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Extracellular vesicles (EVs) are small particles secreted by numerous cell types

and circulate in almost all body fluids, acting as crucial messengers for cell-to-

cell communication. EVs involves multiple physiological and pathological

processes, including tumor progression, via their multiple cargoes. Therefore,

EVs have become attractive candidates for the treatment of tumor, including

melanoma. Notably, due to the crucial role of the tumor microenvironment

(TME) in promoting tumor malignant phenotype, and the close intercellular

communication in TME, EVs-based therapy by targeting TME has become a

cutting-edge and prospective strategy for inhibiting melanoma progression and

strengthening the anti-tumor immunity. In this review, we aimed to summarize

and discuss the role of therapeutic EVs, which target the components of TME in

melanoma, thereby providing insights into these promising clinical strategies for

the treatment of melanoma patients.
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Introduction

Melanoma is an extremely malignant tumor accounting for approximately 5% of all

tumors, which arises from melanocytes (1). Melanoma mainly involves the skin, and can

also occur in eyes, meninges and diverse mucosal surfaces (2). Although melanoma is rare,

it is responsible for most skin cancer-related death (3), owing to the great metastatic feature

of melanoma cells (4). In addition to the tumor-draining sentinel lymph node (SLN) that

has been recognized as the most initial metastasis site, melanoma cells also frequently
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disseminate to the distant regions and organs (5, 6). The tumor

microenvironment (TME), a complex environment consists of

various cells, including tumor cells, neutrophils, myeloid-derived

suppressor cells (MDSC), immune and stromal cells, is vital for the

development of melanoma, and exerts a key role in modulating both

tumor immunity and the prognosis of melanoma (7–9). Notably,

these impacts are mainly mediated by the crosstalk between

melanoma tumor cells and other types of TME cells.

In the past decades, the lipid membrane bound nanoparticles

extracellular vesicles (EVs), which can be produced by most cells,

have been identified as important mediators during the

communication between cells (10). EVs have been suggested to be

divided into several subtypes according to their size (small and large

EVs), origin (exosomes, ectosomes and apoptotic bodies),

biochemical components (CD63+/CD81+ EVs) and physiological

condition (hypoxic EVs) (11, 12). Although the classification of EVs

is distinct, and it is difficult to distinguish them accurately, recent

technological advances enable a more refined differentiation of the

subset of EVs by diverse markers (13). EVs contain a great variety of

biomolecules released from their donor cells, such as proteins,

nucleic acids, and lipids. By transmitting their cargo to adjacent

or distant recipient cells or tissues, EVs are able to trigger the

malignant phenotype changes of the receptor cell, including the

augmented tumor cell migration and invasion, enhanced

angiogenesis, and impaired tumor immunity (14, 15).

Recently, increasing evidence have shown the close relationship

between EVs and TME (Figure 1), which is responsible for the

tumor progression, including melanoma (15–17). Therefore, in this

review, we aimed to summarize the role of EVs in melanoma by

targeting TME, and discuss the potential of EVs to be applied as an

alternative option for the clinical treatment of melanoma.
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Crosstalk between EVs and stromal
cells in melanoma

In the microenvironment of tumor, stromal cells are vital

components and play important roles in the occurrence,

development and metastasis of tumor (18, 19). Among them,

cancer-associated fibroblasts (CAFs) is the main type of the

reactive tumor stroma and contributes to the tumorigenesis, such

as melanoma (20, 21). Tumor-related EVs have been demonstrated

to be involved in the differentiation of normal fibroblasts (NFs) into

CAFs, and then induced a tumor-stimulative stroma (Table 1) (29).

Gm26809, a novel lncRNA, was upregulated obviously in cytotoxic

T-lymphocytes CTLL2 under the stimulation of EVs derived from

B16F0 melanoma cells (30). Moreover, Hu et al. (22) found that the

EVs released by B16F0 cell can induce the reprogram of fibroblast

NIH/3T3 cells to CAFs, as well as the facilitated Cloundman S91

melanoma cell proliferation and migration, which was mediated by

delivering Gm26809 to NIH/3T3 cells. These findings suggest that

EVs-Gm26809 might be a potential target for promoting the

progression of melanoma. Nevertheless, the potential molecular

mechanism about how EVs-Gm26809 regulated the transition of

NFs to CAFs remains unclear, and whether melanoma-derived EVs

could transfer Gm26809 to other stromal cells required further

investigation. The miRNAs with 18–24 nucleotide are major

members of the non-coding RNAs, which can control the

translation of downstream tumor-associated mRNAs, thus

participating the tumor progression (31, 32). The miRNAs

secreted by melanoma cells have also been implicated in the

transformation of NFs towards CAFs by changing CAFs-related

genes expression (33, 34). Similar to EVs, melanosomes with a

diameter of 0.5 µm are melanin-containing vesicles that are
FIGURE 1

Extracellular vesicles-mediated intercommunication with TME. Tumor cells derived EVs, including exosomes, microvesicles and apoptotic bodies,
deliver various cargoes to the TME and influence the immune response (TAM, DC, and T, B, NK cells), angiogenesis, stromal cells activity (CAF and
MDSC), and ECM formation. CAF, cancer-associated fibroblasts; ECM, extracellular matrix; MDSC, myeloid-derived suppressor cells; TAM, tumor-
associated macrophages; NK cell, natural killer cell.
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specifically fabricate by melanocytes (23). As reported before,

melanosome-miR-211 released by melanoma cells induced NFs to

CAF transition upon absorbed by NFs, whereas the depletion of

miR-211 prevented the formation of CAFs. Furthermore, miR-211

was found to target tumor suppressor IGF2R, resulting in the

increase of collagen by CAFs so as to promote tumor cell motility

(35). Although this study provided an opportunity to attenuate

melanoma invasion by blocking the transformation of CAFs,

whether melanosomes-miRNA can be absorbed by other cells in

the melanoma microenvironment deserves more research. In

addition, more efforts to explore EVs-miRNA mediated crosstalk

between tumor cells and TME, as well as their potential to act as

prognostic biomarkers or novel therapeutic strategy for melanoma

should be considered. In addition to the transmission of tumor cell

derived EVs to CAFs, EVs secreted by CAFs have also been revealed

to exert an essential role in several tumor progression (24, 36).

Recent data showed that CAF-released EVs enriched CD9 and

CD63, and inhibited the proliferation of melanoma cells

remarkably. The patients with CAF-derived CD9-positive EVs

displayed a better five-year disease-free survival than patients

with CD9-negative, indicating that CD9 expression in CAFs-EVs

is a favorable prognostic marker for malignant melanoma patients

(25). Furthermore, to develop novel targeted drugs depending on

this type of EVs may be beneficial for the clinical treatment of

melanoma patients. Moreover, tumor-derived EVs have been

revealed to transdifferentiate CAFs by endothelial to

mesenchymal transition (EndMT) pathway. By using an in vitro

microfluidic model, which enables to observe the synergetic effect of

TME in situ, Yeon et al. (37) found that the differentiated CAFs

from human umbilical vein endothelial cells (HUVECs) were

increased obviously when treated with melanoma-derived EVs,

whereas melanoma-secreted EVs could promote EndMT.

Predictably, this experimental model is expected to serve as a

potent tool in the development of anti-tumor agents by exploring

a variety of candidates, not just tumor derived EVs, which can

depress the transformation of endothelial cells to CAFs.

Apart from CAFs, mesenchymal stem cells (MSCs) is another

essential stromal cells in the TME. EVs secreted by mesenchymal stem

cells (MSCs) have shown huge potential for treating tumors because

they can precisely locate TME (26). MSC-derived EVs was

demonstrated to induce the apoptosis of melanoma cells via

transmitting miR-138-5p, and then targeted SOX4. These results
Frontiers in Immunology 03
indicated the anti-tumor role of miR-138-5p/SOX4 axis during the

malignancy of melanoma cells, and validated the potential therapeutic

value of MSC-EVs based therapy for melanoma patients (27). In

addition, Yang et al. (38) found that NEAT1 loaded in bone marrow

mesenchymal stem cell-derived EVs could accelerate the progression of

melanoma through inducing macrophages to M2 polarization,

providing a novel target for the treatment of melanoma. In

melanoma, epithelial-mesenchymal transition (EMT) is usually

occurred when epithelial cells transit into mesenchymal cells, thereby

promoting tumor metastasis and therapy resistance (28). Chen et al.

(39) demonstrated that MSC-EVs carried miR-22-3p could reduce the

expression of EMT related gene LGALS1 in melanoma cells so as to

inhibit the EMT process of tumor epithelial cells. However, this study is

lack of animal studies, and the therapeutic potential of MSC-EVs with

miR-22-3p needed further investigation, especially the clinical trials.
Melanoma-secreted EVs
targeting angiogenesis

Angiogenesis is a biological process responsible for the

formation of new blood vessels, thereby delivering oxygen and

nutrients to tissues and organs in human body. Currently,

angiogenesis has been considered to be a fundamental procedure

in inducing benign tumors to malignant phenotype, such as

invasion and metastasis (40). In TME studies, EVs released by

tumor cells have been revealed to form the premetastatic niche by

accelerating angiogenesis, indicating the vital role of EVs in the

communication between tumor and angiogenesis (Table 2) (46, 47).

It’s well known that the uPA/uPAR system components (urokinase-

type plasminogen activator, uPA; uPA receptor, uPAR) are

regarded as critical biomarkers for malignancy, including

melanoma (41, 48). By utilizing subcutaneously implanted

matrigel plugs containing EVs derived from wild type, uPAR-

and uPAR+ melanoma cells, the group treated with uPAR+ EVs

displayed more vascularized and micro-vessels, suggesting uPAR

expressing melanoma EVs are crucial activators of angiogenesis

(49). Therefore, depleting uPAR expression in tumor derived EVs is

a promising method for treating melanoma, and the uPARmight be

a useful biomarker when obtained EVs from melanoma patients by

applying liquid biopsy. Hypoxia is a primary characteristic of solid

tumors that is involved in tumor angiogenesis (50, 51). Notably,
TABLE 1 Crosstalk between EVs and stromal cells in melanoma.

Sources Contents Target Biological Effect Reference

Melanoma cells Gm26809 Fibroblast Reprogramming fibroblast cells to CAFs (22)

Melanoma cells miR-211 Fibroblast Reprogramming fibroblast cells to CAFs (23)

CAFs CD9 Melanoma cells Inhibiting the proliferation of melanoma cells (24)

Melanoma cells eTGF-b HUVECs Promote mesenchymal transition EndMT pathway (25)

MSCs miR-138-5p Melanoma cells Promoting the apoptosis of melanoma cells (26)

MSCs NEAT1 Melanoma cells Inducing macrophages to M2 polarization (27)

MSCs miR-22-3p Melanoma cells Attenuating the EMT process of tumor epithelial cells (28)
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hypoxia also increases the secretion of EVs from tumor cells and

alters the carriers of EVs (42). Tang et al. (52) found that hypoxic

melanoma-derived small extracellular vesicles (sEVs) could

enhance the angiogenic ability of CAFs by delivering the HSP90/

p-IKKa/b complex to activate the IKK/IkB/NF-kB/CXCL1
signaling pathway in CAFs. Despite these finding offered a deeper

understanding of the occurrence of angiogenesis in melanoma

progression and provided promising targets, more clinical studies

are necessary for estimating the therapeutic values of the HSP90/

IKK enriched sEVs. The typical M2-like phenotype of TAMs can be

induced by cytokines derived from Th2 cell, and IL-13 is the

primary cytokine among them. Accordingly, targeting IL-13

receptor and ligand in the TME can block M2 polarization and

then inhibit tumor growth (53). As reported, tumor cell-derived

EVs are able to recruit and polarize TAMs to activate angiogenic

signaling pathways via extensive molecule, including bFGF, TNF-a,
and VEGF (43, 54). Given that, Negrea et al. (55) developed a novel

nanosystem consists of Il-13-LCL-SIM (Il-13-conjugated long-

circulating liposomes with SIM) to target TAMs and PEG-EV-

DOX (PEG stabilized EVs with DOX) to target melanoma cells. In

this study, it was shown that Il-13-LCL-SIM mainly impaired the

pro-angiogenic functions of TAMs and reduced the expression of

key proangiogenic proteins (such as VEGF), which further

sensitized TME to the killing effects of PEG-EV-DOX. Therefore,

combing EVs based therapy with other targeted strategies, including

targeted angiogenesis, is promised to be an advantageous method to

improve the efficacy of EVs-drugs in melanoma, which may also be

applied in other malignant tumors.

Wnt signaling proteins are highly conserved proteins that are

tightly involved in the developmental processes, and also multiple

diseases, including cancers (56, 57). As an atypical Wnt signaling,

WNT5A can promote the spread to distant tissues or organs and the

formation of metastatic foci of melanoma, whereas the high expression

of WNT5A commonly predicted a poor prognosis in melanoma

patients (44, 58). In the endogenous WNT5A low expressed

melanoma cells, the stimulation with rWNT5A led to a great release

of EVs carrying the immunoregulatory cytokine IL-6, and more

important the pro-angiogenic agents, including IL-8, VEGF and

MMP2. In particular, these EVs might accelerate the angiogenesis

processes and create an immunosuppressive TME of melanoma, thus

inducing more rapid tumor growth and distinct metastasis (59).
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Consequently, targeting WNT5A thereby inhibiting the secretion of

related EVs might be a promising strategy for the treatment of

melanoma patients. However, more studies are needed to assess the

potential side effect caused by the silence of WNT5A. Previous studies

have proved that JAK2/STAT3 signaling pathway can regulate

proangiogenic modulators expression, such as VEGFa, FGF2, and

MMP9 (60, 61). Additionally, SOCS1 (suppressor of cytokine

signaling 1) is a powerful inhibitor of JAK2/STAT3 signaling,

however, SOCS1 is decreased in a great number of tumors and

closely related to tumor angiogenesis (45, 62). Zhou et al. (63)

demonstrated that melanoma cell-derived EVs could deliver miR-155

to fibroblasts NIH/3T3 and then elevated the expression of

proangiogenic factors, including VEGFa, FGF2, and MMP9, by

directly targeting SOCS1, thus triggering the proangiogenic switch of

CAFs. Furthermore, in vitro and in vivo assays showed that treatment

with EVs with overexpressedmiR-155 promoted angiogenesis, whereas

the knockdown of miR-155 in melanoma cell-released EVs mitigated

angiogenesis obviously. This discovery may provide a new therapeutic

target for anti-angiogenic therapy in the treatment of melanoma.

Nonetheless, the inhibition of miR-155 in melanoma cell-derived

EVs cannot diminish the proangiogenic regulators to the original

expression level, combined with other therapies may be a feasible

option to obtain better clinical benefits.
EVs regulating immunoresponse
in melanoma

The TME is infiltrated by multiple immune cells, including

lymphocytes (T cells, B cells, NK cells, and T regulatory cells),

dendritic cells (DCs), tumor associated macrophages (TAMs),

myeloid-derived suppressor cells (MDSC), as well as granulocytes

(neutrophils, basophils, eosinophils, and mast cells). However, it

has been recognized that tumor cells can regulate signaling

pathways involved these immune cells and switch them to an

immunorepressive manner, thus inducing enhanced tumor

growth (64, 65). EVs comprise several tumor antigens which may

result in the immunosuppression, yet increasing studies have

indicated that tumor derived EVs are essential mediators between

tumor cells and immune response (Figure 2) by releasing immune-

associated factors to the TME (Table 3) (76, 77).
TABLE 2 Communication between EVs and angiogenesis in melanoma.

Source Contents Target Involved process Reference

Melanoma
cells

uPAR
HMVECs
and ECFCs

Pro-angiogenic effects HMVECs and ECFCs (41)

Melanoma
cells

HSP90/p-IKKa/b complex CAFs
Activating the IKK/IkB/NF-kB/CXCL1 axis in CAFs and promote angiogenesis in vitro

and in vivo
(42)

Synthetic
nanosystem

Il-13-LCL-SIM and PEG
stabilized EVs with DOX

Melanoma
cells

Il-13-LCL-SIM impaired the pro-angiogenic functions of TAMs and reduced the
expression of VEGF, sensitizing TME to the killing effects of PEG-EV-DOX

(43)

Melanoma
cells

IL-6, IL-8, VEGF and MMP2 Angiogenesis
Accelerating the angiogenesis processes and creating an immunosuppressive TME of

melanoma
(44)

Melanoma
cells

miR-155 CAFs Triggering the proangiogenic switch of CAFs (45)
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In addition, T regulatory cells, as immunosuppressive cells,

inhibit the antitumor immune response and secrete various

immunosuppressive cytokines, promoting the tumor immune

escape (78). Melanoma cell derived EVs induce immune

suppression by promoting T regulatory cell expansion as well as

the demise of antitumor CD8+ effector T cells, thereby enabling

tumor cell escape (79). Another study showed, the transfer of

miRNA-214 from Melanoma derived EVs to T-cells down-
Frontiers in Immunology 05
regulates PTEN while favoring the expansion and migration of T

regulatory cells in TME (80).

EVs with TAM

The macrophages in TME are mainly divided into two

categories: anti-tumor “M1” and tumor supportive “M2” types. In

particular, M2 and partial M1 macrophages are considered as
FIGURE 2

EVs mediated the intercommunication between melanoma cells and immunoresponse. (A) The acidic TME promoted the release of EVs-miR-214 to
target TAM, inducing the inflammatory microenvironment. (B) IFN-g induced tumor cell deriving EVs enriched with PD-L1 to bind with CD8+ T cell.
(C) EVs secreted by melanoma cells induced the formation of mMSCPD-1. (D) IL-2 led to the release of CD4+ T cell EVs which caused tumor cell
death. (E) NK-cell derived EVs secreted TNF-a to induce tumor cell death.
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TAMs, which is the major immune population in TME and

involved in tumor occurrence and development (66, 81, 82). A

high TAM infiltration often leads to poor clinical outcomes in a

great number of tumors, including melanoma (67, 83, 84). Besides,

extracellular acidosis is another crucial aspect of the TME and

Andreucci et al. (85) observed that the acidic microenvironment

stimulated the secretion of melanoma-EVs enriched with miR-214.

Then, these EVs tended to induce a proinflammatory activation of

macrophages by increasing the expression of COX-2 and the release

of inflammatory cytokines, such as IL-1b, IL-6, TNF-a, and NO, so

as to establish an inflammatory TME which in turn facilitated the

progression of melanoma. Hence, improving the acidic TME to

reduce the release of miR-214-enriched EVs or diminishing the

expression of miR-214 in melanoma derived EVs may be potential

strategies for the treatment of melanoma. However, this study

lacked primary macrophages experiments, and the polarization of

macrophages was not detected, further research is urgent.

Accumulating evidence showed that natural and modified EVs

are capable of inducing a tumor suppressive response in

macrophages to attenuate tumor growth (86, 87). From the roots

of Panax ginseng C. A. Mey, nanoparticles similar to EVs was

isolated and purified successfully, termed as ginseng-derived

nanoparticles (GDNPs), which were enriched with digalactosyl

monoacylglycerol (DGMG), phosphatidyl ethanolamine (PE), and

ceramide (Cer) (88). When being internalized by TAM, GDNPs

could promote M1-like polarization via TLR-4/MyD88 signaling
Frontiers in Immunology 06
pathway and increase the production of total ROS, which then

induced the apoptosis of mouse melanoma cells and inhibited

tumor growth in vivo. This work demonstrated that GDNPs

played an immunoregulatory role on murine macrophages to

suppress tumor growth in vivo and provided the valid foundation

for further application as nanodrugs to treat melanoma, whereas

more studies are needed to clarify the active ingredient in GDNPs,

as well as the necessary clinical trials.
EVs with immune checkpoint blockade

Notably, melanoma is a highly immunogenic malignancy

characterized by the deeply lymphoid infiltration, thereby

providing well foundation for the immunotherapy in melanoma

(89, 90). Based on this, some immunotherapeutic strategies,

especially the immune checkpoint blockade (ICB), have been

demonstrated to be favorable for the refractory melanoma by

activating effector T cells (68, 91). Compared with other

immunotherapies, even in patients with advanced cancer, ICB

therapies can usually illustrate higher response rates and

persistent responses (69). Among them, PD-1/PD-L1 and CTLA-

4/B7 immune checkpoint pathways are principal targets for ICB,

which have been well studied in the past decades (92).

By using reverse phase protein array (RPPA) and western blot

assay, Chen et al. (93) found that PD-L1 was significantly higher in
TABLE 3 EVs regulating immunoresponse in melanoma.

Related
immunoresponse Origin of EVs Cargo Target Involved process Reference

TAM Melanoma cell miR-214 COX-2
Inducing a proinflammatory activation of

macrophages (66)

Panax ginseng C.
A. Mey

DGMG, PE, Cer

TLR-4/
MyD88
signaling
pathway

Promoting M1-like polarization (67)

ICBs Melanoma cell PD-L1 PD-1 Targeting PD-1+ CD8 T cells (68)

MSCs
Multiple upstream miRNAs and

proteins

Activating
tumorigenic
signaling
(e.g. PD-1,
MET, RAF1,

STAT3,
BCL2,

or mTOR

Formation of mMSCPD-1+ (69)

BMDCs MHC Class II and OVA antigen

antigen-
specific CD8
+ T cells

Inducing strong antigen specific T cell reaction (70)

Melanoma cell HSP86
TLR4/NF-

kB
Triggering the conversion of normal myeloid cells

into MDSCs
(71)

cell PD-L1 PD-1 The exhaustion of tumor-specific CD8+ T cells (72)

T cell CD4+ T cell
miR-25-3p, miR-155-5p, miR-

215-5p, and miR-375

Perforin,
granzyme B,
and IFNg

Increase of the cytotoxicity of CD8+T cell (73)

NK cell NK cell NKG2D, CD94, CD40L
CD56+ NK
cell fraction

Coordinating with NK-mediated
immunosurveillance

(74)

NK 92 cell TNF-a FasL Inhibiting melanoma cells vibility (75)
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EVs, mostly is exosomes, released from metastatic melanoma cells

than that from primary melanoma cells. Mechanically, the

abundance of PD-L1 on melanoma EVs is raised by IFN-g, and
EVs-PD-L1 chiefly targets PD-1+ CD8 T cells and promotes tumor

growth in vivo. Moreover, in patients with advanced melanoma, the

expression of circulating EVs-PD-L1 positively related to that of

IFN-g , and changes during the anti-PD-1 therapy with

pembrolizumab. High levels of EVs-PD-L1 can reflect the

exhaustion of T cells to the limit in melanoma patients, by which

the T cells can no longer be re-activated by the anti-PD-1 treatment.

Accordingly, to develop EVs-PD-L1 as a biomarker may be

attractive. Recently, it has been found that melanoma cells with

upregulated PD-1 are highly invasive (94), but it is still not clear

how the PD-1 overexpressing subpopulations are generated. As

reported, melanoma derived EVs could lead to the formation of a

PD-1 overexpressing cell cluster (melanoma-like MSCPD-1+,

mMSCPD-1+) from naive MSCs, by carrying a complex

reprogramming of carcinogenic molecules (70). Furthermore, EVs

and EVs activated mMSCPD-1+ cells are able to facilitate melanoma

tumor progression in vivo, because of their highly expression of

oncogenes and reduced susceptibility to programmed cell death,

highlighting the complexity of EVs communication during the

progression of melanoma. Although targeting PD-1/PD-L1 axis

can mitigate T-cells exhaustion, it is not effective for all patients

with cancer (95). This therapy resistance may be triggered by the

deficient primary T-cells activation to tumor antigens, impaired

antigen presentation, and decreased T-cell infiltration in the TME

(96, 97). In view of this, increasing efforts have been made to explore

more effective combination strategies. To investigate whether EVs

related therapy could improve the tumor cells susceptibility to anti-

PD-1/PD-L1 therapy in a checkpoint-resistant B16 melanoma

model, Veerman et al. (98) injected bone marrow dendritic cell

(BMDC)–derived EVs, but not checkpoint blockade, into tumor-

bearing mice and then induced a strong antigen-specific T-cell

response and impaired tumor growth. This demonstrates that the

pretreatment with EVs can enhance anti-tumor immune responses

in cancers refractory to checkpoint, and sensitize this subset of

cancers to anti-PD-1/PD-L1 therapy. Therefore, EVs treatment has

the great potential to collaborate with checkpoint blockade therapy,

such as PD-1/PD-L1 blockage, in clinical application. Meanwhile, it

is expected to be an alternative option for intractable tumors which

are reactionless to checkpoint blockade. Myeloid-derived

suppressor cells (MDSC) have been confirmed to be a critical role

in the TME, and its accumulation in preclinical melanoma mouse

models and melanoma patients can promote melanoma tumor

progression via inhibiting T and NK cells (71, 72). The

mechanism of MDSC-mediated immunosuppression is mainly

related to the upregulation of PD-L1 binding with PD-1

expressed on the surface of tumor-infiltrating T cells (99). It has

been proved that MDSC could also be derived from immature

myeloid cells (IMC) or differentiated myeloid cells by the exposure

to EVs released by tumor cells (100). Fleming et al. (101)

highlighted that melanoma-derived EVs triggered the conversion

of normal myeloid cells into MDSCs by the inducible HSP86 in

EVs, which activates TLR4 on myelocytes and lead to the activation

of NF-kB as well as the upregulation of PD-L1 expression.
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Furthermore, the knockdown of HSP86 in melanoma cells

prohibited the secreted EVs to upregulate PD-L1. Although it

may be primarily owing to the silence of HSP86 on the surface of

EVs, whether HSP86 is responsible for the sorting of a variety of

compounds into melanoma-EVs requires further exploration. By

establishing an experimental pulmonary metastasis model using

melanoma cells, Chen et al. (102) discovered melanoma cell-

released EVs enriched PD-L1 were responsible for the metastatic

progression by inducing the exhaustion of tumor-specific CD8+ T

cells, providing a potential target for the treatment of melanoma.

However, how to inhibit the release of tumor derived EVs, or reduce

the enrichment of PD-L1 into EVs is a great challenge to

be resolved.

In addition, the assessment of PD-L1 in tumor tissues has

provided a feasible method to identify a patient population sensitive

to chemotherapy (103). Nevertheless, PD-L1 levels could be

influenced by the activity change of some signaling transduction

pathways (104), thus abating its predictive value, whereas EVs-PD-

L1 level may be a more appropriate indicators (105, 106). In order

to explore other potential biomarkers, a study enrolled in 18

melanoma patients was conducted to evaluate whether PD-L1

mRNA level in plasma-derived EVs could reflect response to the

anti-PD-1 agents, such as nivolumab and pembrolizumab. The

results showed that PD-L1 expression in plasma-derived EVs

decreased obviously in subjects responding to treatment but

increased in that with advanced disease, suggesting that PD-L1

expression level in plasma-derived EVs may be a stable and valuable

biomarker for the prediction of melanoma patient response to anti-

PD-1 antibodies (107). However, it is necessary to collect a large

number of clinical samples for further validation. Apart from that,

Serrat et al. (108) identified the level of circulating PD-L1+ EVs

released from melanoma and CD8+ T cells and that of PD1+ EVs

were much higher in unresponsive patients. Besides, the Kaplan-

Meier curves showed the higher levels of PD1+ EVs were

significantly correlated with poor prognosis. This finding provides

the probability for utilizing these circulating EVs, which might be

employed as low invasive liquid biopsy to monitor the response of

melanoma patients to ICB therapy.
EVs derived from immune cells

In the TME, immune cells released EVs have attracted much

attention for cancer immunotherapy, because they also display

immunological endogenous features similar to their parental cells

(73, 109). Among them, T cell-derived EVs have been reported to

exert anti-tumor effects in cancer immunotherapy through

mimicking their parental cells (110, 111). As reported, IL2-

stimulated CD4+ T cell-derived EVs played certain roles in anti-

tumor immune responses via increasing the cytotoxicity of CD8+T

cell. Furthermore, in a tumor-bearing mouse model, it was

demonstrated that EVs secreted by CD4+ T cell attenuated the

growth of melanoma significantly via CD8+ T cell mediated tumor

suppression (112). Consequently, EVs originated from CD4+ T cells

are promising therapeutic agents to induce potent anti-tumor

responses for melanoma patients.
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NK cells consist of many granular lymphocytes, and play a

leading role in the anti-tumor immune responses by inhibiting

tumor growth, and metastas is (74) . In the immune

microenvironment, NK cells communicate with other immune

cells, such as DCs, T and B cells, to modulate innate and adaptive

immune responses. This crosstalk is mediated by the release of a

wide range of modulators, including cytokines, chemokines, and

EVs (75, 113). In particular, NK-cell-derived EVs (NKEVs) are

constitutively released and have anti-tumor activities similar to NK

cells (114). Moreover, in both NK-derived exosomes and

microvesicles, NKEV mass spectrometry and cytokine profile

identified the expression of NK cell markers, such as NKG2D,

CD94, CD40L, and other cytotoxic molecules, as well as the factors

involved in cell adhesion, and immune response, suggesting that

NKEVs are potential agents to be applied in cancer therapy. In

melanoma patients, it was demonstrated that the quantity of

circulating NKEVs is much lower than that in healthy donors,

which might result in the low immune activity in melanoma

patients. Hence, NKEVs could act as collaborator to coordinate

with NK-mediated immunosurveillance, and the supplement of

normal NKEVs to enhance the efficacy of immunotherapies might

be a favorable option for melanoma patients (115). In addition, after

being co-cultured with NK-92 EVs, the melanoma cells exhibited

low cell viability but high cell apoptosis in a does dependent

manner, which might be mediated by the secretion of TNF-a
from NK-92 EVs (116). The inhomogeneity of the TME,

especially the acidity distributed in the TME causes the reduction

of perforin/granzymes from NK cells and inhibition of Fas/FasL

interaction. However, acidity is able to promote the accumulation

and release of EVs due to the low pH of TME attracts them and

induces membrane fusion (117). Hereby, NK-92 EVs based

immunotherapy has obvious advantages over therapy dependent

on whole NK cell, and deserves further utilization as a promising

immunotherapeutic strategy for melanoma.
EVs remodeling ECM in melanoma

Extracellular matrix (ECM) is a major non-cellular component

in TME (118). It has been well demonstrated that ECM is a

macromolecular network comprising collagens, elastin,

fibronectin, proteoglycans/glycosaminoglycans, and laminins,

which acts as a physical scaffold and is exerts essential roles in

tumor cell differentiation, migration, and homeostasis (119, 120).

The remodeling of ECM arises under physiological and pathological

conditions and is regulated by multiple enzymes, such as

metalloproteinases. Some EVs have been observed within the

matrix and involved in the remodeling of ECM, that will impel

the modification of the TME, and the formation of pre-metastatic

niches (121, 122). Palmulli et al. (123) found that melanoma-

derived sEVs are able to physically interact with collagen I, the

primary fibrous component of the ECM, and then enhanced the

activity of metalloproteases at the surface of EVs and the

remodeling of the ECM, which is involved in the advancement of

malignant tumors. Accordingly, blocking the binding between

tumor derived EVs with collagen I may be a feasible therapeutic
Frontiers in Immunology 08
strategy for melanoma patients (Figure 3). However, whether EVs

are capable of binding to other collagens or other components of

ECM to remodel TME is still a challenge. Matrix metalloproteinases

(MMPs) are zinc-dependent proteins, which take part in the tissue

remodeling and involve tumor progression (124, 125). The

membrane type 1 matrix metalloproteinase (MT1-MMP) is a

critical member of metalloproteinases that facilitate tumor

progression by remodeling the ECM (126, 127). From the culture

medium of melanoma (G361) cells, EVs carrying the full-length and

the proteolytically processed forms of MT1-MMP were isolated and

identified (128). Interestingly, the EVs could activate pro-MMP-2

and degrade type 1 collagen, indicating EVs-MT1-MMP possessed

functional activities. This provided a novel mechanism by which

melanoma cells could remodel the ECM in TME, thus targeting

MT1-MMP in EVs, or depressing the release of tumor cell derived

EVs might be a promising strategy for melanoma treatment.
Conclusions and perspective

Owing to the essential roles of TME in the occurrence and

development of tumors, including melanoma, targeting of the TME

has recently been regarded as a great promising therapeutic strategy

to improve the anti-cancer efficacy (129, 130). Along with the

clinical approval of several drugs and targeted therapies that were

designed toward the angiogenesis, immune checkpoints, T and NK

cells, additional molecules directly target the cellular or non-cellular

components of TME are also under development. In this review, we

have highlighted the potential of EVs mediated the crosstalk within

the TME to be the therapeutic agents for melanoma patients.

Moreover, emerging studies have also revealed that plasma-

derived EVs can act as biomarkers for the advancement of

melanoma, such as the circulating EVs-PD-1/PD-L1, thus

providing a novel direction for the lipid biopsy. Although EVs-

related therapies and biomarkers have shown huge application

prospects, some shortages still needed to be overcome before its

clinical use. For example, the heterogeneity in size, composition and

sources of EVs lead to the difficulty to isolate a specific subset with

desirable factors, which will reduce the accuracy of targeting

therapy and bring some unexpected side effects. Therefore, the

isolation and characterization methods should be further optimized

to obtain more ‘pure’ EVs. Besides, the natural EVs commonly face

problems such as the low production and complex composition.

Furthermore, the efficiency of EVs may also be declined due to the

low infiltration, insufficient drug delivery, captured by immune

cells, and the inadequate immune response (131–133). Recently, a

number of engineering methods have been used to obtain generous

artificial and modified EVs to improve EVs efficacy and

practicability, which have shown encouraging results.

In addition to carry endogenous cargoes, because of the

inherent protection of the cargo and capable of enhancing

solubility, stability, and specificity, EVs have been proposed as a

drug delivery system to load single or multiple drugs to exert anti-

tumor effect. In the clinical treatment of melanoma, ICBs are widely

used. Currently, several monoclonal antibodies, such as

pembrolizumab and nivolumab (anti-PD-1), and ipilimumab
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(anti-CTLA-4) have been studied and become the appropriate

therapy to improve metastatic melanoma survival (134–138).

However, there are still around 50% of patients fail to achieve

clinical benefits (139). Utilizing EVs to delivery these antibodies to

the TME, thus directly targeting tumor cells or T cells may be an

alternative method to improve the efficacy of ICBs in melanoma.

Moreover, modifying EVs to enhance their melanoma TME

targeting will be favorable for increasing the accumulation and

sustain of ICIs in the TME. However, few engineered EVs loaded

with ICIs or other anti-tumor modulators specially targeting

melanoma has been developed, whereas more efforts are needed.

Taken together, although the therapeutic application of EVs in

melanoma clinical treatment is still restricted by the deficiency of

feasible and standardized methods to obtain moderate EVs from

melanoma patients biofluids and tumor cells, the limited loading

efficiency of multiple agents, and the difficulty to manufacture

sufficient melanoma specific EVs, EVs are still the great

promising therapeutic manner for melanoma. With the progress

of technology and new findings, EVs will finally shed light on the

melanoma diagnosis and treatment in the era of precision medicine.
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FIGURE 3

Melanoma derived EVs remodel ECM. The physical interaction between EVs and collagen I enhanced the activity of metalloproteases at the surface
of EVs and the remodeling of the ECM. Besides, EVs with MT1-MMP could activate pro-MMP-2 and degrade type 1 collagen, resulting the
remodeling of ECM.
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