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Lipopeptide-19, a HIV fusion inhibitor (LP-19), has showed potent anti-HIV

activity. However, there is still limited information of the antiviral activity

against different subtype clinical isolates and the drug resistance barrier of LP-

19. Therefore, 47 HIV clinical isolates were selected for this study. The viral

features were identified, in which 43 strains are CCR5 tropisms, and 4 strains are

CCR5/CXCR4 tropisms, and there are 6 subtype B’, 15 CRF01_AE, 14 CRF07_BC,

2 CRF08_BC and 10 URF strains. These 47 viruses were used to detected and

analyze the inhibitory activities of LP-19. The results showed that the average

50% inhibitory concentration (IC50) and 90% inhibitory concentration (IC90) of

LP-19 were 0.50 nM and 1.88 nM, respectively. The average IC50 of LP-19 to B’,

CRF01_AE, CRF07_BC, CRF08_BC, and URF strains was 0.76 nM, 0.29 nM, 0.38

nM, 0.85 nM, and 0.44 nM, respectively. C34 and Enfuvirtide (T-20), two fusion

inhibitors, were compared on the corresponding strains simultaneously. The

antiviral activity of LP-19 was 16.7-fold and 86-fold higher than that of C34 and

T-20. The antiviral activity of LP-19, C34, and T-20 were further detected and

showed IC50 was 0.15 nM, 1.02 nM, and 66.19 nM, respectively. IC50 of LP-19 was

about 7-fold and 441-fold higher compared to C34 and T-20 against HIV-1 NL4-

3 strains. NL4-3 strains were exposed to increasing concentrations of LP-19 and

C34 in MT-2 cell culture. The culture virus was sequenced and analyzed. The

results showed that A243V mutation site identified at weeks 28, 32, 38, and 39 of

the cell culture in the gp41 CP (cytoplasmic domain) region. NL4-3/A243V

viruses containing A243V mutation were constructed. Comparing the antiviral

activities of LP-19 against HIV NL4-3 to HIV strains (only 1.3-fold), HIV did not

show drug resistance when LP-19 reached 512-fold of the initial concentration

under the drug pressure for 39 weeks. This study suggests that LP-19 has broad-

spectrum anti-HIV activity, and high drug resistance barrier.
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1 Introduction

HIV entry inhibitors act in the early stage of HIV infection by

preventing the fusion of HIV envelop protein gp41 and co-receptors

on target cells, and are considered to have better application

prospects in the prevention and treatment of AIDS (1, 2). In the

early 1990s, with regard to C-terminal heptad repeat (CHR), it was

found that some peptides derived from gp41 could inhibit the

fusion of HIV and target cells and resist HIV infection, the most

famous of which are T-20 (enfuvirtide) and C34 (3, 4). T-20 became

the first to be marketed in 2003 as a HIV entry inhibitor class of

antiviral drug (5–9). The mechanism of the two HIV fusion

inhibitors is combined with gp41 N-terminal heptad repeat

(NHR), thereby preventing CHR on HIV gp41 from combining

with NHR to form a six-helix bundle structure. T-20 requires high

doses for viral suppression and easily creates drug resistance (10),

and a new drug with significantly improved pharmaceutical

properties is needed.

He’s team aimed at the conserved pocket site of gp41 (11, 12),

and through the integration of multiple design strategies, LP-19 was

designed containing the M-T hook structure and the pocket binding

sequence, and it is in the state of helix and trimer in solution. LP-19

has showed potent inhibitory effect in vitro and in animals.

However, HIV is easy to mutate into different subtypes and

recombinant viruses (13, 14). Therefore, we tested the inhibitory

activities of LP-19 on 47 HIV clinical isolates with different subtypes

and recombinants viruses isolated from HIV infected people China.

AIDS patients need to take medicine for life. Drug resistance is a

key issue in antiviral therapy. It is reported that there are more and

more HIV patients appearing drug resistance to reverse

transcriptase inhibitors, protease inhibitors, even T-20 due to

long-term treatment. Therefore, this study further tested LP-19

drug resistance, that is the virus was exposed to continuously

increasing LP-19 though cell culture passages, and viral mutations

were detected to explore the LP-19 resistance barrier.
2 Materials and methods

2.1 Lipopeptide, C34 and T-20

A lipopeptide-based HIV-1/2 fusion inhibitor, known as LP-19

and formed by adding a fatty acid group (palmitic acid C16) to the

C-terminus of 2P23, was designed to target the highly conserved

pocket site of gp41with the M-T hook structure. Its sequence is

EMTWEEWEKKVEELEKKIEELLK-PEG8-K(C16) (11). The C34

peptide sequence is WMEWDREINNYTSLIHSLIEESQNQQEK

NEQELL, and T-20 peptide sequence is YTSLIHSLIE

ESQNQQEKNEQELLELDKWASLWNWF. The peptides were

synthesized by Beijing ZhongkeYaguang Biotechnology Co., Ltd.

LP-19, C34, and T-20 were melted at concentrations of 20 mM, 100

mM, and 200 mM and stored in a refrigerator below -20°C for use

and diluted when conducting experiments.
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2.2 Cells, reagents, and viruses

MT-2, HEK 293T, and TZM-bl cell lines and laboratory-adapted

HIV strains (NL4-3) were obtained from the National Institutes of

Health (NIH) AIDS Research and Reference Reagent Program. MT-

2, TZM-bl, and HEK 293T were respectively prepared in RPMI 1640

and DMEM medium, supplemented with 10% fetal bovine serum,

100 ug/mL penicillin and streptomycin. HIV clinical isolates used in

the antiviral activities assay were isolated and replicated from HIV

infected people in China from the European Research Infrastructures

for Poverty Related Diseases project. Informed consent was obtained

and signed before sample collection. This study was reviewed by the

Institutional Research Ethics Communication of Chinese Center for

Disease Control and Prevention (No. X150129355). In the study, 47

culture supernatants of HIV clinical isolates were selected from

Anhui, Beijing, Guangxi, and Sichuan respectively. HIV isolates of

BJ2015EU14, BJ2015EU16, GX2016EU02, GX2016EU08,

XC2014EU09 were national standard strains of pathogenic

microorganisms (www.nprc.org.cn).
2.3 Viral titration detection

50% cells culture infectious dose (TCID50) was expressed as

viral titration. HIV titration is determined by setting up serial

dilutions of HIV NL4-3 strains or HIV clinical isolates in TZM-bl

cell line. One virus of HIV stock was thawed and placed into the

first row of the plate in three replicates in 96-well plates, where a 5-

fold dilution was firstly made and then continuous dilution for 11

times in triplicate. To each well, 1×104 cells of supplemented

DMEM medium were added to 200 mL, and the concentration of

DEAE-dextran was 15 mg/mL. And then the plates were incubated

at 37°C and 5% CO2 for 48 hours. Britelite™ plus Reporter Gene

Assay System (PerkinElmer) detected fluorescence, and the viral

TCID50 was calculated by the Reed-Muench method.
2.4 Assay to detect the antiviral activities of
HIV fusion inhibitor

HIV NL4-3 strains (200 TCID50/well), 1×10
4 cells (TZM-bl),

and LP-19 or C34 or T-20 serial dilutions were added to the 96-well

plate, and the final concentration of DEAE-dextran in each well was

15 mg/mL; the experiment was repeated three times. After

incubation at 37°C and 5% CO2 for 48 hours, the fluorescence

value of TZM-bl was detected. The inhibitory percentage

calculation is as follows: (average fluorescence value of virus

control wells - fluorescence value of LP-19 or C34 or T-20 wells)/

(average fluorescence value of virus control wells - average

fluorescence value of cell control wells) × 100%. The 50%

inhibitory concentration (IC50) and 90% inhibitory concentration

(IC90) of LP-19 lipopeptide or C34 or T-20 was calculated according

GraphPad Prism software.
frontiersin.org

http://www.nprc.org.cn
https://doi.org/10.3389/fimmu.2023.1199938
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


He et al. 10.3389/fimmu.2023.1199938
2.5 Assay of in vitro selection for resistance
to LP-19

In vitro selection for HIV resistance to LP-19 was performed.

1×104 MT-2 cells were quantitatively infected with NL4-3 strain

and inoculated into wells of a 12-well plate. A duplicate well was set

up, and positive and negative control wells were set up at the same

time (15). 200 TCLD50/mL NL4-3 virus was used to infect the MT-2

cells with the addition of 1-fold IC50 of LP-19 during cell culture.

The cells were incubated at 37°C and 5% CO2. The viral replication

was monitored by observing the formation of syncytia by optical

microscopy. When viruses appeared as a massive syncytium

formation, the culture supernatant was harvested at regular time

intervals, and the inhibitor concentration was doubled. The culture

cells and supernatant were harvested and stored at -80°C.

Meanwhile C34 was used as the parallel control of inhibitor.
2.6 Amplification and sequencing of HIV
gp41 region

Viral RNA was extracted and purified from infected cells using

the QIAamp Viral RNA mini kit (Qiagen). The HIV gp41 region

was amplified using an in-house-designed polymerase chain

reaction (PCR) system using first round specific primers (gp41

F1: 5’- AGAGCAGTGGGAATAGGAGCTTTG -3’, gp41 R1: 5’-

TGACCACTTGCCACCCATCTTATAGCAA -3’). Second round

specific primers (gp41 F2: 5’- TCTTGGGAGCAGCAGGAA

GCACTAT -3’; gp41 R2: 5’- GCCCTGTCTTATTCTTCTAGGTA

TGTGGCG -3’) were used to amplify the HIV-1 gp41 region

(sequenced by TianyiHuiyuan Biotechnology Co., Ltd.). The

sequencing results were compared with the pNL4-3 (GenBank:

AF324493.2) sequence of NCBI, and the drug resistance-related

sites of viral mutations under continuous drug pressure were found.
2.7 Site-directed mutagenesis assay

The QuikChange Lightning Site-Directed Mutagenesis Kit

(Agilent Technologies) introduces the mutations encoding A243V

into the NL4-3 plasmid, and contains the primers and sequences

constructed by the mutant site viruses: A243V-F: 5’- GTGAAC

GGATCCTTGGTACTTATCTGGGACGATC -3’, A243V-R: 5’-

GATCGTCCCAGATAAGTACCAAGGATCCGTTCAC -3’ .

Plasmids containing mutation sites were correctly sequenced

(sequenced by TianyiHuiyuan Biotechnology Co., Ltd.).
2.8 Transfection

This was carried out based on the instructions of

Lipofectamine™ 3000 Reagent (Invitrogen), a cationic lipid-based

transfection reagent. 1×106 HEK 293T was inoculated per well in a
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6-well plate, and 2 mL DMEM complete medium was added to each

well,. The culture was kept overnight in an incubator at a constant

temperature of 37°C and 5% CO2. When the HEK 293T density

reached about 50-70%, the serum-free and antibiotic-free DMEM

medium was replaced before the experiment. 125 µL Opti-DMEM

and 3.75 µL of Lipofectamine™ 3000 Reagent were added to a 1.5

mL sterilized EP tube and mixed thoroughly. Then 125 µL Opti-

DMEM, 5 µL P3000™ Reagent, and 5 µg pNL4-3 were added to

another 1.5 mL sterilized EP tube and mixed thoroughly. The

mixture in the second tube was added to the first tube, mixed

well, and was allowed to stand at room temperature for 15 minutes.

The mixture was then evenly and carefully dropped into a six-well

plate and incubated at a constant temperature incubator of 37°C

and 5% CO2 for 4 to 6 hours. Then the complete DMEM medium

should be replaced. The supernatants of the virus were harvested 48

hours after transfection, then divided and stored at -80°C in

the refrigerator.
3 Results

3.1 LP-19 is more effective at inhibiting
laboratory-adapted HIV-1 strains
compared with T-20 and C34

To evaluate the antiviral activity of LP-19, especially in direct

comparison with well-established entry inhibitors T-20 and C34, we

utilized TZM-bl reporter assay, whose antiviral effects can be

directly measured by the decrease in luciferase signal. The TZM-

bl reporter assay revealed that compared with T-20 and C34, LP-19

a 441-fold and 7-fold increased viral inhibitory effect, and the IC50

of LP-19, C34, and T-20 against HIV NL4-3 strains was 0.15 ± 0.01

nM, 1.02 ± 0.19 nM, and 66.19 ± 20.73 nM, respectively (Figure 1).

This result suggested that LP-19 may possess greater antiviral

activity than currently available fusion inhibitors.
3.2 LP-19 broadly showed antiviral activity
against clinical isolates with different
subtypes and recombinant isolates

3.2.1 Viral features
Different HIV subtypes may exhibit varying susceptibility to

antiretroviral drugs, thus introducing variability in therapeutic

outcomes (16, 17). To access the activity of LP-19 across a broad

spectrum viruses we used 47 clinical HIV strains isolated from HIV

infected people in four provinces in China (Table 1). This panel

consist of clinical isolates with subtypes B’ (6), CRF_01AE (15),

CRF_07BC (14), CRF08_BC (2), and URF (10), which covers

circulating strains in China and inter-subtype recombinants. Among

the 47 clinical HIV strains, 43 are CCR5-tropic, and 4 are dual tropic

(CCR5/CXCR4). Viral P24 antigen levels and viral titration were 5.49

pg/mL and 36,154 TCID50/mL respectively (Table 1).
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3.2.2 LP-19 showed high inhibitory activities
against 47 clinical isolates

The IC50 and IC90 of LP-19 on 47 clinical isolated viruses were

determined by using gradient dilution. LP-19 exhibited an average

IC50 of 0.50 nM, ranging from 0.01 nM to 4.36 nM, and IC90 was 1.88

nM, ranging from 0.03 nM to 14.63 nM correspondingly (Table 1).

Further analysis was conducted of LP-19’s inhibitory activities against

different HIV subtypes and recombinant viruses. The results showed

IC50 of LP-19 against subtype B’, CRF01_AE, CRF07_BC,

CRF08_BC,and URF were 0.76 nM, 0.29 nM, 0.38 nM, 0.85 nM,

and 0.44 nM, respectively. There is no statistically significant

difference. The IC90 to B’, CRF01_AE, CRF07_BC, CRF08_BC, and

URF was 2.76 nM, 1.17 nM, 1.70 nM, 2.76 nM, and 1.29 nM

(Table 1), respectively. LP-19 effectively inhibits different subtypes

with IC50 around a few nanomolar concentrations.

3.2.3 Inhibitory effect of LP-19 against 47 HIV
isolates compared to C34 and T-20

A heat map was produced to analyze the inhibitory effect of LP-

19 against 47 HIV isolates compared to C34 and T-20. The results

showed that average IC50 of LP-19, C34, and T-20 was 0.50 nM,

8.35 nM, and 43.00 nM. Inhibitory activities increased 16.7-fold and

86-fold. Compared to C34, IC50 of LP-19 for B’, CRF01_AE,

CRF07_BC, CRF08_BC, and URF isolates were 16.78-fold, 20.52-

fold, 20.37-fold, 10.84-fold, and 29.68-fold respectively. Compared

to T-20, the activity of LP-19 to the corresponding subtype strains

was 35.74-fold, 53.41-fold, 227.29-fold, 42.09-fold, and 66.45-fold

respectively (Figure 2).
3.3 NL4-3 viruses were not detected with
drug mutation under continuously exposed
LP-19 for 39 weeks in vitro

When HIV antiviral drugs are used as a monotherapy, drug-

resistant variants inevitably appear. In addition, when a particular

HIV drug is used in a multidrug therapy, it is critical to determine

the types of drug-resistant mutants that may have evolved or

whether these mutations are more resistant or affect inhibitory

activity to its antiviral drug (18). Indeed, almost all clinically
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significant drug resistance mutation arise because of selective

drug pressure. Therefore, in vitro selection of viruses with

resistance to LP-19 was performed (Figures 3A, B). HIV NL4-3

virus was cultured in MT-2 cells at an initial concentration of 1-fold

IC50, when massive syncytia formation was observed, and LP-19

increased as double concentration of IC50 in a culture supernatant

and cultured continuously for 39 weeks.

When LP-19 concentrations reached 8-fold and 16-fold over the

initial concentrations at culture of 12 weeks and 18 weeks, D230N

and N239S mutation sites were observed in CP in the gp41 region,

but mutation recovery occurred at drug concentrations of 32-fold (22

weeks), 64-fold (28 weeks), 128-fold (32 weeks), 256-fold (38 weeks),

and 512-fold (39 weeks). The A243V site was identified at 64-fold,

128-fold, 256-fold and 512-fold drug concentration (cultured for 28,

32, 38, and 39 weeks). The concentration was 256-fold of the initial

concentration at 38 weeks, and the G183S site (TM region of gp41)

appeared. Until 39 weeks, when the drug concentration reached 512-

fold of the initial concentration, no mutations in the NHR gp41

region were found (Figure 3C).

In order to identify if the A243V mutant site is related to LP-19

resistance, NL4-3/A243V viruses containing the mutant site were

produced. The titers of NL4-3 strains and mutant NL4-3/A243V

strains were 18,275 TCID50/mL and 13,975 TCID50/mL,

respectively (Figure 4). The wild NL4-3 and mutant NL4-3/

A243V viruses were detected for viral sensitivity to LP-19. The

results showed that LP-19 in the mutant NL4-3/A243V viruses

remained at the same level of antiviral activity compared to wild

NL4-3 viruses, even is a 1.3-fold activity than before the

mutation (Figure 4C).
4 Discussion

The hydrophobic pocket in the HIV gp41 domain plays an

important role in viral fusion and entry into host cells and is an

attractive target for the development of HIV fusion/entry inhibitors

(3). T-20, a 36-residue natural CHR peptide, is currently the only

approved HIV-1 fusion inhibitor by the US FDA for clinical

application (6, 19). However, T-20 lacks the N-terminal pocket-

binding domain (PBD) critical for high-affinity binding in sequence

structure. Its clinical utility is significantly limited by its multiple
FIGURE 1

LP-19 exhibits superior viral inhibitory potency compared to C34 and T-20. The IC50 data were derived from the results of three independent
parallel experiments and expressed as means ± SD.
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TABLE 1 The viral features of 47 clinical isolates and the inhibitory activity of LP-19.

HIV isolate
Viral features Inhibitory activity of LP-19

P24(pg/mL) Virus subtypes Tropisma TCID50/mLb LP-19 IC50(nM)c LP-19 IC90(nM)c

2010096 3.48 B CCR5 30,000 0.13 ± 0.01 1.22 ± 0.05

2010104 2.68 B CCR5/CXCR4 50,000 0.77 ± 0.02 5.69 ± 1.36

2010259 8.21 B CCR5 15,000 0.03 ± 0.00 0.26 ± 0.00

2010968 6.78 B CCR5 10,000 1.27 ± 0.01 3.23 ± 0.18

BJ2015EU15 7.88 B CCR5 15,000 2.31 ± 0.05 5.92 ± 1.00

GX2016EU18 0.25 B CCR5 15,000 0.08 ± 0.00 0.23 ± 0.01

Mean for B’ 4.88 B N/A 22,500 0.76 ± 0.90 2.76 ± 2.60

GX2016EU03 5.38 01_AE CCR5 50,000 0.96 ± 0.03 3.71 ± 0.38

GX2016EU04 4.41 01_AE CCR5 50,000 0.74 ± 0.02 2.39 ± 0.12

GX2016EU07 4.40 01_AE CCR5/CXCR4 50,000 0.44 ± 0.00 1.50 ± 0.05

GX2016EU11 1.53 01_AE CCR5 30,000 0.88 ± 0.01 2.56 ± 0.18

GX2016EU14 4.19 01_AE CCR5 10,000 0.01 ± 0.00 0.08 ± 0.00

GX2016EU17 7.16 01_AE CCR5/CXCR4 30,000 0.02 ± 0.00 0.06 ± 0.01

XC2014EU18 9.89 01_AE CCR5 30,000 0.06 ± 0.00 0.71 ± 0.01

BJ2015EU01 11.39 01_AE CCR5 6,250 0.27 ± 0.01 1.03 ± 0.05

BJ2015EU03 5.59 01_AE CCR5 30,000 0.03 ± 0.00 0.22 ± 0.01

BJ2015EU06 7.94 01_AE CCR5/CXCR4 30,000 0.20 ± 0.04 0.92 ± 0.04

BJ2015EU09 7.63 01_AE CCR5 70,000 0.61 ± 0.01 3.18 ± 0.22

BJ2015EU11 8.34 01_AE CCR5 10,000 0.02 ± 0.00 0.17 ± 0.01

BJ2015EU12 7.12 01_AE CCR5 30,000 0.10 ± 0.00 0.97 ± 0.06

BJ2015EU14* 6.35 01_AE CCR5 50,000 0.01 ± 0.00 0.03 ± 0.00

BJ2015EU17 12.40 01_AE CCR5 15,000 0.01 ± 0.00 0.05 ± 0.01

Mean for 01AE 6.91 01_AE N/A 32,750 0.29 ± 0.35 1.17 ± 1.23

BJ2015EU02 5.47 07_BC CCR5 30,000 0.34 ± 0.02 1.83 ± 0.13

BJ2015EU04 5.18 07_BC CCR5 50,000 0.08 ± 0.00 0.36 ± 0.02

BJ2015EU08 4.52 07_BC CCR5 70,000 0.51 ± 0.02 3.62 ± 0.23

BJ2015EU13 4.30 07_BC CCR5 30,000 0.01 ± 0.00 0.05 ± 0.00

GX2016EU01 1.45 07_BC CCR5 15,000 0.15 ± 0.01 0.99 ± 0.05

GX2016EU05 0.32 07_BC CCR5 15,000 0.33 ± 0.02 1.53 ± 0.09

GX2016EU08* 4.95 07_BC CCR5 50,000 0.25 ± 0.02 1.77 ± 0.12

GX2016EU12 5.24 07_BC CCR5 15,000 0.88 ± 0.02 3.58 ± 0.35

XC2014EU05 7.28 07_BC CCR5 90,000 0.17 ± 0.01 0.91 ± 0.12

XC2014EU06 2.88 07_BC CCR5 3,000 0.72 ± 0.12 2.40 ± 0.59

XC2014EU08 5.21 07_BC CCR5 70,000 0.99 ± 0.02 2.56 ± 0.42

XC2014EU10 1.86 07_BC CCR5 30,000 0.71 ± 0.00 2.71 ± 0.21

XC2014EU13 11.09 07_BC CCR5 70,000 0.16 ± 0.01 1.23 ± 0.07

XC2014EU19 8.99 07_BC CCR5 70,000 0.02 ± 0.00 0.26 ± 0.00

Mean for 07BC 4.91 07_BC N/A 43,429 0.38 ± 0.33 1.70 ± 1.16

(Continued)
F
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TABLE 1 Continued

HIV isolate
Viral features Inhibitory activity of LP-19

P24(pg/mL) Virus subtypes Tropisma TCID50/mLb LP-19 IC50(nM)c LP-19 IC90(nM)c

GX2016EU02* 4.46 08_BC CCR5 50,000 0.78 ± 0.02 1.52 ± 0.20

GX2016EU22 7.26 08_BC CCR5 30,000 0.10 ± 0.00 1.05 ± 0.10

Mean for 08BC 5.86 08_BC N/A 40,000 0.85 ± 1.35 2.76 ± 4.28

GX2016EU15 0.24 URF CCR5 30,000 0.02 ± 0.00 0.17 ± 0.00

GX2016EU09 8.28 URF CCR5 10,000 0.15 ± 0.00 1.09 ± 0.04

GX2016EU10 4.74 URF CCR5 50,000 0.16 ± 0.00 0.79 ± 0.02

XC2014EU09* 9.59 URF CCR5 30,000 4.36 ± 0.04 14.63 ± 1.04

BJ2015EU16* 6.30 URF CCR5 15,000 0.28 ± 0.01 2.62 ± 0.28

BJ2015EU19 5.52 URF CCR5 70,000 0.26 ± 0.02 1.01 ± 0.04

GX2016EU13 0.30 URF CCR5 30,000 0.36 ± 0.01 1.37 ± 0.11

GX2016EU23 0.15 URF CCR5 50,000 0.77 ± 0.07 1.39 ± 0.28

XC2014EU01 4.32 URF CCR5 70,000 1.87 ± 0.02 3.52 ± 0.28

XC2014EU20 5.14 URF CCR5 30,000 0.22 ± 0.03 1.04 ± 0.11

Mean for URF 4.46 URF N/A 38,500 0.44 ± 0.49 1.29 ± 0.33

Mean 5.49 N/A N/A 36,154 0.50(0.01~4.36) 1.88(0.03~14.63)
F
rontiers in Immunolo
gy 06
N/A= not applicable. aHIV isolates uses co-receptor CXCR4(CXC chemokine receptor 4), CCR5 (chemokine receptor 5), or both for cells infection. bTCID50/mL (50% cells culture infectious
dose) is viral titration unit. cIC50 or IC90 was 50% or 90% inhibitory concentration. The experiment was performed in triplicate, and the data presented are mean values ± standard deviations from
an independent experiment. *Viruses were from National Standard Strains of Pathogenic Microorganization (WS/T812-2022) (www.nprc.org.cn).
A B

FIGURE 2

LP-19 is a highly potent inhibitor against 47 clinical HIV isolates viruses compared to C34 and T-20. (A, B) The heat map was performed using
GraphPad Prism version 8.4.0 for macOS, GraphPad Software San Diego, California USA. The IC50 scales are the antiviral activity of LP-19, C34, and
T-20 on 47 clinical strains. The yellow-red color in the heat map indicates high IC50 and blue-purple color indicates low IC50.
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shortcomings. The hydrophobic pocket of HIV gp41 plays a key

role in stabilizing gp41 6-HB core formation and gp41-mediated

membrane fusion (20–22). Therefore, the deep pocket of gp41 has

been considered as an ideal target site for anti-HIV drugs (23, 24).

LP-19 was designed as a short CHR peptide based on the M-T hook

structure, which specifically targets the conserved gp41 pocket and
Frontiers in Immunology 07
avoid the sequence site where T-20 produces drug resistance (25).

We tested the inhibitory activity of LP-19 against infection by HIV-

1 NL4-3 strains, a HIV laboratory adapted strain. We found that

LP-19 was more potent than C34 and T-20, two HIV fusion

inhibitors. LP-19 is 7-fold and 441-fold more active than C34 and

T-20 against HIV NL4-3 strains. The two residues (Met115 and
A

B

C

FIGURE 4

NL4-3 and NL4-3/A243V HIV strains titer and viral sensitivity to LP-19. (A, B) Obtain HIV strains NL4-3 and NL4-3/A243V mutation strains in HEK
293T cells. (C) Drug inhibition assays were performed in TZM-bl cells to obtain the resistance of the A243V mutated strains of LP-19 compared to
the wild strains. RLU, relative light unit.
A B

C

FIGURE 3

NL4-3 was effectively inhibited at a 512-fold increased concentration of LP-19 over a period of up to 39 weeks. (A, B) The HIV strain NL4-3 has a
mutation site in the non-NHR region, showing the concentration and time at which the mutation sites appeared. (C) Location of HIV gp41 mutation
in HXB2. Wild type (amino acids above bars) to mutation type (amino acids below bars), The mutated amino acids site was in HIV gp41 region.
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Thr116) in front of the PBD of CHR peptide adopt a unique M-T

hook structure, which can greatly enhance the binding and antiviral

activity (26, 27). LP-19 antiviral HIV activity was significantly

improved, consistent with some previous studies (19, 25).

Differences in virulence between subtypes and CRFs have been

reported (28, 29). Coreceptors used for cell entry have been

understood to affect virulence (29). HIV is one of the most

genetically diverse pathogens due to its high rate of mutation and

recombination. Circulating recombinant forms (CRFs) and unique

recombinant forms (URFs) may have a critical impact on drug

design (30). Therefore, we focused on the antiviral activity of LP-19

on different subtypes and recombinant viruses with CCR5

(coreceptor) tropisms and CXCR4 (coreceptor) tropisms. LP-19

showed antiviral activity against subtype B’, CRF_01AE,

CRF_07BC, CRF08_BC, and URF strains, suggesting broad

spectrum, and the activity was significantly improved compared

with C34, T-20. The activity of LP-19 to HIV clinical isolates was

16.7-fold and 86-fold higher than that of C34 and T-20. Meanwhile,

LP-19 possesses a high antiviral activity HIV clinical isolate with

different coreceptor usage (including CCR5 and CXCR4/CCR5). In

this study, there are three HIV strains that show lower sensitivity to

C34 (1) and T-20 (2). Three viral sequences were detected and

found N42S, L54M and A67T mutation (data not be shown) related

to C34 and T-20 resistance (31).

HIV develops drug-resistant mutations under treatment

pressure, and drug-resistant mutations can be transmitted to

treatment-naive individuals, which can lead to rapid virologic

failure and potentially limit treatment options. Most clinically

significant resistance mutations arise from selective drug pressure.

Therefore, we use drug pressure experiments to find drug resistance

mutation sites. The effect of drug resistance mutation on virus fitness

contributes to understanding the antiretroviral genetic barrier to

resistance. By continuously increasing LP-19 in vitro, NL4-3 strains

were screened for the drug resistance mutation site. NL4-3 strains had

no mutation site in the NHR region in the experiment. However,

studies on the resistance sites of T-20 report that it has high genetic

variability that is increased by the presence of resistance mutations

(32). Resistance-associated mutations were initially discovered in

vitro at position 36-38 of the HR1 domain (33). Primary resistance

to T-20 in antiretroviral-native patients have been reported with

N42D (34), G36D (34, 35), V38A (35) G36E, N42T, and N43S (36)

mutation in the NHR region. The most common substitutions

observed in treatment were at positions 36, 38, 40, 42, and 43 (37).

The “resistance-associated region” is now spanning positions 32-45

(38, 39). The impact of known mutations on susceptibility to T-20

treatment differs nearly by 100 times (40). When LP-19

concentration was 32-fold over the initial concentration, the A243V

site in CP (cytoplasmic domain) appeared. Viruses carrying the

A243V substitution remained at a 1.3-fold activity to LP-19.

However, we performed in vitro selection for HIV resistance to

C34. The L44V mutation site began to appear at the 9th generation

and until the 12th generation, where the L44V site is located in the

gp41 NHR region. The N126K mutation site appeared earlier in the

5th generation until the 12th generation (Figure S1). The virus
Frontiers in Immunology 08
susceptibility of L44V and N126K mutation sites decreased by

6.16-fold and 2.45-fold (Table S1). LP-19 exhibits a potentially high

resistance barrier compared to C34. It is conceivable that LP-19

primarily targets the highly conserved pocket region of gp41 on the

target cell membranes where fusion occurs. LP-19 containing the M-

T hook structure provides a highly resistant barrier to the induction

of drug resistance (41, 42). Taken together, this shows that LP-19 has

highly potent broad-spectrum antiviral activity and a high drug

resistance barrier of Lipopeptide HIV fusion inhibitor. Although

this study discovered no drug resistance sites, further studies could

focus on this. In future studies, peripheral blood mononuclear cells

should be infected with viruses and continuously increased with LP-

19 for resistant mutation selection.
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S, et al. Long-term monitoring of genotypic and phenotypic resistance to T20 in treated
patients infected with hiv-1. J Med Virol (2006) 78(2):141–7. doi: 10.1002/jmv.20520

11. Chong H, Xue J, Xiong S, Cong Z, Ding X, Zhu Y, et al. A lipopeptide hiv-1/2
fusion inhibitor with highly potent in vitro, ex vivo, and in vivo antiviral activity. J Virol
(2017) 91(11):e00288–17. doi: 10.1128/JVI.00288-17

12. Xiong S, Borrego P, Ding X, Zhu Y, Martins A, Chong H, et al. A helical short-
peptide fusion inhibitor with highly potent activity against human immunodeficiency
virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus. J Virol (2016) 91(1):
e01839–16. doi: 10.1128/JVI.01839-16

13. Blassel L, Zhukova A, Villabona-Arenas CJ, Atkins KE, Hué S, Gascuel O. Drug
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