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During the pandemic of severe respiratory distress syndrome coronavirus 2

(SARS-CoV2), many novel therapeutic modalities to treat Coronavirus 2019

induced disease (COVID-19) were explored. This study summarizes 195 clinical

trials of advanced cell therapies targeting COVID-19 that were registered over

the two years between January 2020 to December 2021. In addition, this work

also analyzed the cell manufacturing and clinical delivery experience of 26 trials

that published their outcomes by July 2022. Our demographic analysis found the

highest number of cell therapy trials for COVID-19 was in United States, China,

and Iran (N=53, 43, and 19, respectively), with the highest number per capita in

Israel, Spain, Iran, Australia, and Sweden (N=0.641, 0.232, 0,223, 0.194, and 0.192

trials per million inhabitants). The leading cell types were multipotent
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mesenchymal stromal/stem cells (MSCs), natural killer (NK) cells, and

mononuclear cells (MNCs), accounting for 72%, 9%, and 6% of the studies,

respectively. There were 24 published clinical trials that reported on infusions

of MSCs. A pooled analysis of these MSC studies found that MSCs provide a

relative risk reduction for all-cause COVID-19 mortality of RR=0.63 (95% CI 0.46

to 0.85). This result corroborates previously published smaller meta-analyses,

which suggested that MSC therapy demonstrated a clinical benefit for COVID-19

patients. The sources of the MSCs used in these studies and their manufacturing

and clinical delivery methods were remarkably heterogeneous, with some

predominance of perinatal tissue-derived products. Our results highlight the

important role that cell therapy products may play as an adjunct therapy in

the management of COVID-19 and its related complications, as well as the

importance of controlling key manufacturing parameters to ensure

comparability between studies. Thus, we support ongoing calls for a global

registry of clinical studies with MSC products that could better link cell product

manufacturing and delivery methods to clinical outcomes. Although advanced

cell therapies may provide an important adjunct treatment for patients affected

by COVID-19 in the near future, preventing pathology through vaccination still

remains the best protection to date. We conducted a systematic review and

meta-analysis of advanced cell therapy clinical trials as potential novel treatment

for COVID-19 (resulting from SARS-CoV-2 coronavirus infection), including

analysis of the global clinical trial landscape, published safety/efficacy

outcomes (RR/OR), and details on cell product manufacturing and clinical

delivery. This study had a 2-year observation interval from start of January

2020 to end of December 2021, including a follow-up period until end of July

to identify published outcomes, which covers themost vivid period of clinical trial

activity, and is also the longest observation period studied until today. In total, we

identified 195 registered advanced cell therapy studies for COVID-19, employing

204 individual cell products. Leading registered trial activity was attributed to the

USA, China, and Iran. Through the end of July 2022, 26 clinical trials were

published, with 24 out of 26 articles employing intravenous infusions (IV) of

mesenchymal stromal/stem cell (MSC) products. Most of the published trials

were attributed to China and Iran. The cumulative results from the 24 published

studies employing infusions of MSCs indicated an improved survival (RR=0.63

with 95% Confidence Interval 0.46 to 0.85). Our study is themost comprehensive

systematic review and meta-analysis on cell therapy trials for COVID-19

conducted to date, clearly identifying the USA, China, and Iran as leading

advanced cell therapy trial countries for COVID-19, with further strong

contributions from Israel, Spain, Australia and Sweden. Although advanced cell

therapies may provide an important adjunct treatment for patients affected by

COVID-19 in the future, preventing pathology through vaccination remains the

best protection.
KEYWORDS

cell and gene therapy (CGT), advanced therapy medicinal products (ATMPs),
mesenchymal stromal/stem cells (MSCs), severe respiratory distress syndrome
coronavirus 2 (SARS-CoV2), coronavirus induced disease 2019 (COVID-19)
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GRAPHICAL ABSTRACT

Systematic Review and Meta-Analysis of Cell Therapy for COVID-19.
1 Introduction

The outbreak of the novel severe respiratory distress syndrome

coronavirus 2 (SARS-CoV2) and its adjunct symptomatic,

Coronavirus 2019 induced disease (COVID-19), is one of the most

significant world health events in recorded history (1). Early reports

during the initial outbreak inWuhan, China, found that up to 14% of

patients presented with the severe form of COVID-19 and that

mortality was as high as 3% (2–4). Subsequently, the virus became

a global pandemic and new variants emerged (5–9). Major variants

responsible for surges of virus infections include “Beta” (South Africa,

May 2020), “Delta” (India, October 2020), and “Gamma” (Brazil,

November 2020) (Figure 1A) (7). During the summer and fall seasons

of 2022, the predominant circulating variants were sub-types of

“Omicron”, first documented in November 2021 across multiple

countries (10); E.g. the “Omicron” sublineage BQ.1 was designated as

a Variant of Interest (VOI) by the European Center for Disease

Prevention and Control (ECDC) as of 20th of October 2022 and it was

expected that by mid-November to beginning of December 2022

more than 50% of SARS-CoV-2 infections were due to BQ.1/BQ.1.1

(11). This demonstrates the rapid dynamics in virus changes (9). By

the end of December 2022, the worldwide death toll attributed

directly to COVID-19 had surpassed 6.6 million individuals (5–7).

The COVID-19 pandemic created an ideal situation for the

convergence of two research quests that had been progressing

independently for decades. The first quest came from

pulmonology, where researchers have sought to improve mortality

from acute respiratory distress syndrome (ARDS) for decades, with

mortality levels of 44% in clinical trials since the 1980’s (12). The

second quest, dating back from the 1990s, was the scientific effort to
Frontiers in Immunology 03
demonstrate clinical efficacy for cell therapy products containing

multipotent mesenchymal stromal/stem cells (MSCs) (2, 13–18).

Preliminary evidence suggested that MSCs might be beneficial for

pulmonary disorders (2, 18). This is supported by biodistribution

studies which demonstrated that MSCs given intravenously (IV)

rapidly localize to the lungs, where they may exert their beneficial

properties (2, 15, 16, 18). It is well established that the

immunomodulatory and regenerative properties of MSCs entail a

plethora of distinct synergistic mechanisms of action (MoAs) that

might help ameliorate pulmonary conditions (13, 18).

Between 2011 to 2019, the database CellTrials.org identified 16

clinical trials of MSCs for ARDS, and by April 2020, seven of these

trials were completed, and five were published (19). Unfortunately,

none of these publications demonstrated clinical efficacy of MSCs

against ARDS. Similarly, a literature search based on published studies

of MSCs for ARDS between 1990 to 2020 found nine such studies and

confirmed that the improvement in mortality was not significant (20).

In the past, poor outcomes considering ARDS mortality were often

attributed to the high complexity of ARDS etiology and pathology (e.g.

many small/difficult to target subgroups) and rapid disease progression

(e.g. short time window for interventional treatment). Thus, any studies

aiming to prove efficacy in ARDS typically require stringent inclusion/

exclusion criteria and large trial cohorts to control for confounders.

This has been challenging to achieve, given that patient enrollment only

reaches sufficient numbers in larger specialized clinical centers, thus

often requiring multi-center studies (12).

This led to the convergence of the quests mentioned above during

the COVID-19 pandemic. For the first-time large cohorts were broadly

available to effectively study novel therapeutic interventions.

Pulmonologists noted very early that COVID-19 differs from classic
frontiersin.org
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FIGURE 1

Study Design of Systematic Review & Meta-Analysis of Cell Therapy for COVID-19. (A) Global Emergence of SARS-CoV-2 Coronavirus and Pandemic
Countermeasures: Data on daily new registered cases of coronavirus infections (Millions of Infections, dotted black curve) and daily new deaths
related to coronavirus infection (Thousands of Deaths, red section/curve at bottom) were obtained from the COVID-Worldometer (6). Arrows
indicate the emergence of major SARS-CoV-2 variants and interventional measures (2020 start of novel vaccine development programs; 2021 start
of novel vaccine deployment, some countries already started in the late fall of 2020, e.g. the US started on the 14th of Dec, Israel on the 20th of Dec,
and Germany on 26th of Dec 2020; and 2022 emergence of antiviral immunity in population). Our study period of advanced cellular therapy clinical
trials for COVID-19 spans from January 2020 to end of December 2021, with follow-up search for publications until the end of July 2022. Pandemic
countermeasures are indicated below the graph, depicting 1) Pandemic Preparedness (e.g. including databases, guidelines, and procedures), 2)
Vaccination Programs (most effective countermeasures), and 3) Other Medical Countermeasures (e.g. advanced cell therapies, such as mesenchymal
stromal/stem cells, MSCs, of unknown value). (B) Systematic Review and Meta-Analysis of Advanced Cell Therapies for COVID-19: Until today most
information on advanced cell therapies for COVID-19 is still highly fragmented, in the sense that clinical trials and publications are being compiled
separately. This prompted us to conduct this systematic review and meta-analysis to summarize and combine the current knowledge, covering: 1)
Two years of registered clinical trial activity, 2) Summary of published clinical trial outcomes, cell product manufacturing and clinical delivery
between 2020 and mid-2022, 3) Analysis of risk and odds ratios for COVID-19 all-cause-mortality considering intravenous (IV)-use of MSCs, and 4)
A summary of the quality control routines, which were applied for the data-handling (Inclusion/Exclusion) in this study.
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presentations of ARDS (21), thus calling for an in-depth analysis of

clinical trial outcomes. However, current knowledge on the outcome of

cell therapy studies for both ARDS and COVID-19 is still fragmented

(Figure 1B) (2, 18). Covering the most relevant 2-year interval (Jan

2020 to Dec 2021), we here report the outcomes of the available

published clinical trials focusing on cell therapy of COVID-19 today.

This also covers specific intricacies of product manufacturing and

delivery to patients (2). Our analysis found that three quarters of cell

therapies deployed against COVID-19 relied on MSCs. During 2020

alone more than 100 clinical trials were registered worldwide that

employed MSCs to treat COVID-19 pneumonia and acute respiratory

distress. Indeed, published outcomes from those trials that focus on

MSC therapy for COVID-19 now appear to be sufficient to warrant a

first comprehensive examination of the safety and efficacy profiles of

MSCs for treating severe COVID-19.
2 Materials and methods

This study presents three types of data regarding cell-based

therapies for COVID-19 (Figure 1B): (1) We have collected two

years (from Jan 2020 to Dec 2021) of registered clinical trial activity

extracted from worldwide registries; (2) We have gathered the
Frontiers in Immunology 05
published clinical outcomes and extracted any available information

on manufacturing and clinical delivery of MSC products from the

published studies to study the potential impact of cell product

manufacturing and mode of delivery on clinical efficacy; (3) We have

performed a relative risk ratio (RR) and odds ratio (OR) analysis for all-

cause COVID-19 mortality for studies employing intravenous use of

MSCs (most frequent).
2.1 Identification of registered
clinical trials, keyword search,
inclusion/exclusion criteria

The methodology for identifying and assembling the database of

clinical trials was the same as described earlier by CellTrials.org (22,

23). Briefly, five main steps were performed monthly: (2.1.1) Keyword-

based search (keywords shown below) for advanced cell therapy clinical

trials worldwide, (2.1.2) Elimination of false positives, (2.1.3)

Elimination of duplicate entries, (2.1.4) Gathering detailed data from

included clinical trials, and (2.1.5) Extracting trials from the primary

data-base where the indication for cell therapy use was COVID-19. The

accuracy of the data search relies on the usage of multiple national

registries of clinical trials (Table 1), including Australia and New
TABLE 1 National Registries Searched for COVID-19 Advanced Cell Therapy Clinical Trials.

Nation No. of
Trials

Registry Name Registry URL

Australia & New
Zealand

4 Australian New Zealand Clinical Trial Registry (ANZCTR) https://www.anzctr.org.au/

Brazil 2 Registro Brasileiro de Ensaios Clinicos (ReBEC) https://ensaiosclinicos.gov.br/

China 28 Chinese Clinical Trial Registry (ChiCTR) http://www.chictr.org.cn/

Cuba 1 Registro Público Cubano de Ensayos Clıńicos https://rpcec.sld.cu/

EU 4 EU Clinical Trials Register (EudraCT) https://www.clinicaltrialsregister.eu/

Germany 0 German Clinical Trials Register (DRKS) https://www.drks.de/

India 3 Clinical Trials Registry-India (CTRI) http://ctri.nic.in/

Iran 18 Iranian Registry of Clinical Trials (IRCT) https://www.irct.ir/

Japan 1 JAPIC Clinical Trials Information https://www.clinicaltrials.jp/

Japan 0 Japan Medical Association Clinical Trial Registry (JMA-CTR) http://www.jmacct.med.or.jp/

Japan 1 Japan Registry of Clinical Trials https://jrct.niph.go.jp/

Japan 0 Japan University hospital Medical Information Network Clinical
Trial Registry (UMIN-CTR)

https://www.umin.ac.jp/ctr/

Netherlands 0 Netherlands Trial Register (NTR) http://www.trialregister.nl/

Singapore 0 Health Sciences Authority Clinical Trial Registry https://www.hsa.gov.sg/clinical-trials/clinical-trials-register

South Korea 1 Clinical Research Information Service from South Korea (CRiS) https://cris.nih.go.kr/

Thailand 0 Thai Clinical Trials Registry (TCTR) https://www.thaiclinicaltrials.org/

USA 131 ClinicalTrials.gov https://clinicaltrials.gov

WHO 1 World Health Organization International Clinical Trials Registry
Platform (ICTRP)

https://www.who.int/clinical-trials-registry-platform/ also
https://www.isrctn.com/
This study covers 195 clinical trials worldwide conducting advanced cell therapy for COVID-19 that were registered during the time period Jan. 2020 to Dec. 2021, with a follow-up until end of
July 2022 to detect 26 published outcomes of trials.
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Zealand, Brazil, China, Cuba, Germany, India, Iran, Japan, The

Netherlands, Singapore, South Korea, Thailand, the United States of

America (USA), the European Union (EU), and World Health

Organization (WHO). The time frame for identifying advanced cell

therapy trials for COVID-19 was between January 2020 until end of

December 2021, containing the large majority of so far registered

clinical trials (as detailed below). A tabular excel sheet summary of all

195 identified studies including 20 individual parameters can be found

in Table S1.

2.1.1 Keyword search
The keywords used in the first step, broadly designed to capture all

advanced cell therapies, included: “COVID-19”, “cell”, “cell therapy”,

“cancer vaccine”, “CAR-T”, “chimeric antigen”, “DC”, “NK”, “TIL”,

“tumor infiltrating”, “adoptive”, “regenerative”, “mesenchymal”,

“adipose”, “bone marrow”, “cord blood”, and “umbilical”.

2.1.2 Elimination of false positives
A second curation step was needed to screen for studies that

were performing advanced cell therapy and were not just a false hit

on a keyword. We applied the definitions of Advanced Cell Therapy

Medicinal Products (ATMPs) adopted by the European Medicines

Agency (EMA), and Human Cellular Tissue Products (HCT/Ps)

adopted by the US Food and Drug Administration (FDA) (24–26).

This step was performed by having at least two scientists review

each trial description.

2.1.3 Elimination of duplicate entries
To remove double postings of the same trial in more than one

registry, scientific review was applied. If the trial was listed on the

US registry ClinicalTrials.gov and another national registry within

the same month, then the trial was assigned to ClinicalTrials.gov. If

the trial appeared on a second registry months later, it stayed

assigned to the month and registry where it first appeared.

2.1.4 Extraction of trial data
The dataset was built by recording the following parameters for

each trial: registration date, clinical trial unique ID, secondary ID if

any, country of registration, phase, status, cell type, cell source,

route of administration, dosage if known, clinical indication, donor

type (allogenic or autologous), target enrollment, age ranges of the

patient population, type of sponsor (academia or industry), names

of the sponsors, and product name if any. (1.5) Selection of trials

with COVID-19 indication: The final step for this study was to

extract the clinical trials of cell-based therapies where the indication

for clinical use was COVID-19. On a monthly basis, we posted them

online as an open-access community service. Since the early months

of the COVID-19 pandemic, our living database of clinical trials has

been listed as a resource on the evidence hub of the Center for

Science in the Public Interest (CSPI) (27).
2.2 Published clinical trial outcomes,
cell therapy manufacturing, and clinical
cell delivery

The methodology for gathering information on safety and

efficacy from clinical trials of cell-based therapies for COVID-19
Frontiers in Immunology 06
has been previously described (23). Briefly, two complementary

methods were employed. First, the PubMed registry was searched

for publications using the keywords “COVID”, “cell” and “clinical

trial”. Second, the search was refined by identifying publications

containing the unique ID of each registered trial in our database. We

only included publications reporting the outcomes of registered

clinical trials but excluded case reports which could not be linked

to registered trials. The collected parameters were as follows:

connection between trial and publication, country where study was

conducted, study design, study endpoints, target enrollment of trial,

actual enrollment in paper, cell type(s), cell source(s), cell dose(s),

route of administration, adverse events, survival of cell therapy

patients and controls. The cut-off date for including publications

from trials registered in 2020 and 2021 was the end of July 2022.
2.2.1 World map figures
Global distribution of cell therapy trials for the treatment of

COVID-19 per country was displayed as heat map either for the

absolute number of trials per country or per capita values. Maps

were drawn using the “R” packages ‘maps’ (28) and ‘ggplot2’ (29).

The corresponding analysis scripts are available at https://

github.com/Starahoush/MSC-COVID19_metaanalysis.
2.2.2 Information on cell therapy manufacturing
from published studies

Manufacturing and clinical delivery information for each MSC

product were obtained upon close inspection of papers to extract

information considering: cell sources, donors, cell isolation, cell

expansion, cellular passages, medium formulation, storage (fresh or

frozen) (30, 31), and quality control steps (e.g. did MSCs fulfill ISCT

minimal criteria)? (17, 32, 33). This search often required checking

additional sources when the cell product was supplied by a contract

manufacturer or described in an earlier publication.
2.3 Risk ratio and odds ratio for COVID-19
all-cause mortality for published studies

Statistical analysis was carried out in “R” version 4.2.1 (34), the

meta package version 6.0.0, and visualized via forest plots from the

same package (35). The Risk Ratio (RR) and the Odds Ratio (OR)

were calculated by using the Mantel-Haenszel test (36) and

employed to analyze the effect of MSC therapy on the risk/odds

of death following COVID-19 infection. The 95% confidence

interval for both ratios and the combined statistics are reported

for each study. The code used for this analysis was uploaded to

https://github.com/Starahoush/MSC-COVID19_metaanalysis.

2.3.1 Handling of missing data
The RR and OR calculations require input studies to have two

arms, one of the patients undergoing experimental treatment versus

a second arm of control/placebo patients. However, during the

COVID-19 pandemic, many clinical trials were conducted that only

treated patients and did not have a control group. To incorporate

their published outcomes, the following methodology was used to
frontiersin.org
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integrate single-arm studies, which lacked control data. First, the

mean and median data of the controlled studies were obtained.

Then, two assumptions were made about the studies without

controls: First, it was assumed that the mean behavior of the

missing controls was the same as that in the controlled studies,

and second, it was assumed that the ratio of MSC patient number to

control patient number was the same as the median for the

controlled studies. With these two assumptions it was possible to

incorporate the experimental results from single-arm studies to

calculate RR and OR for all studies as a group. Of the 24 published

MSC studies, 17 had complete information regarding the number of

participants and events for both treatment and control groups (37–

53); whereas seven studies were missing data for the control group

(54–60). Also, three studies (43, 46, 49) were double-arm-zero-

event, and we employed a treatment arm continuity correction

(TACC) to incorporate them, since otherwise risk/odds ratios could

not have been calculated (61, 62).
3 Results

3.1 2-Year registered global clinical trial
landscape of advanced cell therapies for
COVID-19

A comprehensive search for advanced cell therapy trials to

target the clinical indication COVID-19 and related complications

was conducted in 18 national and international registries (Table 1).

The cell therapy products employed in these trials are referred to as

advanced therapy medicinal products (ATMPs) or human cellular

and tissue products (HCT/Ps) in the EU and US, respectively (2, 24,

26). Between January 2020 and December 2021, 195 advanced-cell-

therapy-based clinical trials targeting COVID-19 and related

complication were registered worldwide (Table S1). While we

have released first smaller compilations in June 2020 and 2021

(63, 64), the current study covers the most relevant 2-year time

window from January 2020 to the end of December 2021

(Figures 1A, 2A). The relevance of this time frame is depicted by

the initial peak of monthly registered clinical trials in the first

months of the pandemic, followed by dramatic decline and a long

tail afterwards. The first clinical trial registrations appeared in

China and USA in February 2020. Some February trials were

registered retrospectively, but subsequent publications revealed

that patients began receiving cell therapy for COVID-19 as early

as January 2020 in China. The peak of registrations was April 2020.

Noteworthy, registrations of cell therapy trials for COVID-19 had

only one peak in spring 2020, although global COVID-19 cases

went through four major surges during the 2-year timeframe (5–7).

The peak in trial registrations subsided months before the roll out of

vaccination programs (65).

To date, information on advanced cell therapy trials for

COVID-19 remains fragmented, although first valuable literature

reviews and meta-analyses have been conducted, this is the first

study that comprehensively connects trials to subsequent

publications. We have listed a summary of prior compilations in

descending order of the cut-off date of their conducted search
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(Table 2) (63, 64, 66–86). Reviews of COVID-19 clinical trials not

strictly focused on cell therapy were excluded from the list.

Importantly, the 195 trials identified in this article are more than

double the number presented by previous authors, which

demonstrates the outreach of our data search criteria. Our

compilation of cell therapy trials for COVID-19 is so far the only

one that offers worldwide trial data versus time for a 2-year time

frame (Figure 2A). Our review also tracks contributions of different

clinical trial registries over time, illustrated by the respective color

coding, which indicates a dominance of contributions from the US

(blue), Chinese (red), and Iranian (green) registries, while the

contributions from other registries (grey) were smaller. This is

partly because the most dominant US registry (clinical.trials.gov,

131 of the 195 registered trials) was used as the default template in

our search. It must be noted, that in some countries that have a

clinical trial registry, researchers are obligated to use their national

registry, and cross posting their trial to ClinicalTrials.gov is

optional, so that ClinicalTrials.gov should never be relied upon as

a complete international record of clinical trials.

A global heatmap of the countries where clinical trials of cell

therapy for COVID-19 were conducted, regardless of where they

were registered, is shown in Figure 2B. Only one trial took place in

more than one country. Among 30 participating countries, leaders

were the US (n=53, 27%), China (n=43, 22%), Iran (n=19, 10%),

and Spain (11, 6%), while other countries hosted <4% (Figure 2B

top). The highest relative trial numbers per capita came from Israel,

Spain, Iran, Australia, and Sweden (N=0.641, 0.232, 0,223, 0.194,

0.192 trials/million inhabitants, respectively) (Figure 2B bottom).

Our compilation is the only one that identifies Iran as the 3rd

absolute and relative leading contributor. Presumably, this is

because most trials in Iran are only listed on the Iranian national

registry, and not cross-posted to ClinicalTrials.gov. Noteworthy, the

list of countries leading in cell therapy for COVID-19 through the

end of 2021 (US, China, and Iran) does not match the lists of

countries that reported the highest number of COVID-19 infections

(US, India, France, Brazil) or the highest number of COVID-19

related deaths (US, Brazil, India, Russia) during that timeframe (6).
3.2 Types of cell products in registered
clinical trials

Detailed information about the 195 advanced cell therapy trials for

COVID-19 registered 2020-2021, including up to 20 individual

parameters for each registered trial (listed in the Methods) are listed

in Table S1 with representative plots of important parameters shown in

Figure 3A and the top of 3B. While the terminology of our database

uses “route of administration” and “cell storage”, in the discussion these

topics are combined as “clinical delivery”.Among the 195 registered cell

therapy trials for COVID-19, most (n=141, 72%) tested some type of

MSC product (Figure 3A). The next most common cell types were

natural killer (NK) cells and mononuclear cells (MNC), employed in

9% and 6% of the trials, respectively. Interestingly, n=7 of the registered

trials used more than one cell type, including more than oneMSC type,

which is why the total number of cell products is n=204 in the chart

(Figure 3A, left panel). Even with all cell types counted individually
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B

FIGURE 2

Global Landscape of Cell Therapy Trials for COVID-19. (A) Number of Advanced Cell Therapy Trials for COVID-19 Registered per Month: Data on the
number of registered advanced cell therapy trials (Trials per Month; depicted is the 2-year interval of interest from the start of January 2020 to end
of December 2021) were collected from available national and international clinical trial registries, e.g. the American registry (ClinicalTrials.gov;
shown in blue), Chinese registry (ChiCTR, shown in red), Iranian registry (IRCT, shown in green), and other registries (shown in grey), depicting a peak
in advanced cell therapy trial registrations between February to July of 2020, with a subsequent long tail of decline in cell therapy trial activity, which
occurred at the same time the novel SARS-CoV-2 vaccines showed first success in early clinical trials and started to be deployed (e.g. vector or
mRNA-based vaccines); and (B) Global Distribution of COVID-19 Advanced Cell Therapy Trials (Absolute and Relative No): The top panel depicts the
Absolute Numbers (Total Number of Trials per Country) identifying the US (n=53), China (n=43), Iran (n=19), and Spain (n=11), as the most active
countries considering the total trial number output, while the bottom panel depicts the Relative Trial Numbers (National Trials per Million Inhabitants)
identifying Israel, Spain, Iran, Australia, and Sweden (N=0.641, 0.232, 0,223, 0.194, and 0.192 trials per million inhabitants) as the most prolific
countries relative to their (smaller) national population size, again depicting Iran in place three as for the total trial output.
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MSC-product-based trials still accounted for 147/204 (72%) of the

registered cell therapy trials. The most common type of MSC source

was perinatal tissue (PT)-derived PT-MSCs, accounting for 70 trials

(34% of all cell types, or 48% of MSC products in trials) (Figure 3A

right panel). Within this category we included umbilical cord (UC)-

derived UC-MSCs in 58 trials, or other perinatal sources in 12 trials.

This was followed by adipose tissue (AT)-derived AT-MSCs in 27

studies (13% of cell types in trials, or 18% of the MSC products), and

bone marrow (BM)-derived BM-MSCs in 22 studies (11% of all cell

types in trials, or 15% of the MSC products), and other types of MSC

sources in 28 trials (14% of all cell types, and 19% of the

MSC products).

Most of the registered trials were early phase research, with at

least 56% below phase 2 (Figure 3B1 and Table S1), which is

probably an underestimate of early phase trials, since 15% of

trials were of unknown phase. There were four phase 3 trials and

four trials registered with US FDA under Expanded Access

programs. The sponsors of the registered clinical trials were
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exclusively academic for 46% of the trials (Figure 3B2), but the

remaining 54% of trials had industry support, typically from the

company that manufactured the cell therapy product used in the

trial. The large majority, 76% of all registered trials indicated an

allogeneic product (Figure 3B3 and Table S1), while only 11% were

autologous and 13% of trials did not report or define this aspect.

The rationale behind the predominant use of (allogeneic) donor

cells and off the shelf products is probably that the enrolled COVID-

19 patients were often critically ill, and either unable to provide

autologous cells (patient derived), or unable to wait for the

autologous product to be manufactured.
3.3 Types of cell products in published
outcomes of clinical trials

Our search to match clinical trials with reports of their

outcomes identified 26 peer reviewed papers accepted for
TABLE 2 Previous Compilations of Cell Therapy Trials for COVID-19 Sorted by Search-End-Date.

No. of Trials Search End Registries Searched Authors and Reference

195 (141 MSC) 2021-12 ALL (WHO) Couto et al., 2023 (this article)

82 MSC 2021-10 ClinicalTrials.gov Grumet Sherman Dorf 2022 (66)

51 MSC 2021-10 ClinicalTrials.gov & ChiCTR Lu et al., 2022 (67)

185 (134 MSC) 2021-06 ALL (WHO) Verter & Couto 2021 (64)

89 2020-12 ClinicalTrials.gov Zaki et al., 2021 (68)

22 MSC 2020-11 WHO Khoury et al., 2021 (69)

88 2020-08 WHO Li et al., 2020 (70)

79 2020-08 ClinicalTrials.gov & ChiCTR Kim & Knoepfler 2021 (71)

71 not stated ClinicalTrials.gov Golchin 2021 (72)

111 (85 MSC) 2020-06 WHO Verter & Couto 2020 (63)

57 2020-06 ClinicalTrials.gov & ChiCTR Choudhery & Harris 2020 (73)

54 MSC 2020-06 ClinicalTrials.gov Shetty et al., 2021 (74)

4 NK 2020-05 ClinicalTrials.gov Market et al., 2020 (75)

61 2020-04 PubMed & Cochrane Rada, Corbalán, Rojas 2020 (76)

54 2020-04 ClinicalTrials.gov & WHO Liao et al., 2020 (77)

29 MSC 2020-04 ClinicalTrials.gov & ChiCTR Sahu, Siddiqui, Cerny 2021 (78)

28 MSC 2020-04 ClinicalTrials.gov & WHO Zumla et al., 2020 (79)

16 2020-04 WHO Thorlund et al., 2020 (80)

15 2020-04 ClinicalTrials.gov Babaei et al., 2020 (81)

31 2020-03 ClinicalTrials.gov & ChiCTR Golchin et al., 2020 (82)

23 2020-03 ClinicalTrials.gov & ChiCTR Khoury et al., 2020 (83)

24 MSC 2020-03 WHO Ji, Liu, Zhao 2020 (84)

24 MSC 2020-03 WHO Lythgoe & Middleton 2020 (85)

5 MSC 2020-02 ClinicalTrials.gov Liu et al., 2020 (86)
Previous published compilations of clinical trials conducting cell therapy for COVID-19. Publications are sorted according to the cut-off date of trial collection. Abbreviations: WHO, world
health organization; and ChiCTR, Chinese clinical trials registry.
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B

FIGURE 3

Cell Types and Manufacturing in Cell Therapy Trials for COVID-19. (A) Different Types of Cell Products Tested as Therapy for COVID-19 (2020-
2021): The figure depicts the total number of advanced cell therapy products tested as treatment for COVID-19 in clinical trials registered between
the start of January 2020 to end of December 2021 (The number of 204 products depicted here is higher than the 195 trials identified in total, due
to the testing of multiple products in some studies). The products tested included several hematopoietic cell types (e.g. Natural Killer cells, virus-
specific and regulatory T cells, but also mononuclear, dendritic cells, and others types of products), and in particular mesenchymal stromal/stem
cells (MSCs), accounted for 147/204 products (left panel), including different subfractions of MSC product types (right panel; e.g. adipose tissue (AT-
MSC; 27/147), bone marrow (BM-MSC; 22/147), and perinatal tissue (PT)-derived cells (70/147), with the latter being most abundant, which was
mostly accounted for by the large number of umbilical cord (UC)-derived MSCs (58/147) products tested. (B) Clinical Trial Information, Cell Product
Manufacturing and Clinical Delivery: (B1-3) Depicts information for all registered trials (n=195), including (B1) Clinical trial phase, (B2) Clinical trial
sponsor, and (B3) Cell product HLA-matching, while (B4-9) Depicts information for the published MSC trials (n=24), including (B4) MSC isolation
process, (B5) MSC culture process, (B6) MSC passage number, (B7) MSC culture media, (B8) MSC storage and clinical delivery, (B9) MSC dose and
dosing frequency. Some displays in (B4-9) are marked with a star (*) to indicate that numbers can be greater than 24, as some published trials
employed more than one method or product. Altogether, our analysis depicts a strong dominance in the data set for early stage trials (56%),
employing allogeneic MSC products (76%), which were isolated by explant method (42%), cultured in 2D monolayer flasks (58%), expanded up to
passage 5 (58%), and delivered intravenously (100%), mainly as cryostorage-derived freeze-thawed product (64%), and dosed below 3 million cells/kg
(75%), in either one to two (46%), or even several more doses (54%), most likely to increase the total number of applied therapeutic cells over a given
time frame, without increasing the individual therapeutic doses above a limit of 3 million cells/kg. Interestingly, some studies (17%) employed MSCs
expanded above passage 5 up to passage 12. Many MSC products were applied thawed shortly upon retrieval from cryostorage as frozen cells (64%),
which has previously been shown to compromise the therapeutic properties of clinical MSC products and may even have accounted for earlier trial
failures (2, 14, 16–18, 30, 33, 87–91).
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publication by the end of July 2022 (Table 3) (37–60, 92, 93). We

also included a clinical trial of MSCs for ARDS that was originally

registered in 2017 and published in 2021 (57). The study was

included, since during the pandemic, the researchers pivoted to

conduct a study of MSCs for ARDS induced by COVID-19 (38).

Thus, the trial met our inclusion criteria as a published outcome of a

registered clinical trial. As stated in the Methods, we excluded

publications that could not be associated with registered trials, such

as an extensive report on 210 patients that were treated under the

approval from the Ministry of Health in Turkey (94), but not

registered as a clinical trial. Our database of published trial

outcomes includes two pairs of papers from two research groups

in China, where in each case the group initially published a safety

study (45, 53) and later published their data in a controlled trial (46,

49), respectively. The therapeutic modality reported across the

published clinical trials was overwhelmingly allogeneic in all but

one of the 26 published trials (96%). This confirms that those

allogeneic products favored completion of trials with subsequent

publication, while virtually no trials with autologous products were

reported within the time frame of our database. Interestingly, many

patients received cells from individual (HLA disparate) donors

during each infusion in 13 of the 26 published studies (Table 4),

while two studies used banks of pooled donors, but in 11 studies the

donor selection is unknown. This frequent use of allogeneic

products raises the issue of potential alloimmune-cross-reactivity

from multiple infusions of HLA-mismatched cell products, which

should be followed up in more detail in future studies. However,

given the widely postulated hypoimmunogenic or immune-

privileged status of MSCs, or better said the “immune-evasive

nature of MSCs” (95), this critical aspect in clinical cell

transplantation appeared to be of less concern in clinical

trial design.

By our count, 18 of 26 published trials used cell products from a

commercial entity (Table 4). Examples are proprietary cell product

under development, or cells manufactured by a contract

manufacturing organization (CMO), a biotech spin-off, or a cell

therapy clinic. By comparison, eight studies used cells manufactured

in the lab of an academic center, such as a university lab or a research

hospital. This split between commercial facilities versus academic labs

strongly impacts manufacturing data reporting. In the case of

academic labs, manufacturing details are often available, but

frequently buried in a supplement of the COVID-19 study, or in a

previous paper. When authors used commercial facilities, they often

did not describe cell manufacturing, simply citing that the cell

products were approved for clinical use by their government. Some

of the commercial entities that provided cells for COVID-19 trials

have never described their cell manufacturing in any publication, so it

is impossible for a reader to know how the cell product was produced

and characterized. Given that MSCs were the dominant cell product

in the registered cell therapy trials for COVID-19 (72% of all

registered trials), it is not surprising that MSC products were

employed in 24/26 (92%) of the published clinical trials, while the

remaining two employed memory T-cells from convalescent donor

plasma (92), or non-hematopoietic cells from peripheral blood (93).

As indicated above (Figure 3A; Tables 3, S1) the sources of the MSCs
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in these studies were remarkably heterogeneous, with many

additional variables during their manufacturing. The sources

included MSCs from BM, from AT, and from various PT sources,

such as from UC-derived Wharton’s Jelly, from Wharton’s Jelly plus

selection for ACE2-negative cells, from the subepithelial layer of the

UC after discarding the Wharton’s Jelly, from the fetal placenta, from

the decidua (maternal side) of the placenta, from menstrual blood,

but also MSCs derived from an embryonic cell line, and stromal cells

isolated from heart tissue. The closest to a uniform group of cell types

is the 11 trials that employed MSCs from Wharton’s Jelly alone

without further selection.

We have summarized the cell product manufacturing for all 26

published trials in Table 4, while Figure 3B summarizes parameters

for the 24 published studies on intravenous MSC therapy. Some

trials employed more than one MSC product with different

processing, such as fresh placenta MSCs and frozen UC MSCs

(Table 3), so that for some parameters in 3B the total exceeds n=24.

The 24 published studies that employed MSCs relied mainly on cell

isolation by explants in nine trials (Figure 3B4 and Table 4), by

enzymatic digestion in five trials, one trial combined MSCs isolated

by each method, one trial alternated between MSCs isolated by each

method, and the cell isolation method in the other eight MSC trials

was unknown. The three studies that started with blood (either

peripheral or menstrual blood), used centrifugation as their first

step towards cell isolation. In the MSC trials, the cell expansion/

culture process was monolayer in 14 trials (Figure 3B5 and Table 4),

only one MSC trial employed a bioreactor, and not stated in nine

studies. The number of passages in MSC products was reported for

18 trials and ranged from P3 to P12 with a median of P4 (Figure 3B6

and Table 4), while passages were unknown for six MSC trials. The

medium used to grow MSCs for human clinical application

contained fetal bovine serum (FBS) in seven of the products

(Figure 3B7 and Table 4), while xeno-free medium was used in

eight MSC products, and the medium formulation was unknown in

nine products. Considering their storage and clinical delivery, 15 of

the reported MSC trials used a previously frozen product readily

derived from prior cryostorage (Figure 3B8 and Table 4). Two MSC

trials used cells fresh from culture, one trial alternated between fresh

or frozen MSC products, and in six trials the storage was not

reported. The 24 published MSC trials all delivered MSCs by

intravenous (IV) route of administration (Table 3). The cell dose

was scaled by patient weight in 14 of the published clinical trials but

set at a fixed dose in the remaining ten studies (Figure 3B9). For a

patient weighing 70kg, the average cumulative MSC dose across all

the trials was 225 million cells per patient, ranging from a minimum

of 70 million to a maximum of 630 million cells per patient, thus

typically 1-10 million cells/kg of patient body weight, which is the

most commonly reported dose range in clinical trials involving IV

delivery of MSCs (2, 16–18). Considering patient enrollment,

despite the difficulty accruing patients for cell therapy trials

during a pandemic with moving surges, we found that five of the

26 published trials managed to accrue more patients than the target

enrollment listed in their trial registration (Table 5). The average

target enrollment was 40 patients and the average achieved

enrollment was 29 patients.
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TABLE 3 Published Cell Therapy Trials for COVID-19 with Details on Manufacturing.

Cell Product
nufacturing Method

Quality Control
Characterization

s; Cell isolation: Explants; Expansion: ND;
Medium: ND; and Storage: Frozen

Immunophenotype,
Sterility, and Viability

als/C-section; Cell isolation: Enzymatic;
ayer; Passage: P6/P7; Medium: Xeno-Free;

Storage: Frozen

Immunophenotype,
Trilineage Differentiation,
Sterility, Karyotype, and

Viability

ation: Explants; Expansion: ND; Passage: P6/
edium: ND; and Storage: ND

Immunophenotype

als; Cell Isolation: Enzymatic; Expansion:
3; Medium: a-MEM + 20% FBS; and Storage:

Fresh

Immunophenotype,
Trilineage Differentiation,
Sterility, and Viability

olation: ND; Expansion: ND; Passage: ND;
ium: ND; Storage/Use: ND

ND

ls; Cell Isolation: Adherence; Expansion:
3; Medium: DMEM + 10% FBS; and Storage:

Frozen

Immunophenotype,
Morphology, Karyotype,

Viability,
Immunosuppression

l Isolation: Sepax and Adherence; Expansion:
Bioreactor; Passage: P3; Medium: DMEM +
hPL; and Storage: Frozen

Immunophenotype,
Sterility Viability

aginal Delivery; Cell Isolation: UC Enzymatic
Expansion: UC ND vs Placenta Monolayer;
4 vs Placenta ND; Medium: DMEM + 10%

FBS; Storage:
s Frozen vs Placenta MSCs Fresh

Immunophenotype, and
Viability

olation: ND; Expansion: ND; Passage: ND;
edium: ND; Storage: ND

ND

Isolation: eSC-line; Expansion: Monolayer;
edium: Xeno-free; and Storage: Frozen

Immunophenotype,
Sterility, Trilineage
Differentiation, and
Tumorigenesis
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Trial Publication
Reference

Country Enrollment
Target
(Actual)

Principle
Cell Type

Cell
Dose
and

Delivery

Manufacturer
(Product Name,

if any)
Ma

NCT04392778 Adas et al.,
2021 (37)

Turkey 30 (30) UC-derived
PT-MSCs

3 x 3.0
million

cells/kg IV

Liv MedCell, Liv
Hospital

Donors: Individua
Passage: P7

IRCT20200621047859N4 Aghayan et al.,
2022 (38)

Iran 20 (20) Placenta-
derived PT-

MSCs

1 x 1.0
million

cells/kg IV

Motamed Cancer
Institute, Tehran
Univ of Medicine

Donors: Individ
Expansion: Mono

NCT04457609 Dilogo et al.,
2021 (39)

Indonesia 40 (40) UC-derived
PT-MSCs

1 x 1.0
million

cells/kg IV

Stem Cells Medical
Technology, Cipto
Mangunkusumo

Hospital

Donors: ND; Cell Iso
P7; M

IRCT20160809029275N1 Farkhad et al.,
2022 (40)

Iran 20 (20) UC-derived
PT-MSCs

3 x 1.0
million

cells/kg IV

Mashhad University Donors: Individu
Monolayer; Passage: P

NCT04269525 Feng et al.,
2020 (54)

China 16 (16) UC-derived
PT-MSCs

4 x 100
million
cells IV

Jilin Tuoha Biotech Donors: ND; Cell I
Me

NCT04445454 Gregoire et al.,
2022 (41)

Belgium 20 (32) BM-derived
BM-MSCs

3 x 1.5-3.0
million

cells/kg IV

University of Liège Donors: Individu
Monolayer; Passage: P

NCT04377334 Häberle et al.,
2021 (42)

Germany 40 (23) BM-derived
BM-MSCs

2-3 x 1.0
million

cells/kg IV

Medac
(MSC-FFM, aka

Obnitix)

Donors: 8 pooled; Ce
Monolayer/Quantum

10

IRCT20200217046526N2 Hashemian
et al., 2021 (55)

Iran 6 (11) UC-derived vs
Placenta-

derived PT-
MSCs

3 x 200
million
cells IV

Royan Institute Donors: Individuals/V
vs Placenta Explants
Passage: UC-MSCs

UC-MSC

NCT04416139 Iglesias et al.,
2021 (56)

Mexico 10 (5) UC-derived
PT-MSCs

1 x 1.0
million

cells/kg IV

CBCells Biotech Donors: ND; Cell I
M

NCT04535856 Karyana et al.,
2022 (43)

Indonesia 9 (9) Embryonic-
Cell-derived

MSCs

50-100
million
cells IV

National Institute of
Health, South Korea

Donors: Fetus; Cel
Passage: P12; M
l
;

u
l

l

s
d

a

l

%

;
P

s

l
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TABLE 3 Continued

Cell Product
nufacturing Method

Quality Control
Characterization

als; Cell isolation: Explants; Expansion:
e: P3; Medium: a-MEM + 10% hPL; and

Storage: Frozen

Immunophenotype,
Sterility, Viability, and

Trilineage Differentiation

solation: ND; Expansion: ND; Passage: P3;
EM + 2% FBS; and Storage: Frozen

Immunophenotype,
Viability, and Trilineage

Differentiation

solation: Explants; Expansion: Monolayer;
edium: Serum-Free; and Storage: ND

Morphology,
Immunophenotype, and
Trilineage Differentiation

ls; Cell Isolation: Enzymatic or Explants;
ge: P4; Medium: Nutristem® MSC XF + 5%
PL; and Storage: Frozen

Immunophenotype,
Sterility, Viability,
Karyotype, T-cell-

Inhibition Proliferation
Assay

nt donors 1 HLA match with patient; Cell
Plus; Expansion: Monolayer; Passage: P12;
: SF/XF; and Storage: Frozen

Immunophenotype and
Viability

als/C-section; Cell Isolation: Enzymatic;
r; Passage: P3; Medium: IMDM + 20% FBS;
and Storage: Frozen

Immunophenotype,
Sterility, and Trilineage

Differentiation

C-section; Isolation: Enzymatic; Expansion:
4/P5; Medium: ND; and Storage/Use: Frozen

Immunophenotype,
Viability, and Karyotyping

als; Cell Isolation: Explants; Expansion:
ge: P5; Medium: ND; and Storage: Fresh

Immunophenotype, and
Trilineage Differentiation

ls Liposuction; Cell Isolation: Enzymatic;
r; Passage: ND; Medium: DMEM + 10% FBS;
and Storage: Frozen

Morphology,
Immunophenotype,

Viability, and Trilineage
Differentiation

olation: ND; Expansion: ND; Passage: ND;
MSC SFM/XF medium; and Storage: ND

ND
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Trial Publication
Reference

Country Enrollment
Target
(Actual)

Principle
Cell Type

Cell
Dose
and

Delivery

Manufacturer
(Product Name,

if any)
Ma

NCT04355728 Lanzoni et al.,
2021 (44)

USA 24 (24) UC-derived
PT-MSCs

Sub-Epithelial

2 x 100
million
cells IV

Therapeutic
Solutions

International
(JadiCell)

Donors: Individ
Monolayer; Passa

ChiCTR2000029990 Leng et al.,
2020 (45)

China 120 (10) UC-derived
PT-MSCs
ACE2neg

1 x 1.0
million

cells/kg IV

Qingdao Co-orient
Watson Biotech

Group

Donors: ND; Cell
Medium: DM

NCT04252118 Meng et al.,
2020 (46)

China 20 (9) UC-derived
PT-MSCs

3 x 30
million
cells IV

Vcanbio Cell &
Gene Engineering

Donors: ND; Cell
Passage: P5; M

NCT04333368 Monsel et al.,
2022 (47)

France 40 (45) UC-derived
PT-MSCs

3 x 1.0
million

cells/kg IV

Saint-Louis Hospital
Cell Therapy Unit

Donors: Individu
Expansion: ND; Pass

NCT04578210 Pérez-Martıńez
et al., 2021 (92)

Spain 58 (9) Memory T-cells
(CD45RA-)

1 x 0.1,
0.5, 1.0
million

cells/kg IV

Hospital La Paz Donors: Convalesc
Isolation: CliniMac

Mediu

U1111-1254-9819 Rebelatto et al.,
2022 (48)

Brazil 15 (17) UC-derived
PT-MSCs

3 x 0.5
million

cells/kg IV

Pontifıćia
Universidade

Católica do Paraná

Donors: Individ
Expansion: Monolay

IRCT2017010531786N1 Sadeghi et al.,
2021 (57)

Iran 15 (10) Placenta
Decidua-derived

MSCs

1-2 x 1.0
million

cells/kg IV

Taleghani Hospital
(DSCs)

Donors: Individual
Monolayer; Passage:

IRCT20190717044241N2 Saleh et al.,
2021 (58)

Iran 5 (5) UC-derived
PT-MSCs

3 x 150
million
cells IV

CellThecPharmed Donors: Individ
Monolayer; Pass

2020-001266-11 Sanchez-Guijo
et al., 2020 (59)

Spain 100 (13) AT-derived
AT-MSCs

(Liposuction)

1-3 x 1.0
million

cells/kg IV

Hospitals
Salamanca, Navara,
Gregorio Marañón

Donors: Individu
Expansion: Monolaye

CTRI/2020/08/027043 Sharma et al.,
2022 (60)

India 20 (10) UC- and
Placenta-

derived PT-
MSCs

2 x 100
million
cells IV

ReeLabs Donors: ND; Cell I
Medium: StemPro
u
g
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TABLE 3 Continued

Cell
Dose
and

Delivery

Manufacturer
(Product Name,

if any)

Cell Product
Manufacturing Method

Quality Control
Characterization

3 x 40
million
cells IV

Vcanbio Cell &
Gene Engineering

Donors: ND; Cell Isolation: Explants; Expansion: Monolayer;
Passage: P5; Medium: Serum-Free; and Storage: ND

Morphology,
immunophenotype and
Trilineage Differentiation

1 x 2.0
million

cells/kg IV

Jiangsu Cell Tech
Biotech

Donors: ND; Cell Isolation: ND; Expansion: ND; Passage: P3-P5;
Medium: ND; and Storage: ND

Immunophenotype

1-2 x 150
million
cells IV

Capricor (CAP-
1002)

Donors: Cadaveric Donor Biopsy; Cell Isolation: Explants;
Expansion: Monolayer; Passage: ND; Medium: ND; and Storage:

Frozen

Immunophenotype

1 x 2.2
million
cells via
Nebulizer

Abu Dhabi Stem
Cells Center

Donors: Autologous; Cell Isolation: Centrifugation; Expansion: ND;
Passage: ND; Medium: ND; and Storage: Fresh

Immunophenotype, and
Viability

3 x 30
million
cells IV

Innovative Precision
Medicine

Donors: Three Individuals; Cell Isolation: Ficoll-Paque Gradient;
Expansion: Monolayer; Passage: ND; Medium: ND; and Storage:

Frozen

Immunophenotype,
Viability, Trilineage

Differentiation

1 x 1.0
million

cells/kg IV

Qingdao Co-orient
Watson Biotech

Group

Donors: ND; Cell Isolation: ND; Expansion: ND; Passage: P3;
Medium: DMEM+ 2% FBS; and Storage: Frozen.

Immunophenotype,
Viability; Trilineage

Differentiation

Dec. 2021 and published by the end of July 2022. The 26 publications are listed alphabetically by the first author. MSCs, mesenchymal stromal/stem cells;
al cord.
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Trial Publication
Reference

Country Enrollment
Target
(Actual)

Principle
Cell Type

NCT04288102 Shi et al., 2021
(49)

China 100 (100) UC-derived
PT-MSCs

ChiCTR2000031494 Shu et al., 2020
(50)

China 36 (41) UC-derived
PT-MSCs

NCT04338347 Singh et al.,
2020 (51)

USA Unknown (6) Cardiac-derived
Stromal Cells

NCT04473170 Ventura-
Carmenate

et al., 2021 (93)

UAE 146 (139) Peripheral
Blood-derived

Non-
Hematopoietic

Cells

ChiCTR2000029606 Xu et al., 2021
(52)

China 63 (40) Menstrual
Blood-derived

MSCs

NCT04339660 Zhu et al., 2021
(53)

China 30 (58) UC-derived
PT-MSCs
ACE2neg

Publications from completed clinical trials of advanced cell therapy for COVID-19 that were registered Jan. 2020 t
ND, not detailed or not determined; AT, adipose tissue; BM, bone marrow; PT, perinatal tissue; and UC, umbili
o
c
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3.4 Published clinical trial outcomes: safety
and efficacy based on RR/OR analysis

Two previous studies that connected advanced cell therapy

clinical trials with their reported outcomes both found that only

about 20% of these trials get published eventually (23, 96). To

anticipate how many more publications of cell therapy for COVID-

19 may be in preparation, we checked the status of all 195 of the
Frontiers in Immunology 15
2020 and 2021 clinical trials, as of July 2022. We found that 27

(14%) of the trials had notifications that they had been cancelled,

withdrawn, or terminated early. When an explanation was given for

these premature endings, typical reasons stated were a lack of

funding, or the inability to recruit patients. In addition to the 26

trials (13%) that have been published already, we found another 28

trials (14%) recorded as “completed”, which means that additional

peer reviewed publications of cell therapy trials for COVID-19 can
TABLE 4 Summary of Key Manufacturing Parameters from all 26 Published COVID19 Trials.

Manufacturing Parameter Option 1 Option 2 ND/Other

Manufacturer 18 Commercial Labs 8 Academic Labs 0 ND

Donors 13 Individuals 2 Pooled 11 ND

Cell Isolation 11 Explants 7 Enzymatic 7 ND/3 Other

Cell Expansion 15 Monolayer 1 Bioreactor 9 ND/1 None

Cell Passage 1 None 19 report P3 – P12 6 ND

Cell Medium 7 Xenogenic 9 Xeno-free 9 ND/1 None

Cell Storage 4 Fresh 17 Frozen 6 ND
Summary of cell manufacturing parameters in 26 publications from completed cell therapy trials for COVID-19 registered Jan. 2020 to Dec. 2021 and published by the end of July 2022. ND, not
detailed or not determined.
TABLE 5 Survival Outcomes of Published COVID-19 MSC Therapy Trials.

Published Studies MSC IV
Therapy for COVID-19

Study Design Number MSC
Patients

Number
Control
Patients

MSC Sur-
vival (%)

Control Sur-
vival (%)

Study End
Point

Adas et al., 2021 (37) Randomized
controlled

10 20 70% 70% Survival in ICU

Aghayan et al., 2022 (38) Randomized placebo
controlled

10 10 50% 50% Survival 28 days

Dilogo et al., 2021 (39) Randomized
controlled

20 20 50% 20% Survival 40+
days

Farkhad et al., 2022 (40) Non-randomized
placebo-controlled

10 10 80% 90% Survival 17 days

Gregoire et al., 2022 (41) Controlled a 8 24 100% 79% Survival 28 days

Häberle et al., 2021 (42) Placebo-controlled 5 18 80% 44% Survival in ICU

Karyana et al., 2022 (43) Randomized
Placebo-controlled

6 3 100% 100% Survival 28 days

Lanzoni et al., 2021 (44) Randomized
controlled

12 12 83% 42% Survival 28 days

Leng et al., 2020 (45) Placebo-controlled 7 3 100% 67% Survival 14 days

Meng et al., 2020 (46) Controlled 9 9 100% 100% Discharge from
Hospital

Monsel et al., 2022 (47) Randomized
Placebo-controlled

21 24 76% 83% Survival 28 days

Rebelatto et al., 2022 (48) Randomized
placebo-controlled

11 6 55% 83% Cytokine
markers 4
months

Shi et al., 2021 (49) Randomized
Placebo-controlled b

35 65 100% 100% Decrease in
Lung Lesions

(Continued)
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be anticipated (final publication rate 27%). Most of the 26 trials

published so far were controlled studies: 11 were randomized

controlled trials, seven trials included a control group without

randomization, and eight trials had a single arm (Table 5).

We computed a meta-analysis of the survival benefit from IV

MSC therapy for COVID-19. As explained above, the Relative Risk

(RR) represents the ratio of the treated patients divided by the

whole population (Figure 4A), while the Odds Ratio (OR)

represents the ratio of the treated patients divided by the control

group (Figure 4B). For the 24 published trials that employed IV

MSCs, we used the survival data tabulated in Table 5 to assess the

clinical efficacy of the treatment relative to controls, according to

the statistical procedures described in the Methods. Initially we

calculated RR and OR for all 24 studies, employing the missing data

compensation described in the Methods. With this approach, there

are 305 patients in the MSC treatment groups and 402 in the control

groups, with 46 and 90 events (mortality), respectively. In the meta-

analysis of these 24 studies, MSC therapy was associated with a

diminished risk of all-cause mortality RR=0.63 [95% CI 0.46 to

0.85] (P < 0.01) or OR=0.51 [95% CI 0.33; 0.78] (P <0.01). We

repeated our RR and OR calculation using only the 17 of 24 IVMSC

studies that had a control arm (Figure S1). The existence of control

arms means it is not necessary to perform any statistical procedures

to correct for missing data. This group had a total of 237 patients in

the MSC treatment group and 334 in the control group, with 35 and

73 events (mortality) reported, respectively. Here, MSC therapy was

associated with a diminished risk of all-cause mortality RR=0.62

[95% CI 0.45 to 0.87], (P < 0.01) (Figure S1A) or OR=0.48 [95% CI
Frontiers in Immunology 16
0.29 to 0.81] (P < 0.01) (Figure S1B). It is reassuring that the

statistical results for this sub-group are almost indistinguishable

from the RR and OR results of the full set of 24 studies (Table 6).

We have summarized the RR and OR meta-analyses for

different sub-groups and compared them with previous reports

that presented RR/OR survival benefit of cell therapy for COVID-19

(Table 6) (97–100). The first two previous meta-analyses in our

table only used studies of IV MSC against controls, finding RR=0.54

for ten studies (97) and RR=0.50 for nine studies (98), respectively.

While these two meta-analyses had very similar results, their

statistical methods differed slightly. The first one included studies

with no mortalities on either arm, whereas the second study

excluded them. We have included studies with no mortalities by

assigning them RR=1.0. A third previous meta-analysis found

OR=0.24 for twelve studies (99), although we caution that their

meta-analysis mixed different cell types in the statistics.
5 Discussion

To the best of our knowledge, this effort is the first report to

date, that comprehensively links clinical trials of advanced cell

therapy for COVID-19 with the published outcomes of those trials.

This type of linkage requires that the starting database of clinical

trials is as complete as possible but avoids/omits any redundancies.

Thus, in the process of building the COVID-19 trials database at

CellTrials.org, we have incorporated several crucial quality steps,

e.g. inclusion of trials from all national registries, exclusion of false
TABLE 5 Continued

Published Studies MSC IV
Therapy for COVID-19

Study Design Number MSC
Patients

Number
Control
Patients

MSC Sur-
vival (%)

Control Sur-
vival (%)

Study End
Point

Shu et al., 2020 (50) Randomized
controlled

12 29 100% 90% Survival 28 days

Singh et al., 2020 (51) Controlled a 6 34 100% 82% Discharge from
Hospital

Xu et al., 2021 (52) Placebo-controlled 26 18 92% 67% Survival

Zhu et al., 2021 (53) Randomized
Placebo-controlled

29 29 100% 93% Survival 28 days

Feng et al., 2020 (54) Single arm 16 0 88% n/a Survival 28 days

Hashemian et al., 2021 (55) Single arm 11 0 55% n/a Survival

Iglesias et al., 2021 (56) Single arm 5 0 60% n/a Discharge from
Hospital

Sadeghi et al., 2021 (57) Single-arm c 9 0 89% n/a Discharge from
Hospital

Saleh et al., 2021 (58) Single arm 5 0 100% n/a Survival 28 days

Sanchez-Guijo et al., 2020 (59) Single arm d 12 0 92% n/a Survival in ICU

Sharma et al., 2022 (60) Single arm 10 0 100% n/a Discharge from
Hospital
Summary of study design and survival outcomes in 24 publications from completed MSC therapy trials for COVID-19 registered Jan. 2020 to Dec. 2021 and published by the end of July 2022.
Publications are sorted alphabetically according to the first author in two groups: first all studies with controls, then all single arm studies. aControl group is retrospective, bMost patients were
convalescent, cExcludes a patient who left against medical advice, and dExcludes a patient that died of bleeding caused by a nasal-gastric tube. COVID-19, coronavirus-induced disease 2019;
MSC, mesenchymal stromal/stem cells; ICU, intensive care unit; IV, intravenous.
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A

B

FIGURE 4

Treatment Efficacy of MSC Therapy for COVID-19 (RR/OR Analysis). Comparison of efficacy of mesenchymal stromal/stem cell (MSC) therapy
(Experimental) vs. standard of care (Control), depicting calculations of: (A) Risk Ratio (RR) or (B) Odds Ratio (OR) for published cell therapy trials
employing different types of MSC products (n=24 studies). This analysis includes MSC trials registered in the time period Jan-2020 to Dec-2021,
with a follow-up period until the end of July 2022, to also detect trials published after the primary time window. The publications are sorted
alphabetically according to the first author. CI, confidence interval; The asterisks (*) indicate the n=7 studies (54–60), where the values for missing
controls were computed as indicated in more detail in the methods section. For the double-arm-zero-event studies (43, 46, 49) we employed a
treatment arm continuity correction (TACC) to incorporate them, since otherwise RR/OR could not have been calculated (61, 62).
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positives on keywords, and exclusion of double counting of the

same trial. So far, none of the other existing trial compilations that

we examined in Table 2 stated that they have employed such steps.

We also must point out, that most academic studies of COVID-19

cell therapy trials ran their entire search at a single point in time and

selected only for COVID-19 trials. In contrast, CellTrials.org has

collected all advanced cell therapy trials monthly and then extracted

the COVID-19 trials at the end of each month. In a typical month,

CellTrials.org sorts through about 600 clinical trials that hit on

keywords and finds that 10% qualify as advanced cell therapy trials.

The advanced cell therapy trials for COVID-19 have been

conducted in 30 countries led by the US, China, Iran, and Spain,

yet most resulting publications have come from China, Iran, and 11

other countries so far. The initial surge in clinical trials registered to

apply cell-based therapy for treating COVID-19 peaked in April

2020 and subsided into an ongoing effort of a few new trials per

month. It must be noted that many healthcare policies at both

national and local levels influence the ability to launch trials and

recruit COVID-19 patients for cell-based therapies. Despite

ongoing outbreaks in the US, we have noted that multiple trials

have been suspended because they cannot recruit enough patients at

a single hospital. Thus, large research consortia with multi-

institutional and multi-national collaboration are needed to tackle

this shortcoming and more rapidly develop new treatment

approaches for COVID-19. In China, the “Zero COVID” policy

was so efficient at suppressing outbreaks for two years, that clinical

trials had stopped because they could not accrue patients (54). Since

this policy was changed in late 2022, new infections and probably

also associated severe cases and deaths due COVID-19 are likely to

have surged dramatically (101), with a need for effective treatments.

In many Western countries (e.g. Europe being subject to both

national and EMA regulation, with considerable variability in
Frontiers in Immunology 18
regulation between different European nations) (2, 24), strict

regulations on human cell therapy mean there were only a

limited number of cell therapy products with established safety

profiles that could be trialed. While we found that 56% of the trials

were below phase 2, we found that 69% of the published outcomes

were studies with a control arm. The fraction of the trials employing

MSC was 72%, but 92% of the published outcomes are studies that

relied on MSCs. The mechanisms of action by which ARDS and

COVID-19 patients may benefit from MSC therapy have been

exhaustively reviewed by the papers listed in Tables 2, 3 (37–53,

63, 64, 66–86, 97–100), such as relying on multiple synergistic

effector mechanisms, and promoting/triggering beneficial

immunomodulatory and regenerative pathways, as well as

angiogenesis and antiapoptosis (18). Hence, we will not repeat

that discussion here, but only refer to the most crucial key

observations in the discussion further below. Most importantly, in

this study, we have also endeavored to quantitatively calculate the

safety and efficacy profile of MSC infusions as a novel treatment for

COVID-19. However, efforts to treat these topics systematically

appear to be fraught with difficulties.

On the issue of MSC safety, we found that all of the 24 published

trials claimed that they had no severe adverse events related to the

MSC infusion (37–60). Many of the studies gave anti-coagulant

therapy as a prophylaxis (38, 42, 44, 56, 57, 60). Already in the first

reports from the COVID-19 epicenter in Wuhan, and swiftly

following global reports, severe coagulopathy was identified as one

of the most evident complications arising from SARS-CoV2 infection

and critical/severe COVID-19 (102–112). The increased incidence of

thrombotic complications in these patients was verified in large

population studies in Sweden (110, 111). Indeed, MSC-IV

therapeutics carry a risk of thrombotic complications, due to their

expression of the highly prothrombotic tissue factor (TF/CD142) (2,
TABLE 6 Summary of Reported RR/OR in Meta-Analyses of MSC Trials for COVID-19.

Meta-Analysis Study (Author, Year) No of Studies Included in Meta-Analysis Risk Ratio [95% CI] Odds Ratio [95% CI]

Qu et al., 2022 (97) N=10 0.54 [0.35; 0.85] —

Kirkham et al., 2022 (98) N=9 0.50 [0.34; 0.75] —

Zhang et al., 2022 (99) N=12 (N=11 MSCs) — 0.24 [0.13; 0.45]

Taufiq et al., 2023 (100) N=06 0.65 [0.44; 0.96] —

Couto et al., 2023*
All MSC studies including missing controls

N=24 0.63 [0.46; 0.85] 0.51 [0.33; 0.78]

Couto et al., 2023
MSCs only controlled studies

N=17 0.62 [0.44; 0.87] 0.48 [0.29; 0.79]

Couto et al., 2023 *
Perinatal MSCs
including missing controls

N=18 0.75 [0.54; 1.02] 0.64 [0.40; 1.03]

Couto et al., 2023
Perinatal MSCs
only controlled studies

N=12 0.75 [0.53; 1.07] 0.63 [0.36; 1.11]

Couto et al., 2023 *
Non-Perinatal MSCs including missing controls

N=06 0.27 [0.10; 0.69] 0.19 [0.06; 0.57]
Meta-Analyses of Risk Ratio (RR) andOdds Ratio (OR) for all-causemortality whenMSCs are administered intravenously to treat COVID-19. In this paper (Couto et al., 2023) the calculation is performed for
several sub-groups of the 24 articles published so far. Our results are compared to previousmeta-analyses ofMSC infusions for COVID-19. Our* represents the second approach in thismanuscript, which used
reconstructed data where the control group was missing. COVID-19, coronavirus-induced disease 2019; CI, Confidence Interval; MSC, mesenchymal stromal/stem cells.
The main result of this study are written in bold.
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16, 17). Hence, since the first months of the pandemic, we have

identified prophylaxis against coagulation as a crucial factor for the

safe application of IVMSC therapeutics in a COVID-19 setting (2, 14,

15). We were poised to highlight the safety aspect of IVMSC therapy

for COVID-19, but we discovered that none of the published trials

had conducted monitoring that could address this issue. For example,

in one trial that treated patients suffering from severe COVID-19 in a

hospital ICU, a patient that received IV MSC therapy died 13 days

later following an arterial thrombosis (56). This event was considered

unrelated toMSC therapy because it occurred outside their four-hour

window of post-infusion monitoring.

This was common in the 24 publish trials: possible

complications arising from MSC infusion were only monitored

during or shortly after infusion. Yet, case studies of adverse events

associated with MSC infusions found that elevated clotting markers

(e.g. TAT and D-Dimer) typically peaked 9-12 hours post-MSC

infusion (17), while pulmonary (but not arterial) embolism post

MSC therapy could be detected days, weeks, and even months after

treatment (17, 113, 114). This should caution us that the impact of

the instant blood-mediated inflammatory reaction (IBMIR) post IV

MSC therapy for COVID-19 may only become evident at later time

points (2, 16, 17). Given that thromboembolism is a well-known

side effect of either COVID-19 infection or MSC infusions, it is

currently not possible to retrospectively assign that complication to

one or the other group (17), when these studies were not

constructed to discriminate the potential causes. Thus, we did not

attempt to compute the rate of adverse events in the published trials

because the few observed/reported events are largely anecdotal in

nature and cannot be quantified at the current stage. Hopefully,

future clinical trials will incorporate longer monitoring periods and

will have large enough patient groups to statistically identify if any

adverse events were increased in response to the experimental

(MSC) treatment but not in response to the standard of care.

The primary theme of our analysis was to calculate the efficacy

of MSC infusions as a therapy for COVID-19 based on the risk of

mortality. The mortality data represent a quantitative set of facts

that were extracted from each of the published clinical trials and are

listed in Table 5. However, we must caution that not all these trials

were designed with survival as an endpoint. For example, one study

recruited convalescent patients to determine if MSC infusions

would speed up the resolution of their lung lesions and

consequently none of the patients died on either arm (49). The

previous meta-analyses have also noted that published studies with

intravenous use of MSC for COVID-19 have very heterogeneous

patient populations, in terms of the severity of their COVID-19

illness as well as the forms of concomitant therapies that they

received (97–100). Our statistical model has included more studies

and more patients than previous meta-analyses of MSC efficacy for

COVID-19 (97–100). We corroborate the conclusions of the

previous meta-analyses, that intravenous MSC therapy appears to

provide a benefit for the treatment of COVID-19 (97–100).

Recently, earlier timing of MSC infusion has emerged as a new

factor that may be associated with improved survival for patients

receiving MSC therapy for COVID-19 (115). This was established

in a single center study that gave an IVMSC dose 3 x 3 million cells/

kg. We note that their cumulative dose is about three times higher
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than the average in our 24 studies of IV infused MSCs. We do find

that most published studies (17 out of 24) spread out clinical MSC

delivery over two to four doses.

Perinatal sources of MSCs (e.g. tissue of UC and/or placenta,

collectively called PT-MSCs) (16, 17), were employed in 18 of 24

published trials (Table 3). Despite a great deal of preclinical and clinical

research, there are still conflicting opinions on the biological

characteristics of MSCs isolated from perinatal versus adult sources.

Multiple earlier studies suggested that PT-MSCs may have superior

immunomodulatory properties (116–123), higher proliferation (117,

124), and richer secretome (120, 125–127), compared to adult sources.

In turn, some studies also reported that adult sources of MSCs have

superior or similar immunomodulatory ability (126, 128, 129), and that

adult MSCs have higher production rates of several vital molecular

mediators [e.g. VEGF (126, 127), PLGF (126), IL-10 (130), and TGF-b1
(130)] when compared to perinatal cells. Intriguingly, when we

performed meta-analysis for subgroups of our data, we found that

the RR of the six studies with non-perinatal MSCs was more than

factor two better than the RR of the 18 perinatal studies (Table 6). All

six of the non-perinatal studies, which employed five different MSC

products, reported good outcomes. In contrast, among the 18 perinatal

studies there were five studies where mortality on the MSC treatment

arm was higher than the control baseline (40, 47, 48, 55, 56). However,

this RR comparison was not statistically significant, leading us to argue

that more data is needed to confirm or refute this result.

Another focus of our study was to evaluate the diversity of

manufacturing methods used to prepare MSC products and to

highlight the importance of reporting manufacturing information

to enable study comparability (Figure 3; Tables 3, 4). Indeed, diversity

in cell product manufacturing parameters, cell dosing, and cell

characterization for therapeutic use, but also the completeness of

study descriptors, have all been identified as a potential confounder to

interpretation of safety and efficacy outcomes in MSC studies and

should be monitored/reported more thoroughly in future studies (2,

16, 17, 33, 131–133). Recent reviews (131, 132) have highlighted the

frequent lack in reporting of MSC manufacturing and study

descriptors as a considerable shortcoming to clinical trial reporting

and subsequent study interpretation. This aspect is of such

importance, that it has been taken up into: “A modified Delphi

Study Protocol” for “Establishment of a Consensus Definition for

Mesenchymal Stromal Cells (MSC) and Reporting Guidelines for

Clinical Trials ofMSC Therapy” (133). For example, onemulti-center

randomized control trial (RCT) that employed UC-MSCs to treat

COVID-19 found that MSC therapy had no efficacy (47). However,

the MSCs in that study were manufactured in a laboratory that

alternated between cell isolation with explants vs. enzymatic digestion

(which may impact cell yield and immunophenotype) (134, 135).

Still, the research consortium did not publish any records of which

patient received which MSC product (47). Consequently, the

outcome of the entire multi-center RCT may be cast into doubt

because it is unknown how manufacturing variability may have

compromised the respective results. Another manufacturing issue,

which has been largely overlooked in the discussion of cell therapy

trials for COVID-19 so far, is the ability to scale up the production of

successful therapies (31, 136–139). Most trials published so far have

relied on 2D monolayer cell expansion methods in flasks, with only
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one study employing a hollow-fiber bioreactor (42). The monolayer

methods are time-consuming, labor intensive, and have limited

scalability (135, 140, 141). Given the potential combinatorial

detrimental impact of both freeze-thawing and in vitro aging on

cell potency (33, 87–91, 135), it is of importance to accurately

evaluate the number of population doublings a cell product has

accumulated during ex vivo culture expansion for COVID-19 therapy

and other indications (2, 14, 16). Of course, it is also relevant to

record if the cell product was given either fresh or as a freeze-thawed

product derived from cryostorage, since this may impact substantially

on the product performance (14, 30, 31, 33, 88–91, 142–144).
6 Conclusions and limitations

The International Society for Cell and Gene Therapy (ISCT)

recently published an editorial calling for a global registry of clinical

trials that employ MSCs for COVID-19 to harmonize the data on the

limited number of patients and “To collect information on critical

process parameters used to manufacture the MSCs” (145). We support

that call to action. Our review of the manufacturing parameters in

clinical trials giving cell-based therapy for COVID-19 has revealed a

partial disconnect between clinical centers that treat patients versus

laboratories that manufacture cell therapy products. Frequently, the

clinicians running the trials have acquired cells and delivered them to

patients without keeping any records about the cell production. This

disconnect could be closed, if the clinical trials participated in a global

registry that required completing standardized categories of

information. In this study we have compiled two years of worldwide

clinical trials testing cell-based therapies for COVID-19 and linked

those trials to their published outcomes. This “end-to-end” survey of

the research field has enabled us to learn new insights not published

earlier. First, we found that global registrations of advanced cell-based

therapies for COVID-19 were more numerous than previously

reported, but that they experienced only one single early surge in

trial registrations during a time frame, when global COVID-19

infections went through multiple surges. Our analysis also includes

the contribution from registered clinical trials that are not listed on the

national registries of the United States and China, with 53 and 43 trials,

respectively. Hereby, we have learned that Iran (19 trials) is among the

three leading nations running advanced cell therapy trials for COVID-

19 and the 2nd in publishing trial outcomes. In turn, Israel, Spain, Iran,

Australia, and Sweden are leading in relative contributions to COVID-

19 cell therapy trials normalized to population size (N=0.641, 0.232,

0,223, 0.194, and 0.192 trials per million inhabitants).

Although 72% of the COVID-19 cell therapy trials employed

tissue-derived MSCs, a significant fraction of clinical trials conducted

immunotherapy with blood-derived cells. So far, most of the published

trials describe infusions of MSCs, and 75% of those employed MSCs

derived from perinatal tissue sources. Throughout these studies there is

a strong theme of heterogeneity. The patient groups in the clinical trials

are heterogeneous, as are the manufacturing methods used to prepare

the MSCs. Most importantly, our statistical analysis shows that

infusions of MSCs show a clinical benefit for COVID-19 patients.

The risk ratio for all-cause mortality is RR=0.62 [95% CI 0.44 to 0.87]

for the 17 MSC studies with control arms, and when we compensated
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for the missing controls and incorporated all 24 MSC studies the result

is RR=0.63 [95% CI 0.46 to 0.85]. Early during the COVID-19

pandemic, it emerged that the respiratory distress caused by

COVID-19 is a substantially different clinical entity compared to

classic ARDS (21). Hence, we cannot assume that the efficacy results

obtained here will similarly influence the long-standing quest to

improve ARDS mortality. For this answer, we must await the

outcomes of large placebo-controlled randomized trials of MSCs for

ARDS, such as the REALIST trial in the UK, and the STAT trial in the

US, respectively (146, 147). We close with the concern that there may

never be enough data to fully explore the efficacy of cell-based therapy

against ARDS from COVID-19. Owing to the evolution of the virus to

less lethal variants and the rollout of vaccination, it has recently become

difficult to accrue patients for clinical trials that treat severe symptoms

of COVID-19 infection. The relative impact of MSC product source,

MSC dosing, and the timing and type of MSC delivery, etc., may never

be fully explored or known within the current setting of COVID-19.

From a public health perspective, the highest goal is to prevent the

development of severe or critical COVID-19 through combined

effective pandemic countermeasures (Figure 1A) (148). In this

regard, vaccination is the most valuable tool available. Also, the

standard-of-care for the treatment of severe and critical COVID-19

is continuously improving. Although we here found that infusions of

MSCs confer a reduction in the risk for all-cause-mortality from

COVID-19 in the studies published to date, more research is needed

to clarify this point. Nonetheless, there will always be high-risk patients

who develop severe or critical COVID-19, and for them the existence of

adjunct treatment with advanced cell therapy may be beneficial. The

target groups for whom this therapy may provide benefit include the

elderly, immunocompromised individuals, cancer patients, and

transplant patients (both stem cell transplants and solid organ

transplants) as well as patients with kidney failure on dialysis (17,

149, 150). More research on the efficacy of advanced cell therapy for

COVID-19 will reveal the degree to which these groups may benefit.

Eventually, the cost and access to advanced cell therapy must also be

anticipated, typically requiring advanced medical infrastructure. It is

our hope that the testing of advanced therapies will be pursued in

parallel to the improvement of standard care.
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