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Background: Anoikis resistance is a prerequisite for the successful development

of osteosarcoma (OS) metastases, whether the expression of anoikis-related

genes (ARGs) correlates with OS prognosis remains unclear. This study aimed to

investigate the feasibility of using ARGs as prognostic tools for the risk

stratification of OS.

Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus

(GEO) databases provided transcriptome information relevant to OS. The

GeneCards database was used to identify ARGs. Differentially expressed ARGs

(DEARGs) were identified by overlapping ARGs with common differentially

expressed genes (DEGs) between OS and normal samples from the GSE16088,

GSE19276, and GSE99671 datasets. Anoikis-related clusters of patients were

obtained by consistent clustering, and gene set variation analysis (GSVA) of the

different clusters was completed. Next, a risk model was created using Cox

regression analyses. Risk scores and clinical features were assessed for

independent prognostic values, and a nomogram model was constructed.

Subsequently, a functional enrichment analysis of the high- and low-risk

groups was performed. In addition, the immunological characteristics of OS

samples were compared between the high- and low-risk groups, and their

sensitivity to therapeutic agents was explored.

Results: Seven DEARGs between OS and normal samples were obtained by

intersecting 501 ARGs with 68 common DEGs. BNIP3 and CXCL12 were

significantly differentially expressed between both clusters (P<0.05) and were

identified as prognosis-related genes. The risk model showed that the risk score

and tumormetastasis were independent prognostic factors of patients with OS. A

nomogram combining risk score and tumor metastasis effectively predicted the

prognosis. In addition, patients in the high-risk group had low immune scores

and high tumor purity. The levels of immune cell infiltration, expression of human

leukocyte antigen (HLA) genes, immune response gene sets, and immune
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checkpoints were lower in the high-risk group than those in the low-risk group.

The low-risk group was sensitive to the immune checkpoint PD-1 inhibitor, and

the high-risk group exhibited lower inhibitory concentration values by 50% for

24 drugs, including AG.014699, AMG.706, and AZD6482.

Conclusion: The prognostic stratification framework of patients with OS based

on ARGs, such as BNIP3 and CXCL12, may lead to more efficient clinical

management.
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1 Introduction

Osteosarcoma (OS) is the most common primary bone

malignancy that seriously threatens the health of children and

adolescence worldwide (1). With the widespread use of multi-

agent chemotherapy in the 1980s, the 5-year survival rate of

patients with OS without metastasis has substantially increased

from 20% to 65% (2, 3). However, the prognosis of patients with

recurrence and metastasis remains dismal, with only a 12% 4-

month event-free survival rate in single-arm phase II clinical trials

(4). Owing to the heterogeneity of the tumor itself and the complex

mechanism of metastasis, metastatic cells vary phenotypically from

primary tumor cells and may more easily escape immune

surveillance and survive chemotherapy (5, 6). This may explain

why patients with the same clinical or pathological conditions, who

receive the same treatment regimen, may have different clinical

outcomes. Additionally, the lack of reliable markers and therapeutic

targets makes it difficult to identify patients who are at a high risk of

metastasis and may maximally benefit from specific therapies.

Therefore, for a considerable period, the prediction and risk

stratification of distant metastases before treatment remain the

cornerstone for therapeutic decisions.

Anoikis is a type of programmed cell death caused by cell

detachment from the extracellular matrix (ECM) (7). As a protective

mechanism, anoikis can prevent the ectopic growth of somatic cells at

inappropriate body sites. However, tumor cells with malignant

potential usually show resistance to anoikis, allowing them to escape

from the primary tumor site and colonize secondary sites (8). Specific

factors, such as the integrin family, growth factor family, and metabolic

intermediates have been reported as drivers of anoikis resistance, thus

enhancing tumor recurrence and metastasis (7, 9). With the rapid

development of omics technology and bioinformatic approaches,

accumulating evidence suggests that tumor metastasis is tightly

regulated at multiple levels by anoikis-related genes (ARGs). These

genes remodel tumor cells by reprogramming lipid and amino acid

metabolism to promote anoikis resistance. For example, the GDH1-

mediated metabolic reprogramming of glutaminolysis mediates lung

cancer metastasis (10). Upon TGF-b2 stimulation, PKC-zeta-mediated
02
translocation of CD36 facilitates the uptake of fatty acids by tumor cells

and supports their invasiveness (11). Advances in research on ARGs

have provided new opportunities to clarify the mechanisms of tumor

metastasis. However, to the best of our knowledge, few studies are

available on the role of ARGs in OS metastasis. However, whether

abnormal expression of ARGs is associated with poor OS prognosis has

not been fully explored (5). The identification and characterization of

ARGs in OS may provide new biomarkers and therapeutic targets

for diseases.

Considering the potential correlations among ARGs, OS

metastasis, and clinical outcomes, this study focused on the

identification of ARGs that may influence the prognosis of OS.

Following prognosis-associated clinical parameter screening, a

prognostic risk model was established, and its ability to identify

high-risk populations with OS was evaluated. Finally, we explored

the specific immunological features of the high- and low-risk

patients. The results of this study provide valuable references for

clinicians to stratify at-risk patients with OS, which may lead to

more efficient clinical management.
2 Materials and methods

2.1 Data source

A TARGET-OS dataset containing transcriptomic data of 85 OS

samples with survival information was obtained from The Cancer

Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/).

The GSE16088, GSE99671, GSE19276, and GSE16091

datasets were acquired from the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The

GSE16088 dataset contained 14 OS and 6 normal samples. The

GSE99671 dataset contained 18 OS and 18 normal samples.

The GSE19276 dataset contained 23 OS and 5 normal samples.

The GSE16091 dataset contained 34 OS samples. In addition, 501

ARGs were identified and screened from the GeneCards database

(https://www.genecards.org), and the screening conditions were a

relevance score >0.4.
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2.2 Identification of differentially expressed
ARGs among OS and normal samples

Using the limma R package (Version 3.50.1), differentially

expressed genes (DEGs) in samples from the OS and normal

sample groups were obtained from the GSE16088 and GSE19276

datasets with the criteria of |logFC| > 1 and adj.P.Value < 0.05. In

the GSE99671 dataset, DEGs among the OS and normal sample

groups were screened using the DESeq2 R package (Version 1.34.0),

and the identification thresholds were |logFC| > 1 and adj.P.Value <

0.05. The upregulated DEGs from the GSE16088, GSE19276, and

GSE99671 datasets were crossed to obtain common upregulated

DEGs. Similarly, common down-regulated DEGs in the above three

datasets were obtained. Common upregulated and downregulated

DEGs were combined to obtain DEGs between OS and normal

samples. The combined DEGs were intersected with ARGs to

obtain DEARGs.
2.3 Identification of anoikis-related clusters
in patients with OS

Consistent clustering analysis was performed on samples from

the TARGET-OS dataset based on DEARGs using the R package

ConsensusClusterPlus (version 1.58.0) (12). The consistency

clustering effect was assessed using principal component analysis

(PCA). Next, the clinical characteristics of the different clusters of

patients with OS were analyzed using the Chi-square test. In

addition, differences in functional enrichment between different

clusters were compared using the gene set variation analysis

(GSVA) R (version 1.42.0) (13).
2.4 Risk model of patients with OS

Univariate Cox analysis of DEARGs in the TARGET-OS dataset

was used to identify prognosis-related genes of patients with OS.

Prognosis-related genes were tested for the proportional hazards

(PH) hypothesis, and a multifactorial Cox model was constructed

(14). Based on the median risk score, the patients with OS were

classified into high- and low-risk groups. Kaplan-Meier (K-M)

survival curves were used to compare the survival probability of

patients with OS between the low- and high-expression groups

based on the median expression value of each prognostic-related

gene (15).

In the TARGET-OS dataset, differences in survival between

patients in the two risk groups were compared using K-M survival

curves. The receiver operating characteristic (ROC) curve of the risk

score was plotted using the survivalROC R package (Version 3.2-

13) (16). In addition, differences in the clinical traits of patients with

OS among the risk groups were explored using the TARGET-OS

dataset, and the association between the clinical characteristics and

risk scores of patients with OS was assessed.
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2.5 Nomogram model and GSVA between
the high- and low-risk groups

In the TARGET-OS dataset, the independent prognostic value

of clinical characteristics and risk scores was explored using

univariate and multifactorial Cox analyses. Then, a nomogram

model was obtained by combining factors with independent

prognostic values, and the reliability of the nomogram model was

assessed using decision curve analysis (DCA), ROC curves, and

calibration curves (16). The GSVA was performed on samples from

both risk groups.
2.6 Immune infiltration landscape

In the TARGET-OS dataset, the estimate R package (version

1.0.13) was used to compare stromal scores, immune scores,

ESTIMATE scores, and tumor purity in samples from the high-

and low-risk groups. The infiltration level of 30 tumor

microenvironment (TME) cells in samples from both groups was

assessed using single-sample gene set enrichment analysis (ssGSEA)

(17). Correlations between differential immune cells and risk scores

were calculated using Spearman analysis. In addition, the survival

probability of patients with OS in the two groups of each TME cell

type, according to the median ssGSEA score, was evaluated using K-

M survival analysis. TME cells with different infiltrations between

the two groups, TME cells that were related to the survivability of

patients with OS, and TME cells related to the risk score were

intersected to obtain important TME cells for the risk scores of

patients with OS, as described above.
2.7 Immune microenvironment

First, immune-related genes were acquired from the ImmPort

database (https://www.immport.org), and their expression in samples

from the high- and low-risk groups was assessed using the TARGET-

OS dataset. Correlations between prognostic- and immune-related

genes were assessed using Pearson correlation analysis. Differences in

the expression of human leukocyte antigen (HLA) genes between

samples from both groups were compared, and correlations between

prognostic-related genes and HLA genes were assessed. In addition,

differences in the expression of immune checkpoints between both

groups were evaluated, and the correlations between immune

checkpoints and risk scores were further explored.
2.8 Sensitivity of patients with OS to
therapeutic drugs

Treatment sensitivity to PD-1 and CTLA4 inhibitors was predicted

in patients with OS from high- and low-risk groups using the SubMap

algorithm in the TARGET-OS dataset (18). Differences in the 50%
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inhibitory concentration (IC50) of 138 drugs between both groups

were compared using the pRRophetic algorithm (19).
3 Results

3.1 Screening for DEARGs among OS and
normal samples

Through differential analysis, 5345 DEGs among OS and

normal samples were obtained from the GSE16088 dataset,

comprising 2905 up-regulated genes (URGs) and 2440 down-

regulated genes (DRGs). A total of 902 DEGs between OS and

normal samples were obtained from the GSE99671 dataset,

comprising 265 URGs and 637 DRGs. A total of 1248 DEGs

between OS and normal samples were screened in the GSE19276

dataset, comprising 501 URGs and 747 DRGs (Figure 1A).

Genes screened from the three datasets with upregulated

expression were crossed to acquire 11 commonly upregulated

DEGs (Figure 1B). Similarly, genes that were downregulated in

the three datasets were crossed to acquire 57 common

downregulated DEGs (Figure 1C). Combining the common URGs

and DRGs yielded 68 DEGs between the OS and normal samples.

Next, 68 DEGs between OS and normal samples were intersected

with 501 ARGs to obtain seven DEARGs (including BNIP3, CDKN2A,

CEACAM1, CXCL12, LTF, PHLDA2, and UCHL1) (Figure 1D).

Among them, the expression of BNIP3, CDKN2A, PHLDA2, and

UCHL1 was significantly increased in OS samples, whereas the

expression of CEACAM1, CXCL12, and LTF was significantly

reduced compared to that normal samples (Figures 1E–G).
3.2 Acquisition of anoikis-related clusters
of patients with OS

According to the seven DEARGs, consistent cluster analysis of the

TARGET-OS dataset samples showed that clustering was the best

when K=2 and all samples were classified into cluster 1 and cluster 2

(Figures 2A–C). PCA showed good results for consistent clustering,

with all samples clustered into two clusters (Figure 2D). The race of

patients with OS in the different clusters was significantly different

(P<0.05); however, no significant difference was detected in the other

clinical characteristics between both clusters (Figure 2E). In addition,

27 pathways were enriched between both clusters by GSVA, including

progesterone-mediated oocyte maturation, oocyte meiosis, cell cycle,

folate biosynthesis, and steroid biosynthesis (Figure 2F).
3.3 Prognosis-related gene expression
levels were significantly different in OS and
normal samples

In the TARGET-OS dataset, two prognosis-related genes

(CXCL12 and BNIP3) were identified by univariate Cox analysis

of the seven DEARGs (P<0.05) (Figure 3A). Both CXCL12 and

BNIP3 satisfied the PH hypothesis (P<0.05) and were used to
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construct a multifactorial Cox model (Figure 3B). Patients in the

high-risk group with relatively short survival times accounted for

most patients with OS (Figures 3C, D). CXCL12 was strongly

expressed in the low-risk group, whereas BNIP3 was substantially

expressed in the other group (Figure 3E). In the GSE16088,

GSE19276, and GSE99671 datasets, the expression level of BNIP3

was higher and that of CXCL12 was lower in the OS samples than

those in the normal samples (adj.P < 0.05) (Figures 3F–H).

K-M survival curves demonstrated that, compared with that of

the other groups, the probability of survival in patients from the

BNIP3 high-expression group in the TARGET-OS dataset was

greatly reduced (P<0.05) (Figure 3I). In contrast, the probability

of survival in patients from the CXCL12 high expression group was

significantly higher (P<0.05) (Figure 3J).
3.4 Survival probabilities for patients in the
high-risk group were substantially lower
compared to those in the low-risk group

In the TARGET-OS dataset, the probability of survival was greatly

reduced for patients in the high-risk group compared to that in the

other groups (P<0.05) (Figure 4A). The area under the ROC curve

(AUC) of the risk model was 0.7, indicating that the risk model had a

strong predictive ability for TARGET-OS dataset patients (Figure 4B).

In the validation dataset (GSE16091), high-risk patients with

relatively short survival times accounted for most patients with OS

(Figures 4C, D). The expression patterns of CXCL12 and BNIP3 in the

high- and low-risk groups were similar to those observed in the

TARGET-OS dataset (Figure 4E). The probability of survival was

greatly reduced in patients in the high-risk group compared to those

in the other groups (P<0.05) (Figure 4F). Meanwhile, the risk model

correctly estimated the prognosis of patients with OS because the ROC

curves of the risk model in the GSE16091 dataset were all greater than

0.6 (Figure 4G).
3.5 OS patients of Black or African
American and metastatic OS patients had a
high-risk score

In the TARGET-OS dataset, the race of the patients with OS

differed between the high- and low-risk groups, whereas other

clinical characteristics did not significantly differ (Table 1). Age

and sex did not strongly correlate with the risk scores of patients

with OS (Figures 5A, B). Black or African Americans had

significantly higher risk scores than those Asian patients

(Figure 5C). Patients with metastatic OS had substantially higher

risk scores than those with nonmetastatic OS (Figure 5D).
3.6 Nomogram model could reliably
forecast the prognosis of patients with OS

Univariate Cox analysis confirmed the association between the

risk score and metastasis and OS in the TARGET-OS dataset
frontiersin.org
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(P<0.05) (Figure 6A). Next, the independent prognostic value of the

risk score and metastasis was identified using multifactorial Cox

analysis (P<0.05) (Figure 6B).

To create a nomogram model, it was possible to reliably

estimate OS prognosis by fusing the risk score with metastasis

(Figures 6C–E). In addition, the DCA curves showed that the

nomogram model had greater reliability in predicting the survival

of patients with OS (Figure 6F).
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3.7 The differentially expressed signaling
pathways among high- and low-risk
groups were mainly associated with
tumorigenesis and metastasis

The GSVA enriched 31 pathways that significantly differed

between both risk groups, including IGA production facilitated by

the intestinal immune network, thyroid disease of autoimmune
B C

D

E

F

G

A

FIGURE 1

Acquisition of DEARGs. (A) Manhattan plot for DEGs in the GSE16088, GSE99671, and GSE19276 datasets. (B, C) Venn diagrams show the
intersection of the number of URGs and DRGs among the above three databases. (D) Venn diagram shows the intersection of the number of
DEARGs between DEGs and ARGs. (E–G) Boxplots show the consistent expression patterns of DEARGs among the above three databases. DEARGs,
differentially expressed anoikis-related genes; DEGs, differentially expressed genes; URGs, up-regulated genes; DRGs, down-regulated genes; ARGs,
anoikis-related genes.
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origin, rejection of allografts, leishmaniasis, and cellular adhesion

molecules (Figure 7).

3.8 High-risk score was characterized by
low immune infiltration and elevated
tumor purity

In the TARGET-OS dataset, we detected that samples in the high-

risk group had significantly lower stromal, immune, and ESTIMATE

scores and significantly higher tumor purity than those of the samples

in the other groups (P<0.05) (Figure 8A). The level of infiltration of 23

TME cells was significantly different from that of the other groups

(P<0.05) (Figure 8B), and 24 TME cells were significantly correlated

with risk scores (P<0.05) (Figure 8C). Individuals in the low-scoring

groups of central memory CD8 T cells, activated B cells, macrophages,

monocytes, effector memory CD8 T cells, CD56 bright natural killer

cells, and natural killer T cells exhibited dramatically lower survival

probabilities than those in the other groups (P<0.05) (Figures 8D–J).

The 23 TME cells that were differentially infiltrated between the

two risk groups, the 24 TME cells that were related to the risk score,

and the seven cells that were related to survival in patients with OS

were intersected to obtain seven TME cells that were significant in

the OS risk score (Figure 8K).
Frontiers in Immunology 06
3.9 The expression of the immune
response gene set and HLA genes immune
checkpoints were significantly lower in the
high-risk group of patients with OS

Eight immune response gene sets differed between both risk

groups in the TARGET-OS dataset (Figure 9A). Immune response

gene sets were negatively correlated with BNIP3 expression and

positively correlated with CXCL12 expression (Figure 9B). The

immune response gene sets most associated with CXCL12 and

BNIP3 were both highly expressed in the low-risk group

compared to those in the other groups (Figures 9C–F).

In the TARGET-OS dataset, the expression of 17 HLAs was

highly variable between both groups (P<0.05) (Figure 10A). The

HLAs were negatively associated with BNIP3 and actively associated

with CXCL12 (Figure 10B). The HLAs were most strongly

associated with CXCL12 and BNIP3, and both were highly

expressed in the low-risk group compared to those in the other

groups (Figures 10C–F). In addition, the expression of CD274,

CTLA4, and HAVCR2 was noticeably lower in the high-risk group

than that in the other groups (P<0.05) (Figure 11A). The risk score

was negatively correlated with HAVCR2, LAG3, PDCD1LG2,

CD274, and CTLA4 (Figure 11B).
B C D

E F

A

FIGURE 2

Clinical features and GSVA of two clusters of patients with OS. (A) Consensus matrix heatmap defines two OS clusters (k=2). (B) CDF curve for k = 2
– 9. (C) Relative change in the area under the CDF curve for k = 2 – 9. (D) PCA displays the different distribution of both clusters. (E) The clinical
features between both clusters of patients with OS. (F) Heatmap of GSVA enrichment analysis results. GSVA, gene set variation analysis; OS,
osteosarcoma; CDF, cumulative distribution function; PCA, principal component analysis.
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3.10 Patients with OS in the high-risk
group had reduced sensitivity to
therapeutic agents

Patients in the low-risk group were susceptible to PD-1

inhibitor treatment (P<0.05) (Figure 12A). A total of 81 drugs

showed significantly different IC50 values between the two groups

(P<0.05). Of these, 24 drugs, including AG.014699, AMG.706,

AZD6482, and BI.D1870, may be candidates for treating patients

in the high-risk group (Figure 12B). In contrast, 57 drugs, including

A.443654, A.770041, AKT inhibitor VIII, and AP.24534, may not be

ideal for patients in the other group (Figure 12C).
4 Discussion

Although the prognosis of localized OS has markedly improved

owing to new therapeutic developments, long-term survival has

stagnated over the past several decades (2–4). Metastasis, particularly

lung colonization, is the most common cause of death in high-risk
Frontiers in Immunology 07
patients with OS (20). Anoikis is a physiological process that plays an

important role in tissue homeostasis and development. Under

pathological conditions, it is the main factor in tumor metastasis and

therapy failure (7, 8). Alterations in ARGs that lead to anoikis resistance

are hallmarks of themalignant transformation of tumors (10, 11, 21, 22).

Regrettably, the relationship between ARGs andOS progression is much

less recognized, which has limited the improvement in patient prognosis.

The present study identified prognosis-related genes involved in OS

progression. Based on BNIP3 and CXCL12 expression, this stratification

framework can be used to effectively stratify the survival of patients with

OS. Moreover, patients with high-risk OS presented unique patterns of

immune characteristics and sensitivity to different chemotherapeutic

agents. These findings provide a scientific basis for the discovery of new

immunotherapeutic targets and efficient selection of existing drugs in

clinical practice.

In this study, CEACAM1, CXCL12, and LTF were found to be

downregulated in OS samples. CEACAM1 is a transmembrane cell

adhesion molecule belonging to the CEA superfamily (23). Similar

to the inhibitory signaling mode of PD-1, CEACAM1 represses the

anti-tumor activity of T cells by dephosphorylating the downstream
B

C D

E F G H

I J

A

FIGURE 3

Construction of a risk score model based on two prognosis-related genes. (A) Forest plot of univariate Cox analysis. (B) Forest plot of multifactorial
Cox analysis. (C) The risk score distribution of the training set. (D) Distribution of survival status in patients with OS. (E) The relative expression level
of two prognosis-related genes in two risk groups. (F–H) Boxplots show the consistent expression patterns of two prognosis-related genes among
the above three databases. (I) K-M survival analysis shows the relationship between BNIP3 expression and OS prognosis. (J) K-M survival analysis
shows the relationship between CXCL12 expression and OS prognosis. OS, osteosarcoma; K-M, Kaplan-Meier.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1199869
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1199869
kinases of T cell receptor signaling (24–26). Monoclonal antibodies

targeting CEACAM1 have been approved for the treatment of

advanced and recurrent cancers in clinical trials (27).

Downregulation of CXCL12 in OS facilitates the release of tumor

cells from the bone and metastasis to other tissues (28). However,

the protective coating formed by CXCL12 allowed malignant cells

to escape immune attacks by T cells (29). After specific binding to

CXCR4, the MAPK, PI3K, and phospholipase C pathways are

activated, and the antitumor immune response is suppressed (30).

LTF is widely considered a tumor suppressor. Consistent with the

results of this study, patients with OS with low LTF levels showed
Frontiers in Immunology 08
lower survival rates, which may be attributed to the inhibitory effect

of LTF on tumor cell proliferation (31).

BNIP3, CDKN2A, PHLDA2, and UCHL1 are genes that we

found highly expressed in OS samples. Upregulation of BNIP3

has been reported to enhance anoik i s re s i s tance in

hepatocarcinoma cells (32). A strong correlation between high

BNIP3 levels and lower progression-free survival has also been

observed in some platinum-resistant tumors (33). CDKN2A

encodes a protein called p14ARF, which binds MDM2 in the

nucleus and binds it to the nucleolus, thereby attenuating the

ubiquitination degradation of p53 caused by MDM2. At
B

C D E

F G

A

FIGURE 4

Performance assessment of the prediction model in the training and validation sets. (A) K-M survival analysis shows a significant difference in survival
between the high- and low-risk groups in the training set. (B) ROC curves show the prediction power of the risk score in the training set for 1, 3, and
5 years. (C) The risk score distribution of the validation set. (D) Distribution of the survival status in patients with OS. (E) The relative expression level
of two prognosis-related genes in two risk groups. (F) K-M survival analysis shows a significant survival difference between the high- and low-risk
groups in the validation set. (G) ROC curves show the prediction power of the risk score in the validation set for 1, 3, and 5 years. K-M, Kaplan-Meier;
ROC, receiver operator characteristic; OS, osteosarcoma; AUC, area under the curve.
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thesame time, it can accelerate the degradation of MDM2,

increase the synthesis of p53 protein, and finally make tumor

cells stagnated in G1/S phase, and play the tumor inhibition

function (34, 35). Xie et al. observed a high-frequency CDKN2A

mutation in the genomic profile of patients (36). The GA and

AA genotypes of rs3217992 in CDKN2A may indicate higher

malignancy, higher risk of lung metastasis, and poorer

prognosis (37). PHLDA2 encodes a pleckstrin homology

domain-containing protein that inhibits cell proliferation by
Frontiers in Immunology 09
suppressing AKT activation (38). Decreased PHLDA2

expression increases cell proliferation and reduces sensitivity

to targeted agents in EGFR/ErbB2-driven cancer (39). How

changes in PHLDA2 affect the development of OS requires

further investigation. UCHL1 is a de-ubiquitinating enzyme

that has been found to be over-expressed in some cancers and is

considered a cancer promoter. UCHL1 downregulation

decreases the proliferation, migration, and invasion of lung

adenocarcinoma cells (40). It has also been proven to induce
TABLE 1 Clinical features in the two risk groups.

Total Low-risk High-risk P-value

Age 85 43 42

<=14 45 21 24
0.583

>14 40 22 18

Gender 85 43 42

Femal 38 20 18
0.904

Male 47 23 24

Race 65 37 28

Black or African American 7 2 5

0.032Asian 6 6 0

White 52 29 23

Metastatic 85 43 42

Metastatic 21 8 13
0.286

Non-Metastatic 64 35 29
fron
B

C
D

A

FIGURE 5

Correlations between risk scores and clinical features. (A) Age. (B) Gender. (C) Race. (D) Metastatic or non-metastatic.
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metastasis of breast cancer cells by acting on TGF-b signaling

(41). The high expression of UCHL1 in OS observed in this

study suggests that it may play a role in tumor progression.

Changes in the relevant pathways in the differential genes of

the low- and high-risk groups were further obtained by GSVA

analysis, which showed that pathways, such as JAK-STAT, toll-

like receptor, and Hedgehog signaling were substantially

enriched. STAT5 downregulation inhibits the proliferation,

clonogenicity, and growth of OS cells (42). The toll-like

receptor signaling pathway is remarkably differentially

expressed in OS and is involved in the regulation of

apoptosis, inflammation, and immunity (43). Similar to other

studies, this study also confirmed the abnormality of the

Hedgehog signaling pathway in OS, which may be related to

tumor metastasis (44, 45). Further investigation of the

regulatory mechanisms of signaling pathways in different risk

groups may provide addit ional information to better

understand the heterogeneity within tumors.

The TME broadly consists of tumor, immune, and stromal

elements and has been proven to determine the biological behavior

of tumor cells. As expected, we found a pattern of low scores of

immune, stromal, and ESTIMATE, and a high score of tumor purity

in high-risk groups, which is commonly observed in malignant solid

tumors; this was confirmed by the significantly lower survival rate

we found in high-risk populations (46–48). To further characterize
Frontiers in Immunology 10
immune infiltration between the groups, we identified seven TME

cells that were substantially different in the OS samples. The

number of these cells was low in the high-risk group and

negatively correlated with the risk score. BNIP3 overexpression

accelerates the death of macrophages and T cells and promotes

tumor proliferation and early metastasis (49, 50). CXCL12 is an

important chemokine in T and NK cells that helps macrophages

polarize into tumor-associated macrophages (51, 52). In addition,

CXCL12 mediates the progression of rectal cancer by promoting the

retention of neutrophils in tumors and increasing their interactions

with CD8+ T cells (53). These findings not only suggest that low-

level infiltration of immune cells in OS high-risk samples may be

associated with poor prognosis but also highlight the non-negligible

role of BNIP3 and CXCL12 in the regulation of immune cell

biological behavior.

Besides immune cell infiltration, the immune response gene set

and HLA family genes were also found to be differentially expressed

between the two risk groups in our study. Through the correlation

analysis, we found that antigen processing and presentation and

HLA-DMA were the two entries that most negatively correlated

with BNIP3, whereas antimicrobials and HLA-DOA were most

positively correlated with CXCL12. HLA families participate in

tumor immunity (54). The downregulation of HLA genes may

reduce antigen presentation and facilitate immune evasion (55).

HLA-DMA variants have been reported to be associated with a
B

C

D E F

A

FIGURE 6

Construction of the prognostic model for OS. (A) Forest plot of univariate Cox analysis. (B) Forest plot of multifactorial Cox analysis. (C) Nomogram
model for the prediction of survival possibility at 1, 3, and 5 years. (D) The calibration curve reveals the nomogram model has a good predictive
ability. (E) Time-dependent ROC curves of overall survival at 1, 3, and 5 years. (F) DCA curves illustrating the clinical effectiveness of the nomogram
model (purple line indicates patients were all alive; blue line indicates patients were all dead). OS, osteosarcoma; ROC, receiver operator
characteristic; AUC, area under the curve; DCA, decision curve analysis.
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higher risk of local recurrence in head and neck squamous cell

carcinoma (56). HLA-DOA is also a key molecule in the antigen

processing and presentation pathway and has been implicated in OS

progression through the downregulation of HLA-DOA expression

(57, 58). Another study has described the inhibitory role of HLA-

DOA in B cell-mediated antigen presentation (59). Based on the

present evidence, we hypothesized that the immune dysregulation

associated with BNIP3 and CXCL12 may drive the poor prognosis

of OS.

In the last few decades, immune checkpoint inhibitor-based

immunotherapies have provided a huge boost to research on
Frontiers in Immunology 11
immune surveillance and have transformed the therapeutic

landscape of cancer (60). However, immune checkpoint blocking

therapy is less effective in treating OS, with only 5% of patients with

OS achieving objective remission in a 2017 clinical trial of the PD-1

antibody (61, 62). To clarify the differences in the response to

immunotherapy between the high- and low-risk groups, we

examined the expression levels of common immune checkpoints.

We found that CD274, CTLA4, and HAVCR2 were substantially

under-expressed in the high-risk groups and were negatively

correlated with risk scores. Similar to previous studies, patients in

the high-risk group showed insensitivity to PD-1 and CTLA4
FIGURE 7

GSVA enrichment analysis of the biological pathways between the two risk groups. Green indicates significant down-regulation, blue indicates
significant up-regulation, and gray indicates no significance. GSVA, gene set variation analysis.
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FIGURE 8

ESTIMATE analysis and hub TME cell screening. (A) Stromal score, immune score, ESTIMATE score, and tumor purity in different risk groups were
evaluated by ESTIMATE analysis. (B) Immune infiltration levels of 28 immune cell types in the high- and low-risk groups (red indicates adaptive
immune cell, green indicates innate immune cell, and blue indicates stromal cell). (C) The correlation between the risk score and 30 TME infiltration
cells (red indicates adaptive immune cell, green indicates innate immune cell, and blue indicates stromal cell). (D–J) K-M survival analyses show the
survivability probabilities in the high- and low-score groups of 30 TME cells (only statistically significant TME cells are visualized). (K) Venn diagram
shows the hub TME cells (red indicates adaptive immune cell and green indicates innate immune cell). TME, tumor microenvironment; K-M, Kaplan-
Meier.
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FIGURE 9

Immune response gene sets in the two risk groups. (A) Difference in the immune response between the high- and low-risk groups. (B) Correlation
heatmap of two prognosis-related genes and immune response gene sets. (C) The level of CXCL2 shows the most significant positive correlation
with the antimicrobials gene set. (D) Differences in expression of the antimicrobials gene set between high- and low-risk groups. (E) The level of
BNIP3 shows the most significant negative correlation with the antigen processing and presentation gene set. (F) Differences in expression of the
antigen processing and presentation gene set between high- and low-risk groups.
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inhibitors, which may partially explain the poor response of some

patients with OS to immunotherapy in clinical practice (62, 63). In

addition, the 24 agents in our study showed sensitivity in high-risk

groups and may help improve OS outcomes. In the future,

combinations of immune checkpoint inhibitors with chemotherapy,

targeted therapies, or novel therapies could potentially lead to new

treatment strategies (2, 64, 65).
Frontiers in Immunology 13
5 Conclusion

To the best of our knowledge, this is the first study to identify

OS-related DEARGs and explore their predictive power for disease

prognosis. The stratification framework based on BNIP3 and

CXCL12 can effectively screen individuals at high risk for OS.

Compared with those of the low-risk group, the high-risk group
B

C D

E F

A

FIGURE 10

HLA families in the two risk groups. (A) Difference in the expression of HLA families between groups. (B) Correlation heatmap of two prognosis-
related genes and HLA families. (C) The level of CXCL2 shows the most significant positive correlation with HLA-DOA. (D) Differences in expression
of HLA-DOA between high- and low-risk groups. (E) The level of BNIP3 shows the most significant negative correlation with HLA-DMA.
(F) Differences in expression of HLA-DMA between high- and low-risk groups. HLA, human leukocyte antigen.
BA

FIGURE 11

Prediction of response to immunotherapy. (A) The expression of three immune checkpoints was significantly different between the groups.
(B) Correlation between the risk score and expression of immune checkpoints.
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had unique immune characteristics and sensitivity to drug therapy,

which may provide a scientific reference for clinicians to develop

efficient treatment strategies. Further experimental and clinical

studies based on our results are promising to consistently

improve the prognosis of patients with high-risk OS.
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FIGURE 12

Prediction of response to therapeutic drugs. (A) Sensitivity of different groups to PD-1 and CTLA4 inhibitors. (B) Agents with lower IC50 in the high-
risk group than those in the low-risk group. (C) Agents with higher IC50 in the high-risk group than those in the low-risk group. IC50, 50% inhibitory
concentration.
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