1) BC as a primary

cancer diagnosis; (2) histological confirmation of BC; (3)

curative operation performed; (4) ER positivity determined via

immunohistochemistry (IHC) staining; and (5) complete

clinicopathologic information. A 2-mm tissue core containing the

dominant tumor area was collected for tissue microarrays.

Collection of samples and clinicopathological information was

undertaken after receiving informed consent and approval by the

ethics committee. Staining scores were calculated by multiplying the

proportion of positively stained tumor cells by the staining

intensity. The samples were classified as having no (0), < 25% (1),

25–50% (2), 50–75% (3), or 75–100% (4) positive cells. The

intensity was classified as no staining (0), weak staining (1),

moderate staining (2), or strong staining (3). IHC staining was

performed on 4-mm-thick sections, as previously described. The

anti-ALOX15 monoclonal antibody used was purchased from

Abcam (ab244205). Images were photographed by laser

confocal microscopy.
2.13 Statistical analysis

Statistical analyses were performed using GraphPad Prism

(version 9; GraphPad Software) and R software (version 4.0.3); a

two-tailed p value < 0.05 was considered statistically significant. The

Wilcoxon rank-sum test was used to compare two groups. The K-M

method and log-rank test were used to estimate prognosis. A Cox

proportional hazards model was used for univariate and

multivariate analyses. Correlation analysis was performed with

the Pearson rank correlation test.
3 Results

3.1 Identification and clustering of
survival-associated LMRGs

The overall workflow of the present study is illustrated in Figure

S1. A total of 802 patients with ER+ BC were included. Through

univariate Cox analysis, 130 LMRGs were found to be significantly

associated with OS (p < 0.05, Table S4). The top 20 most significant

GO biological processes and KEGG pathways indicated that these

genes are mainly involved in lipid metabolic pathways, including

phospholipid and fatty acid metabolism (Figures 1A, B). Next,

unsupervised consensus clustering was performed to explore the

lipid metabolism-related patterns of ER+ BC according to the

expression patterns of 130 survival-associated LMRGs. After

comprehensive consideration of the unsupervised clustering

patterns of the training and validation cohorts, the optimal

number of clusters was two (k = 2) (Figure 1C). The patients

were then divided into two subgroups: Cluster 1 (n = 612) and

Cluster 2 (n = 190). The distinct expression patterns of the 130
frontiersin.org
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significant LMRGs between the groups are represented as a

heatmap in Figure 1D. Moreover, as demonstrated in K-M

survival curves (Figure 1E), ER+ BC patients in Cluster 1 had

significantly worse survival than those in Cluster 2 (p < 0.01).

Although data for a few genes were absent in the validation cohorts,
Frontiers in Immunology 05
we still performed clustering analysis for each of the other cohorts

using the same optimal k value. The OS results significantly

differed between the groups (Figure S2). With the CIBERSORT

algorithm, we systematically evaluated the abundance of 22 TIIC

subpopulations in the samples from TCGA and found that the
B

C

D

E
F

A

FIGURE 1

Identification of LMRG expression patterns associated with different prognoses and levels of immune infiltration in ER+ BC in the TCGA cohort.
(A, B) GO and KEGG analyses of the 130 identified survival-associated LMRGs showing enrichment of lipid metabolic pathways. The top 20 pathways
are presented. (C) Unsupervised consensus clustering showing two lipid metabolism-related clusters in ER+ BC. (D) Heatmap showing distinct
expression patterns of these 130 LMRGs in two cluster subtypes. Some important genes are labeled. (E) K-M survival curve of patients stratified by
cluster subtype. (F) Immune cell infiltration landscapes of the two cluster subtypes according to CIBERSORT. The abundances of some cell
subpopulations significantly differed between the two clusters. **p < 0.01, ***p < 0.001.
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extent of immune cell infiltration varied between groups. For

example, the levels of T follicular helper cells, CD8+ T cells and

activated natural killer (NK) cells, which are correlated with a

positive prognosis in BC (48), were higher in Cluster 2 (p < 0.01),

whereas the levels of activated mast cells and M2 macrophages (49),

which are correlated with a negative prognosis, were higher in

Cluster 1 (p < 0.001) (Figure 1F).
3.2 Construction and validation of the
LMRG-based prognostic signature for
ER+ BC patients

To further identify critical LMRGs associated with tumor

malignancy, we applied the log-rank test for the above candidate

LMRGs, and 25 genes with log-rank p value < 0.05 and HR > 1

were selected after filtering (Table S5). Using LASSO analysis with

TCGA data, we identified the nine most robust LMRGs (HIBCH,

OSBPL10, FIG4, OCRL, CPT1A, INPP5F, PTGES3, HSP90AA1, and

ALOX15) and used them to construct a prognostic signature

(Figures 2A–C). DNA methylation status is closely correlated with

gene expression and the prognosis of cancer patients (26). We thus

evaluated the association between promoter methylation levels and

mRNA levels of the above genes in BC. Negative correlations were

found for OSBPL10, FIG4, INPP5F, PTGES3 and HSP90AA1, while a

positive correlation was observed between ALOX15 promoter

methylation and mRNA level (Figure S3A). Furthermore, the impact

of single CpGmethylation of these nine genes on BC patient prognosis

was examined, and the results are listed in Table S6. We confirmed the

significant association between the methylation b values of specific sites
and the OS of BC patients (Figure S3B).

TCGA cohort patients were divided into high-risk and low-risk

groups according to the survival risk score (shown in Methods) with

the median score as the threshold. The different expression levels of

the nine genes are detailed in Figure 2D. The proportion of patients

who died was higher in the high-risk group than in the low-risk

group (Figure 2D). Moreover, patients who died during the follow-

up period had an increased risk score (Figure 2E). The prognostic

value of the signature in ER+ BC was validated by performing K-M

and time-dependent ROC analyses. The results showed that

patients with low risk had a much better OS rate (p < 0.0001)

(Figure 2F). The area under the curve (AUC) values for predicting

1-, 3-, 5-, and 10-year OS were 0.634, 0.663, 0.696, and 0.730,

respectively. The LMRG-based signature had a better predictive

value than any individual gene (Figure S4A).

We next performed stratification-based survival analysis of the

model in various clinical subgroups stratified by age, tumor size and

lymphatic metastasis. There were significant differences in OS between

the two risk groups in nearly all subgroups (Figure 2G). The risk scores

in different clinicopathological subgroups are also presented in Figure

S4B. A higher risk score was correlated with more severe clinical

parameters, including advanced N and AJCC stages.

To confirm the prognostic value of our LMRG-based signature

developed based on the training set, three independent cohorts

(METABRIC, GSE7390, and GSE1456) were used as validation
Frontiers in Immunology 06
cohorts. With the same risk score calculation formula and median

risk score, patients with ER+ BC in the validation cohorts were

segregated into low-risk and high-risk groups. In the survival

analysis, patients in the low-risk group showed longer OS than

those in the high-risk group in the METABRIC (p = 0.012),

GSE7390 (p = 0.029), and GSE1456 (p = 0.0022) cohorts, which

was consistent with the results for the training set (Figure S5).
3.3 Development and evaluation of
a lipid metabolism-related
clinicopathologic nomogram

For convenient clinical usage in early-stage BC patients, we

simplified the risk score into a dichotomous variable (low/high).

Then, we assessed this risk score and other clinicopathologic factors

in univariate and multivariate Cox regression analyses using the

training cohort (Figures 3A, B). Our results showed that age,

pathological parameters (T and N) and the risk score were

remarkably related to patient OS in the univariate Cox analysis

(all p < 0.01); age (HR = 2.298, 95% CI: 1.476–3.577, p < 0.001), T

stage (HR = 1.383, 95% CI: 1.068–1.789, p = 0.014) and the risk

score (HR = 3.211, 95% CI: 2.151–4.792, p < 0.001) remained

independent prognostic indicators of unfavorable OS. Based on

these results, we developed a prognostic nomogram that

incorporates the risk score and two other clinicopathologic factors

(age and T stage) for predicting individual OS at 1, 3, and 5 years

(Figure 3C), and calibration plots demonstrated the stable

performance of the nomogram (Figure 3D). Moreover, our

nomogram had better predictive accuracy than the AJCC staging

system (AUC at 5 years: 0.778 versus 0.663) (Figure 3E). In

summary, this nomogram based on the lipid metabolism-related

risk score is useful for the survival prediction of ER+ BC patients.
3.4 Analysis of biological pathways
and functions related to the LMRG-
based signature

Given that the prognostic value of the LMRG-based signature was

fully assessed, we attempted to explore the underlying mechanism.

First, we evaluated the correlations between the expression levels of all

the LMRGs and clinical parameters in various groups. Heatmap

analysis showed remarkably distinct profiles of LMRG expression

between the two groups (Figure 4A). In addition, most of the

patients (88.9%) previously categorized in Cluster 2 were categorized

into the low-risk group, and the majority of patients (62.1%) previously

categorized in Cluster 1 were categorized into the high-risk group

(Figure 4B). These results suggest that the signature based on the nine-

gene risk score reflects the overall lipid metabolism characteristics of

ER+ BC. We then performed differential expression analysis of the two

risk groups and identified 133 upregulated genes and 92 downregulated

genes in the high-risk group (Table S7). KEGG analysis revealed that

the DEGs were enriched in several signaling pathways related to drug

metabolism, immune factors, extracellular matrix interactions and

estrogen (Figure 4C). We also performed GSEA to identify
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significantly differentially enriched biological functions and signaling

pathways between the two groups from TCGA. Based on KEGG

pathway and GO biological process analyses, the cell cycle,

phospholipid metabolism, and unsaturated fatty acid biosynthesis

pathways were enriched in high-risk patients, and antigen processing

and presentation, immune response, and chemokine signaling

pathways were enriched in low-risk patients (Figures 4D, E). These

results suggest that the relationship of our established signature with
Frontiers in Immunology 07
immune activities, lipid biosynthesis and drug metabolism enable it to

predict the survival of ER+ BC patients.

3.5 Immune microenvironment landscapes
and immunotherapy response prediction

Considering the close correlation between the LMRG-based

signature and the immune response, we further explored the
B

C

D

E

F

G

A

FIGURE 2

Construction of a survival-associated LMRG-based signature for ER+ BC. (A, B) LASSO coefficient profiles and cross-validation via minimum criteria
to select significant prognostic LMRGs. (C) Forest plot of univariate Cox regression analysis results showing that the nine lipid metabolism genes
used for signature construction were related to poor prognosis. (D) Distributions of risk scores, survival status and gene expression in individual
patients from TCGA. As the risk score increases, the number of deaths and gene expression levels also increase. (E) The risk scores of patients who
died were higher than those of patients who lived. (F) K-M curve of OS in ER+ BC patients from the TCGA cohort classified based on the risk score.
(G) Forest plot showing survival differences between the high- and low-risk groups in subgroups stratified by age, tumor size and lymphatic
metastasis. The superior prognosis of the low-risk group was maintained in all subgroups. ***p < 0.001.
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difference in the risk score of samples between different immune

subtypes based on pantumor immunogenomic features (37). In

particular, the risk score for the C4 subtype (lymphocyte depletion)

was significantly higher than that for the other subtypes

(Figure 5A), and the C4 subtype has been reported to be

associated with a prominent macrophage signature and worse

prognosis (37). We next evaluated the infiltration levels of diverse

TIICs between the two risk groups to reveal differences in the
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immune microenvironment. According to our results, infiltrating

naïve B cells, resting and activated memory CD4+ T cells, and M2

macrophages were more abundant in tumors of the high-risk group

(p < 0.05). Furthermore, immune cells with antitumor function,

including plasma cells, CD8+ T cells, follicular helper T cells and

activated NK cells, were more abundant in the low-risk group (p <

0.05) (Figure 5B). Analysis was then performed to assess the

correlation between the abundance of TIICs and the LMRG-based
B

C

D E

A

FIGURE 3

A risk-stratification-based clinicopathologic nomogram for OS prediction of patients with ER+ BC. (A, B) Univariate and multivariate Cox analyses of
clinicopathologic factors and the risk score in ER+ BC patients in the TCGA cohort. Age, T stage and risk score were independent prognostic
indicators. (C) Development of a prognostic nomogram considering the risk score, age and T stage to predict 1-, 3-, and 5-year OS in ER+ BC
patients. (D) Calibration curve of the predicted and actual OS values, showing the stable performance of the nomogram. (E) ROC curves of
clinicopathologic factors, the risk score, and the nomogram in predicting 5-year OS. The AUC values of each factor are shown.
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risk score. The risk score was strongly negatively correlated with the

immune score calculated with the ESTIMATE algorithm, indicating

greater immune infiltration in tumors with lower risk scores

(Figure 5C). The immune infiltration profiles of the high- and

low-risk groups were similar in the METABRIC cohort (Figure

S6A). Inflammatory responses are tightly associated with immune

functions (50). To further reveal risk score-related inflammatory
Frontiers in Immunology 09
activities, 91 genes derived from six clusters were defined as

metagenes (STAT1, MHC-I, MHC-II, LCK, interferon, and HCK)

(Table S8) (32, 51, 52). Using the “GSVA” R package, the scores of

each sample based on the six metagene sets were calculated, with a

higher score indicating a higher degree of enrichment. Correlation

analysis revealed that the risk score was negatively correlated with

MHC-I and LCK but positively correlated with interferon
B
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FIGURE 4

Analyses of biological processes and pathways related to the LMRG-based signature. (A) Heatmap of the expression levels of all 1034 LMRGs
showing distinct expression patterns between the high- and low-risk groups from the TCGA cohort. (B) Correlations between the two clusters and
the two risk groups. The majority of patients in Cluster 2 were categorized into the low-risk group. (C) KEGG pathway analysis of the DEGs between
the two risk groups, revealing differentially activated pathways. (D, E) Representative KEGG pathways and GO biological processes enriched in the
high- and low-risk patients, as determined by GSEA.
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(Figure 5D), confirming that the low-risk group had higher antigen

presentation and T-cell signatures.

Next, we evaluated the relationship between individual genes

and the infiltration of various immune cell subpopulations.

Through CIBERSORT analysis, we found that most selected genes

were negatively correlated with the abundances of follicular helper T

cells, CD8+ T cells, plasma cells, activated NK cells, memory B cells
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and Treg cells but positively correlated with the abundances of

resting and activated memory CD4+ T cells, neutrophils,

eosinophils and M2 macrophages (Figure S6B), consistent with

the previously identified trends (Figure 5C). We also used the xCell

algorithm as an alternative method to assess immune infiltration

(Figure S7). Similarly, most of the nine genes were found to have

negative correlations with immune cell infiltration; the expression
B
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FIGURE 5

Immune microenvironment patterns and immune checkpoint profiles related to the LMRG-based signature in ER+ BC patients in the TCGA cohort.
(A) Correlation between the risk score and pantumor immune subtypes. The C4 subtype (lymphocyte depletion) displayed the highest risk score.
(B) Comparison of immune cell infiltration levels calculated according to CIBERSORT analysis between the two risk groups. (C) Correlation heatmap
showing the correlations between immune cell infiltration levels and the LMRG-based risk score. The risk score was negatively correlated with the
immune score estimated by the ESTIMATE algorithm. (D) Correlogram showing the correlations between the risk score and the six metagenes
(STAT1, MHC-I, MHC-II, LCK, interferon, and HCK), which reflect inflammatory responses. (E) The expression levels of most immune checkpoints
were higher in the low-risk group. *p < 0.05, **p < 0.01, ***p < 0.001.
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levels of OCRL and PTGES3 were also negatively correlated with

the immune score, indicating the close relationship between the

LMRGs and “cold tumors”.

Subsequently, we investigated the correlation of the nine gene-

based signature with immune checkpoints and its potential role in

predicting response to immunotherapy. The expression levels of

several immune checkpoints were compared between the two

groups in the training set, and the molecules that were

significantly differentially expressed between the groups are

shown in Figure 5E. Most of the analyzed immune checkpoint

genes, including CTLA-4, PDCD1 (PD-1), LAG3, IDO2 and

CD276, were highly expressed in the low-risk group (p < 0.05).

Similar patterns were also found for the METABRIC cohort

(Figures S6C, D). TMB is an emerging biomarker for predicting

response to immunotherapy (38). However, no significant

differences in TMB were found (Figure S8A). Collectively, these

results comprehensively reveal distinct immune features between

high- and low-risk BC, with patients bearing low-risk tumors being

more likely to benefit from immune checkpoint inhibitors.
3.6 Chemotherapy response prediction

Due to the enrichment of drug metabolism identified in the high-

risk group and the importance of chemotherapy in BC treatment, we

further investigated the association between our LMRG-based

signature and chemotherapy efficacy (41). Three chemotherapeutic

regimens (docetaxel, doxorubicin and cisplatin) commonly used in

clinical practice were included in the assessment. Our results showed

that the estimated IC50 values of all three drugs were significantly

higher in high-risk tumors than in low-risk tumors (p < 0.001),

suggesting that ER+ BC patients with higher risk scores are more

resistant to cytotoxic chemotherapy (Figures 6A–C). To further

validate these drug sensitivity results in BC cell lines, we assessed the

correlations between the expression levels of each gene in each BC cell

line and the IC50 values of chemotherapeutic drugs using the CCLE

database. The results showed that most genes were associated with cell

line resistance to docetaxel, doxorubicin and cisplatin, though there

were no data for two genes (HIBCH and INPP5F) in the CCLE

database (Figure S8B). Furthermore, as demonstrated in two

independent cohorts, ER+ BC patients in the high-risk group had a

much lower pathological complete response (pCR) rate than those in

the low-risk group after receiving neoadjuvant chemotherapy (6.7%

versus 13.4% in GSE25066; 15.0% versus 40.0% in GSE4779)

(Figure 6D). ER+ BC patients who received chemotherapy in the

high-risk group were found to have a worse prognosis in both the

TCGA andMETABRIC cohorts (p < 0.05) (Figures 6E, F). Notably, the

LMRG-based risk score was positively associated with the stemness

index, with a higher stemness index indicating a more aggressive

phenotype (Figure S8C), whereas somatic mutation analysis showed no

detectable differences in mutation rate between the two groups (83.56%

and 85.29%) (Figures S8D, E). These results indicate that our signature

might be able to predict chemotherapy response and the efficacy of

neoadjuvant chemotherapy.

Next, the DEGs between the high- and low-risk groups were

subjected to CMap analysis to identify candidate small molecule
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compounds for the treatment of high-risk tumors (Figure 6G). The

top 15 drugs with high negative correlations in the ER+ BC cell line

MCF7 were obtained, including the microtubule stabilizing agent

epothilone A, the phosphodiesterase inhibitor zaprinast, the NF-kB

pathway inhibitor parthenolide and the adenosine deaminase

inhibitor EHNA. Notably, some cyclin-dependent kinase (CDK)

inhibitors and estrogen receptor agonists were also near the top of

the list. These results may provide a reference for choosing

antitumor therapies for high-risk BC patients.
3.7 IHC analysis of ALOX15 expression in
ER+ BC primary tumors

To further explore the value of individual DEGs between the

high- and low-risk groups, upregulated genes in the high-risk group

were ranked according to fold change and false discovery rate

(FDR) (Figure S9A). We present the top 10 upregulated genes

ordered by fold change and FDR in Table S7. By taking the

intersection of these two gene lists, ALOX15, which was also

included in our lipid metabolism-related signature, was obtained.

As expected, high ALOX15 expression was associated with poor OS

in ER+ BC patients (Figure S9B). As there is a paucity of research on

the biological features of ALOX15 in BC, we further assessed

ALOX15 expression in ER+ BC through histological analysis in

our cohort.

To determine the expression of ALOX15, IHC analysis was

performed on tissue microarray slides comprising 149 individual

tumor tissues from ER+ BC patients with clinicopathological

information. ALOX15 expression was heterogeneous and mainly

located in the cytoplasm of cancer cells (Figure S9C). The patients

were classified into high- and low-expression groups based on the

median ALOX15 expression level. The results showed that high

expression of ALOX15 was significantly positively associated with

larger tumor size (p = 0.013) and vascular invasion (p = 0.043) and

correlated with advanced tumor stage with borderline significance

(p = 0.060) (Table 1), suggesting that ALOX15 is related to the

malignant behavior of BC.

In addition, we evaluated the prognostic value of ALOX15 in

our cohort. During a median follow-up time of 64 months, only 14

tumor relapse events and 2 death events occurred, and this was

mainly due to the early stage of the patients (84.6% with stage I/II

BC and 65.1% with negative lymph nodes, Table 1). However,

71.4% (10/14) of recurrence events occurred in patients with high

ALOX15 expression in our cohort, and we validated the close

association between ALOX15 expression and unfavorable

pathological parameters (higher T stage and tumor stage) in the

METABRIC dataset (Figure S9D).
4 Discussion

The role of oxidative stress in tumorigenesis, metastasis and

cancer immunity has been well documented (7). In recent years,

lipid metabolic reprogramming, which plays an essential role

in tumor growth and progression, drug resistance, TME
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1199465
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shen et al. 10.3389/fimmu.2023.1199465
reprogramming and immune dysregulation, has gained increasing

attention in the field of cancer research (6, 53). Because it leads to

the production of ROS and mediates ferroptosis, lipid metabolism is

critical for the regulation of oxidative stress (54). Although evidence

indicates that there is aberrant lipid metabolism in BC (11), studies

exploring the metabolic heterogeneity among specific BC subtypes

are still lacking. Here, we established a lipid metabolism-related
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signature for ER+ BC with potential value in predicting survival,

immune infiltration and therapy response.

First, we constructed an optimal and robust nine-LMRG

prognostic signature. Most of the included genes have been

reported to exert protumor functions and are associated with

prognosis in a variety of malignant diseases, including BC (55–

59). For example, CPT1A, the rate-limiting enzyme during FAO,
B
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FIGURE 6

Association between the risk score and chemotherapy response and drug screening for high-risk tumors. The estimated IC50 values of docetaxel
(A), doxorubicin (B), and cisplatin (C) in the low- and high-risk groups. High-risk tumors were more likely to be resistant to chemotherapy. (D) The
pCR rate after receipt of neoadjuvant chemotherapy in the two risk groups from the GSE25066 and GSE4779 cohorts. ER+ BC patients with low risk
were more likely to achieve pCR. (E, F) K-M survival curves of ER+ BC patients who received chemotherapy stratified by risk score in the TCGA and
METABRIC cohorts. (G) CMap analysis of high-risk versus low-risk patients. The DEGs between the two risk groups were uploaded into the CMap
database to predict potential drug targets. The top 15 drugs (with negative correlations) for treating high-risk tumors are listed.
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has been found to promote cell proliferation and survival in luminal

BC (60, 61). Serum CPT1A levels are also associated with the tumor

burden of BC (62). HSP90AA1, one of the multifunctional HSP90

isoforms that plays a role in folding or stabilizing proteins such as

cell cycle regulatory proteins and steroid hormone receptors, is

associated with the prognosis of patients with ER+ BC and immune

infiltration in the BCmicroenvironment (63, 64). In addition, Wang

et al. suggested that BC cells express PTGES to generate a local

immunosuppressive environment through myeloid-derived

suppressor cell (MDSC) recruitment, which impairs the cytotoxic

function of CD8+ T cells (65). Some of the included genes (such as

FIG4, OCRL and INPP5F) belong to the group of phosphoinositide

phosphatases, the members of which participate in a variety of

cellular biological processes as signaling molecules (66). Among

them, INPP5F has been recently demonstrated to be an oncogene

that activates the ASPH-mediated Notch-c-MYC/cyclin E1

pathway in hepatocellular carcinoma (57). As a crucial enzyme of
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valine catabolism, HIBCH was reported to promote oxidative

phosphorylation and tumor growth in colorectal cancer (55).

ALOX15 expression in BC metastatic lymph nodes has been

found to inversely correlate with metastasis-free survival (67), but

its biological and clinical significance in primary lesions of BC is still

unknown. In the present study, the expression of ALOX15 in

primary lesions was found to be associated with malignant

pathological features of ER+ BC. In addition, considering the

limited utility for prognosis prediction that can be derived from

the expression of a single gene (Figure S4A), we divided patients

into high- and low-risk groups based on the median risk score and

treated the risk score as a dichotomous variable for nomogram

development. We believe this predictive model has greatly superior

applicability across patients and practicability and will help identify

high-risk patients with ER-positive expression.

The TME is strongly influenced by local lipid metabolism (68).

Here, we revealed that tumor immunity differed between the high-

and low-risk groups defined based on the LMRG signature.

Although ER+ BC is generally considered a “cold tumor”, recent

genomic, proteomic and single-cell studies have revealed

heterogeneity and the existence of an activated immune

phenotype in luminal BC with enrichment of TIICs (14, 52, 69).

In our findings, low-risk tumors contained significant infiltration of

immune cells, including CD8+ T cells and activated NK cells, as well

as high MHC-I expression. However, high-risk tumors showed an

“immune-desert” phenotype, including low lymphocyte infiltration

and a high abundance of M2 macrophages. Accumulated evidence

suggests that several immune cell subpopulations exhibit an

immunosuppressive phenotype to shift metabolic patterns toward

lipid metabolism, such as FAO (70, 71). Multiple lipid metabolism

modulators have antitumor and immunomodulatory capacities

(72). For instance, inhibition of FAO by etomoxir, a specific

inhibitor of CPT1A, blocks the immune-suppressive abilities of

tumor-infiltrating MDSCs, resulting in T-cell-dependent tumor

growth restriction (73). In melanoma, inhibition of lipid synthesis

and metabolic signaling by targeting SREBPs in Tregs could

effectively activate antitumor immune responses without causing

autoimmune toxicity (74). Therefore, our results provide potential

targets to reverse aberrant lipid metabolism and improve

therapeutic efficacy.

Finally, abnormal lipid metabolism is associated with reduced

oxidative and endoplasmic reticulum stress in tumor cells and

counteraction of genotoxicity or maintenance of drug-resistant

stem cells (75). For instance, STAT3, a key regulator of lipid

metabolism, promotes BC cell stemness and chemoresistance via

the STAT3-CPT1B-FAO pathway (76). These results are consistent

with our results, with high-risk patients predicted to be more

resistant to docetaxel, doxorubicin and cisplatin. In addition,

residual cancer cells surviving after neoadjuvant treatment have

been observed to have elevated and dysregulated lipid metabolism

(77), in agreement with our finding that the low-risk group had a

much higher pCR rate. Recently, the ISPY-2 trial revealed that the

combination of chemotherapy and pembrolizumab yielded a

twofold increase in the pCR rate compared with chemotherapy

alone in the ER+ subgroup (28% versus 14%) (78), indicating that
TABLE 1 Clinical and pathological characteristics of the ALOX15high and
ALOX15low ER+ groups in our cohort.

Variables ALOX15high ALOX15low p

Number of patients 70 (47.0%) 79 (53.0%)

Age at diagnosis (years) 55.28 ± 10.82 55.33 ± 10.72 0.964

HER2 status 0.989

Positive 15 (21.4%) 17 (21.5%)

Negative 55 (78.6%) 62 (78.5%)

T stage 0.013

I 38 (54.3%) 58 (73.4%)

II 28 (40.0%) 21 (26.6%)

III 4 (5.7%) 0 (0.0%)

N stage 0.219

N0 42 (60.0%) 55 (69.6%)

N1–N3 28 (40.0%) 24 (30.4%)

Stage 0.060

I 28 (40.0%) 47 (59.5%)

II 29 (41.4%) 22 (27.8%)

III 13 (18.6%) 10 (12.7%)

Ki-67 0.20 0.19 0.653

Histological grade* 0.382

G1 3 (4.8%) 4 (5.8%)

G2 52 (82.5%) 61 (88.4%)

G3 8 (12.7%) 4 (5.8%)

Vascular invasion* 0.043

Yes 23 (36.5%) 15 (20.8%)

No 40 (63.5%) 57 (79.2%)
* Some patients were not evaluated.
The bold values mean that they are less than 0.05.
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the combination of chemotherapy and immune checkpoint

inhibitors produces a synergistic antitumor effect in ER+ BC.

Based on our study, patients in the low-risk group may benefit

more from chemotherapy, immunotherapy, or their combination,

indicating the predictive value of our risk model in the neoadjuvant

treatment setting. Moreover, as high-risk tumors had enrichment of

pathways related to fatty acid biosynthesis, the cell cycle and

estrogen signaling, a synergistic effect might be anticipated by

combining regimens targeting lipid metabolism with CDK

inhibitor-based endocrine therapy.

Overall, we employed diverse bioinformatic approaches to

unveil the heterogeneity of lipid metabolism in ER+ BC, primarily

relying on transcriptome data. There are already numerous

standardized pipelines available as references for RNA-seq data

analysis (79, 80). Except for “Consensus Clustering” we utilized,

“non-negative matrix factorization (NMF)” is also a robust

approach for uncovering transcriptional clustering (81, 82).

Besides evaluating tumor-infiltrating immune cells through

single-cell sequencing, several quantitative analysis methods based

on bulk sequencing data have been extensively applied. These

methods primarily involve the utilization of single-sample GSEA

with marker genes, such as xCell (35) and ImmuCellAI (83), as well

as deconvolution-based methods like CIBERSORT (34), TIMER2.0

(84) and EPIC (85).

Several limitations of this study need to be acknowledged. First,

although we used many training and validation datasets to verify the

predictive potential of our signature, all included cohorts were

retrospective, and the findings should be validated by biomarker

analysis in prospective studies with large sample sizes. Second,

signature genes were selected based on bioinformatic approaches,

and understanding the underlying mechanism, especially how these

genes influence the lipid metabolism of cancer cells or immune and

stromal cells, requires future in vitro and in vivo studies. Third, our

follow-up (median 64 months) was not long enough to collect

enough recurrence or death events for prognostic analysis.

In conclusion, we constructed a survival-associated LMRG-

based signature for ER+ BC for the first time, and we revealed

underlying relationships between our signature and tumor

immunity and therapeutic sensitivity. Future prospective clinical

trials with large sample sizes are required to confirm the application

value of the LMRG-based signature.
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W, et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun (2013) 4:2612. doi: 10.1038/ncomms3612

37. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The
immune landscape of cancer. Immunity (2018) 48:812–30.e14. doi: 10.1016/
j.immuni.2018.03.023

38. Litchfield K, Reading JL, Puttick C, Thakkar K, Abbosh C, Bentham R, et al.
Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint
inhibition. Cell (2021) 184:596–614.e14. doi: 10.1016/j.cell.2021.01.002

39. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al.
Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker
discovery in cancer cells. Nucleic Acids Res (2013) 41:D955–61. doi: 10.1093/nar/
gks1111

40. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al.
The cancer cell line encyclopedia enables predictive modelling of anticancer drug
sensitivity. Nature (2012) 483:603–7. doi: 10.1038/nature11003

41. Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of
clinical chemotherapeutic response from tumor gene expression levels. PloS One (2014)
9:e107468. doi: 10.1371/journal.pone.0107468

42. Rebucci M, Michiels C. Molecular aspects of cancer cell resistance to
chemotherapy. Biochem Pharmacol (2013) 85:1219–26. doi: 10.1016/j.bcp.2013.02.017

43. Kim C, Gao R, Sei E, Brandt R, Hartman J, Hatschek T, et al. Chemoresistance
evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell
(2018) 173:879–93.e13. doi: 10.1016/j.cell.2018.03.041

44. Sansregret L, Vanhaesebroeck B, Swanton C. Determinants and clinical
implications of chromosomal instability in cancer. Nat Rev Clin Oncol (2018)
15:139–50. doi: 10.1038/nrclinonc.2017.198

45. Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN,
et al. Machine learning identifies stemness features associated with oncogenic
dedifferentiation. Cell (2018) 173:338–54.e15. doi: 10.1016/j.cell.2018.03.034

46. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and
comprehensive analysis of somatic variants in cancer. Genome Res (2018) 28:1747–56.
doi: 10.1101/gr.239244.118

47. Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, et al. A
next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell
(2017) 171:1437–52.e17. doi: 10.1016/j.cell.2017.10.049

48. Galon J, Bruni D. Tumor immunology and tumor evolution: intertwined
histories. Immunity (2020) 52:55–81. doi: 10.1016/j.immuni.2019.12.018

49. Majorini MT, Colombo MP, Lecis D. Few, but efficient: the role of mast cells in
breast cancer and other solid tumors. Cancer Res (2022) 82:1439–47. doi: 10.1158/
0008-5472.CAN-21-3424

50. Kiely M, Lord B, Ambs S. Immune response and inflammation in cancer health
disparities. Trends Cancer (2022) 8:316–27. doi: 10.1016/j.trecan.2021.11.010

51. Liu Q, Qi Y, Zhai J, Kong X, Wang X, Wang Z, et al. Molecular and clinical
characterization of LAG3 in breast cancer through 2994 samples. Front Immunol
(2021) 12:599207. doi: 10.3389/fimmu.2021.599207

52. Zhu B, Tse LA, Wang D, Koka H, Zhang T, Abubakar M, et al. Immune gene
expression profiling reveals heterogeneity in luminal breast tumors. Breast Cancer Res
BCR (2019) 21:147. doi: 10.1186/s13058-019-1218-9

53. Zheng M, Zhang W, Chen X, Guo H, Wu H, Xu Y, et al. The impact of lipids on
the cancer-immunity cycle and strategies for modulating lipid metabolism to improve
cancer immunotherapy. Acta Pharm Sinica. B (2023) 13:1488–97.10.1016/
j.apsb.2022.10.027

54. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological
signalling agents. Nat Rev Mol Cell Biol (2020) 21:363–83. doi: 10.1038/s41580-020-
0230-3
frontiersin.org

https://doi.org/10.1001/jamaoncol.2016.1897
https://doi.org/10.1001/jamaoncol.2016.1897
https://doi.org/10.1001/jama.2018.19323
https://doi.org/10.1016/j.ccell.2020.03.009
https://doi.org/10.1016/j.addr.2020.07.013
https://doi.org/10.1016/j.devcel.2021.04.013
https://doi.org/10.1016/j.ccell.2020.06.001
https://doi.org/10.1016/j.cmet.2020.10.011
https://doi.org/10.1002/adbi.202100396
https://doi.org/10.18632/oncotarget.15494
https://doi.org/10.1016/j.trsl.2017.07.004
https://doi.org/10.1007/s11684-020-0793-6
https://doi.org/10.1186/s12964-020-0530-4
https://doi.org/10.1186/s12964-020-0530-4
https://doi.org/10.1038/s41586-019-1876-x
https://doi.org/10.3390/cancers12092365
https://doi.org/10.1038/s41590-019-0589-5
https://doi.org/10.1016/j.immuni.2021.05.003
https://doi.org/10.1016/j.cmet.2021.02.015
https://doi.org/10.1016/j.cmet.2018.06.002
https://doi.org/10.1016/j.cmet.2018.06.002
https://doi.org/10.1038/ni.2956
https://doi.org/10.1016/j.trecan.2020.10.004
https://doi.org/10.1200/JCO.2011.38.8595
https://doi.org/10.1097/SLA.0000000000000924
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1016/j.tig.2021.05.002
https://doi.org/10.1093/nar/gkz830
https://doi.org/10.2217/epi-2017-0118
https://doi.org/10.21037/atm.2017.04.01
https://doi.org/10.1001/jama.2017.12126
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1186/bcr2234
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1016/j.cell.2021.01.002
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1038/nature11003
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1016/j.bcp.2013.02.017
https://doi.org/10.1016/j.cell.2018.03.041
https://doi.org/10.1038/nrclinonc.2017.198
https://doi.org/10.1016/j.cell.2018.03.034
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1016/j.cell.2017.10.049
https://doi.org/10.1016/j.immuni.2019.12.018
https://doi.org/10.1158/0008-5472.CAN-21-3424
https://doi.org/10.1158/0008-5472.CAN-21-3424
https://doi.org/10.1016/j.trecan.2021.11.010
https://doi.org/10.3389/fimmu.2021.599207
https://doi.org/10.1186/s13058-019-1218-9
https://doi.org/10.1016/j.apsb.2022.10.027
https://doi.org/10.1016/j.apsb.2022.10.027
https://doi.org/10.1038/s41580-020-0230-3
https://doi.org/10.1038/s41580-020-0230-3
https://doi.org/10.3389/fimmu.2023.1199465
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shen et al. 10.3389/fimmu.2023.1199465
55. Shan Y, Gao Y, Jin W, Fan M, Wang Y, Gu Y, et al. Targeting HIBCH to
reprogram valine metabolism for the treatment of colorectal cancer. Cell Death Dis
(2019) 10:618. doi: 10.1038/s41419-019-1832-6

56. Qu Q, Zeng F, Liu X, Wang QJ, Deng F. Fatty acid oxidation and carnitine
palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis (2016) 7:
e2226. doi: 10.1038/cddis.2016.132

57. Zhou Q, Lin J, Yan Y, Meng S, Liao H, Chen R, et al. INPP5F translocates into
cytoplasm and interacts with ASPH to promote tumor growth in hepatocellular
carcinoma. J Exp Clin Cancer Res CR (2022) 41:13. doi: 10.1186/s13046-021-02216-x

58. Xiao X, Wang W, Li Y, Yang D, Li X, Shen C, et al. HSP90AA1-mediated
autophagy promotes drug resistance in osteosarcoma. J Exp Clin Cancer Res CR (2018)
37:201. doi: 10.1186/s13046-018-0880-6

59. Simpson NE, Lambert WM, Watkins R, Giashuddin S, Huang SJ, Oxelmark E,
et al. High levels of Hsp90 cochaperone p23 promote tumor progression and poor
prognosis in breast cancer by increasing lymph node metastases and drug resistance.
Cancer Res (2010) 70:8446–56. doi: 10.1158/0008-5472.CAN-10-1590

60. Jariwala N, Mehta GA, Bhatt V, Hussein S, Parker KA, Yunus N, et al. CPT1A
and fatty acid b-oxidation are essential for tumor cell growth and survival in hormone
receptor-positive breast cancer. NAR Cancer (2021) 3:zcab035. doi: 10.1093/narcan/
zcab035

61. Yan C, Gao R, Gao C, Hong K, Cheng M, Liu X, et al. FDXR drives primary and
endocrine-resistant tumor cell growth in ER+ breast cancer via CPT1A-mediated fatty
acid oxidation. Front Oncol (2023) 13:1105117. doi: 10.3389/fonc.2023.1105117

62. Tan Z, Zou Y, Zhu M, Luo Z, Wu T, Zheng C, et al. Carnitine palmitoyl
transferase 1A is a novel diagnostic and predictive biomarker for breast cancer. BMC
Cancer (2021) 21:409. doi: 10.1186/s12885-021-08134-7

63. Cheng Q, Chang JT, Geradts J, Neckers LM, Haystead T, Spector NL, et al.
Amplification and high-level expression of heat shock protein 90 marks aggressive
phenotypes of human epidermal growth factor receptor 2 negative breast cancer. Breast
Cancer Res BCR (2012) 14:R62. doi: 10.1186/bcr3168

64. Lin T, Qiu Y, Peng W, Peng L. Heat shock protein 90 family isoforms as
prognostic biomarkers and their correlations with immune infiltration in breast cancer.
BioMed Res Int (2020) 2020:2148253. doi: 10.1155/2020/2148253

65. Wang T, Jing B, Xu D, Liao Y, Song H, Sun B, et al. PTGES/PGE(2) signaling
links immunosuppression and lung metastasis in Gprc5a-knockout mouse model.
Oncogene (2020) 39:3179–94. doi: 10.1038/s41388-020-1207-6

66. Liu Y, Bankaitis VA. Phosphoinositide phosphatases in cell biology and disease.
Prog Lipid Res (2010) 49:201–17. doi: 10.1016/j.plipres.2009.12.001

67. Kerjaschki D, Bago-Horvath Z, Rudas M, Sexl V, Schneckenleithner C, Wolbank
S, et al. Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and
propagates lymph node metastasis of human mammary carcinoma xenografts in
mouse. J Clin Invest (2011) 121:2000–12. doi: 10.1172/JCI44751

68. Yang K, Wang X, Song C, He Z, Wang R, Xu Y, et al. The role of lipid metabolic
reprogramming in tumor microenvironment. Theranostics (2023) 13:1774–808. doi:
10.7150/thno.82920

69. Shimada K, Cui YX, Goldberg JS, Pastorello R, Davis J, Vallius T, et al. Abstract
P4-04-06: integrative analysis of single-cell transcriptomic and spatial profiles
characterized distinct tumor microenvironment phenotypes in hormone receptor
positive (HR+) breast cancer. Cancer Res (2022) 82:P4–04-06-P4-04-06. doi:
10.1158/1538-7445.SABCS21-P4-04-06

70. Leone RD, Powell JD. Metabolism of immune cells in cancer. Nat Rev Cancer
(2020) 20:516–31. doi: 10.1038/s41568-020-0273-y
Frontiers in Immunology 16
71. Lian X, Yang K, Li R, Li M, Zuo J, Zheng B, et al. Immunometabolic rewiring in
tumorigenesis and anti-tumor immunotherapy.Mol Cancer (2022) 21:27. doi: 10.1186/
s12943-021-01486-5

72. Zhang M, Wei T, Zhang X, Guo D. Targeting lipid metabolism reprogramming
of immunocytes in response to the tumor microenvironment stressor: a potential
approach for tumor therapy. Front Immunol (2022) 13:937406. doi: 10.3389/
fimmu.2022.937406

73. Hossain F, Al-Khami AA, Wyczechowska D, Hernandez C, Zheng L, Reiss K,
et al. Inhibition of fatty acid oxidation modulates immunosuppressive functions of
myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res
(2015) 3:1236–47. doi: 10.1158/2326-6066.CIR-15-0036

74. Lim SA, Wei J, Nguyen TM, Shi H, Su W, Palacios G, et al. Lipid signalling
enforces functional specialization of t(reg) cells in tumours. Nature (2021) 591:306–11.
doi: 10.1038/s41586-021-03235-6
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