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Aberrant phenotype of
circulating antigen presenting
cells in giant cell arteritis and
polymyalgia rheumatica

Rosanne D. Reitsema1,2, Bernd-Cornèl Hesselink1,
Wayel H. Abdulahad1,3, Kornelis S. M. van der Geest1,
Elisabeth Brouwer1, Peter Heeringa3 and Yannick van Sleen1*
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Center Groningen, Groningen, Netherlands, 2School of Medical Sciences, Faculty of Medicine and
Health, Örebro University, Örebro, Sweden, 3Department of Pathology and Medical Biology,
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Background: Giant Cell Arteritis (GCA) and Polymyalgia Rheumatica (PMR) are

overlapping inflammatory diseases. Antigen-presenting cells (APCs), including

monocytes and dendritic cells (DCs), are main contributors to the

immunopathology of GCA and PMR. However, little is known about APC

phenotypes in the peripheral blood at the time of GCA/PMR diagnosis.

Methods: APCs among peripheral blood mononuclear cells (PBMCs) of

treatment-naive GCA and PMR patients were compared to those in age- and

sex-matched healthy controls (HCs) using flow cytometry (n=15 in each group).

We identified three monocyte subsets, and three DC subsets: plasmacytoid DCs

(pDCs), CD141+ conventional DCs (cDC1) and CD1c+ conventional DCs (cDC2).

Each of these subsets was analyzed for expression of pattern recognition

receptors (TLR2, TLR4), immune checkpoints (CD86, PDL1, CD40) and

activation markers (HLA-DR, CD11c).

Results: t-SNE plots revealed a differential clustering of APCs between GCA/PMR

and HCs. Further analyses showed shifts in monocyte subsets and a lower

proportion of the small population of cDC1 cells in GCA/PMR, whereas cDC2

proportions correlated negatively with CRP (r=-0.52). Classical monocytes of

GCA/PMR patients show reduced expression of TLR2, HLA-DR, CD11c, which

was in contrast to non-classical monocytes that showed higher marker

expression. Additionally, single cell RNA sequencing in GCA patients identified

a number of differentially expressed genes related to inflammation and

metabolism in APCs.

Conclusion: Circulating non-classical monocytes display an activated phenotype

in GCA/PMR patients at diagnosis, whereas classical monocytes show reduced

expression of activation markers. Whether these findings reflect APC migration

patterns or the effects of long-term inflammation remains to be investigated.
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1 Introduction

Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are

overlapping, inflammatory diseases affecting people older than 50

years of age. GCA is characterized by inflammation of larger-sized

arteries which can lead to symptoms such as headaches, jaw or limb

claudication, and vision loss. Approximately 50% of GCA patients

have overlapping PMR, which causes pain and stiffness in shoulders

and hips due to inflammation of bursae and tendon sheaths. GCA

and PMR have been considered to be both part of the same clinical

syndrome, coined GPSD (GCA-PMR Spectrum Disease), with PMR

being one of the manifestations with a more systemic inflammatory

response, but without occurrence of vasculitis (1, 2).

GCA is hypothesized to develop in the adventitia of the vessel

wall, where dendritic cells (DCs) become activated via binding of an

unknown ligand to their pattern recognition receptors, e.g. toll-like

receptors (TLRs) (3). These receptors are essential for sensing

pathogen associated molecular patterns (PAMPs), expressed by

bacteria and viruses, but also damage associated molecular

patterns (DAMPs), which for instance are released by necrotic

cells (4). In GCA, DCs may be more prone to activation due to a

defect in programmed death ligand 1 (PDL1) expression (5, 6).

PDL1 is one of several immune checkpoints that has been

implicated in GCA (7). Immune checkpoint ligand and receptor

interactions between lymphocytes and antigen presenting cells

(APCs) are crucial for regulating immune responses (8). Signals

through co-inhibitory immune checkpoints such as via the PD1/

PDL1 pathway dampen the immune response whereas stimulatory

immune checkpoint interactions such as via CD28/CD80-CD86

and CD40L/CD40 induce immune activation.

In GCA, activation of DCs lacking in PDL1 supposedly leads to

chemokine production and recruitment of CD4+ T cells and

monocytes to the arterial wall (3). In circulation, three subsets of

monocytes can be identified based on CD14/CD16 expression:

classical monocytes, the most common subset, intermediate

monocytes, which typically express high levels of activation

markers, and non-classical monocytes, whose exact function

remains debated (9). Recent studies showed that CD4+ T cells

and macrophages are present in tissues of inflamed bursae and

tendon sheath of PMR patients as well (10, 11). The infiltrated cells

in inflamed tissues of GCA and PMR patients in turn produce

chemokines and cytokines, such as IL-6, that may further fuel the

infiltration and inflammation in the vessel wall. These cytokines

also contribute to systemic inflammation, as evidenced by high

levels of C-reactive protein (CRP), in patients with GCA and PMR.

The exact role of circulating DC subsets in inflammatory diseases

such as GCA and PMR remains unclear. Frequencies of conventional

DCs (cDCs) are 5-10 times higher in GCA arteries than in healthy

arteries, suggesting massive recruitment of cDCs to the vessel wall

during active disease (12). These cells express CCR7 and are thought

to be retained in the vessel wall due to high local production of the

CCR7 ligands CCL19 and CCL21. In PMR, it is likely that cDCs

migrate to the inflamed synovium in these patients. Different

functions and phenotypes have been ascribed to the CD11c+ cDCs

and the CD303+ pDCs (13). DCs detect PAMPs and DAMPs

through pattern recognition receptors, leading to activation and
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maturation, including the upregulation of CD83, CD86 and MHC-

II molecules (e.g. HLA-DR) (5, 12, 13).The function of circulating

CD141+ cDC1 is still debated (14, 15), but they are thought to play a

role in mediating the efficient recognition of viral and intracellular

antigens and subsequently the production of type III interferon. In

blood, CD1c+ cDC2 are much more common. They are excellent

cross-presenting cells, as can be appreciated by their high HLA-DR

expression, and have the capacity to produce a wide range of pro-

inflammatory/T-cell skewing cytokines. It has been postulated that

the cDC1 subset is responsible for CD8+ T cell activation, whereas

the cDC2 subset preferably interacts with CD4+ T cells. In contrast,

pDCs have lower antigen presentation capabilities, but produce large

amounts of type I IFN and pro-inflammatory cytokines in response

to pathogens (16). Compared to cDCs, pDCs have a drastically

impaired capacity to migrate to the inflammatory site in response

to inflammatory chemotactic chemokines (17).

Although APCs, including monocytes and DCs, seem to be

involved in the local inflammatory response in GCA and PMR, their

phenotype in blood is largely unknown. In this exploratory study,

we investigated whether circulating APCs have an aberrant

phenotype and numerical composition at the time of GCA/PMR

diagnosis. To this end, expression of TLRs, activation markers and

immune checkpoints on subsets of monocytes and DCs was

assessed. The relations between the phenotype of APCs and

clinical features were examined as well.

2 Materials and methods

2.1 Study population

Patients with active GCA and PMR (n=15 each) were enrolled in

this study at the time of their diagnosis and before start of treatment.

Diagnosis of GCA and PMRwas based on clinical signs and symptoms

or positive proof by imaging with [18F]fluorodeoxyglucose-PET scan

and/or ultrasound (Supplementary Table 1). GCA diagnoses were

further based on positive temporal artery biopsies. Healthy controls

(HCs, n=15) were aged- and sex-matched, had no morbidities and

received no immunosuppressive medication. All patients and HCs

were included in the flow cytometry experiments. TLR4 expression was

assessed in n=13 patients and controls. In addition, absolute immune

cell counts were determined in 15 HCs, 14 GCA and 13 PMR patients

by the XN-9000 (Sysmex, Kobe, Japan), based on size and

granularity (diff).

All patients and controls were seen by a clinician before study

inclusion. The study was executed in accordance with the

declaration of Helsinki and all participants gave their written

informed consent. The local medical ethical committee approved

of this study (METc2010/222).
2.2 Flow cytometry staining

Flow cytometry experiments were executed on cryopreserved

peripheral blood mononuclear cells (PBMCs). PBMCS were thawed

in RPMI + 10% FCS before staining with fluorescently labelled

monoclonal antibodies for 15 minutes (Supplementary Table 2).
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Cells were subsequently fixed with FACS lysing solution for 10

minutes. Cells were washed twice in PBS + BSA before analysis with

the BD FACSymphony flow cytometer. Before measuring,

cytometer setup and tracking beads were used to normalize

between measurements at subsequent dates. Initial compensations

were generated using compensation beads and further optimized

using the fluorescence minus one (FMO) controls when necessary.

The setting of gates was based on FMO controls and biological

controls (Supplementary Figure 1).
2.3 Single-cell RNA sequencing

Single-cell RNA sequencing (scRNAseq) was performed on

cryopreserved PBMCs by Single Cell Discoveries (https://

www.scdiscoveries.com/, Utrecht, the Netherlands) as described

before (18). We have previously studied the transcriptome of T

cells in GCA, and of CD8+ T cells specifically. For this study we

used the dataset generated to analyze clusters containing CD16-

monocytes, CD16+ monocytes, cDCs and pDCs (Supplementary

Figure 2). The distribution of cell types per donor is shown in

Supplementary Figure 3. Single-cell RNA sequencing data can be

found under GEO: GSE198891.
2.4 Data analysis and statistics

Flow cytometry data was analyzed with Kaluza v2.1 software

(Beckman coulter, IN, USA) to obtain frequencies of positive cells

and mean fluorescence intensities (MFI) of the cellular markers.

t-distributed Stochastic Neighbor Embedding (t-SNE) analyses

were performed using FCS express version 6 (De Novo software,

CA, USA). To this end, compensation was applied before

subsequently gating APCs in all FCS files individually. APCs were

gated as HLA-DR+CD19- single cells. Equal numbers of APCs were

exported as separate files from each file and merged into a single

FCS file including a file identifier. t-SNE was calculated based on

expression of CD14, CD16, CD303, CD1c, CD141, PDL1, CD40,

CD86, TLR2 and CD11c. Sampling options included an interval

down sampling method, a Barnes- Hut approximation of 0.50,

perplexity set to 60 and number of iterations to 2000.

Mann-Whitney U tests were performed to compare between GCA/

PMR patients and HCs. Spearman rank correlations were calculated

when indicated in the text. R (version 3.6.2) with the Seurat package

(version 3.2.0) was used as described previously to analyze the

scRNAseq data. All plots were created using GraphPad Prism

version 9. P values <0.05 were considered statistically significant.
3 Results

3.1 t-SNE analyses reveal differential
clustering of APC counts in GCA/PMR
patients compared to HCs

t-SNE plots were made to assess the distribution of different APC

subsets between HCs and patients with GCA and PMR (Figure 1).

Clear distribution differences could be observed between HCs and
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GCA patients, and between HCs and PMR patients. t-SNE plots

between GCA and PMR patients showed a similar distribution of

counts. Visualization of the expression of CD16, CD14, CD1c,

CD141 and CD303 in de t-SNE of total counts revealed five major

subsets: non-classical monocytes (CD14lowCD16+), intermediate

monocytes (CD16+CD14+), classical monocytes (CD14+CD16-),

cDCs (CD141/CD1c+) and pDCs (CD303+). In the t-SNE plots of

HCs and GCA/PMR patients we observed a shift in cell counts within

the clusters of classical monocytes, non-classical monocytes,

intermediate monocytes and cDCs but not in the pDCs.
3.2 Proportions and absolute counts of
monocyte and DC subsets are affected in
GCA and PMR

Conventional gating strategies as shown in Supplementary

Figure 1 were used to calculate the frequencies of monocytes and

DC subsets (Figure 2). GCA and PMR patients were pooled in the

analysis, as t-SNE plots showed a similar distribution of subsets

(Figure 1) and they have been postulated to be part of an overlapping

syndrome (GPSD). Absolute counts of monocyte and DC subsets

were calculated based on the frequencies and the absolute counts of

total PBMCs (lymphocytes + monocytes). Higher proportions and

absolute counts of intermediate monocytes were found in GCA/PMR

patients than in HCs. Proportions of classical monocytes among total

monocytes seemed to be slightly higher in GCA/PMR patients (trend,

p=0.065) and absolute counts of classical monocytes appeared to

show a similar pattern, albeit not statistically significant due to the

large variation within the groups. In contrast, proportions of non-

classical monocytes were reduced in GCA/PMR patients compared to

HCs (Figure 2A). Analyses of DC subsets showed that proportions

and absolute counts of the small population of cDC1 cells were

reduced in GCA/PMR patients compared to HC whereas the cDC2

and pDC subset remained unchanged (Figure 2B). As a sub-analysis,

we did compare whether patients with GCA had differences in

monocyte and DC subset counts compared to patients with PMR,

but no differences were found (Supplementary Figure 4).

Next, we assessed whether the proportions of circulating

monocyte and DC subsets associated with systemic inflammation,

as indicated by a high CRP (Table 1). The percentage of cDC1 (R=-

0.41) and cDC2 (R=-0.52) within total PBMCs showed a

moderately strong, negative, association with the CRP in GCA/

PMR patients. This indicates that patients with a strong systemic

inflammatory response have a relatively low proportion of

circulating cDCs. Within the monocyte population, it appears

that a shift from classical monocytes towards non-classical

monocytes was also associated with a lower CRP.
3.3 TLR2 expression is changed in
monocytes but not in DCs of patients
with GCA/PMR

To assess changes in expression of pattern and damage

recognition receptors, we stained for TLR2 and TLR4 within

monocytes and DC subsets (Figure 3). TLR2 expression appeared
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to be higher in intermediate and non-classical monocytes in GCA/

PMR patients than in HCs. In contrast, classical monocytes expressed

less TLR2 in GCA/PMR. TLR2 expression was comparable between

patients and controls within DC subsets. In addition, TLR4 was not

differently expressed either in both monocytes and DC subsets.

3.4 Classical monocytes show signs of
reduced activation in GPSD; non-classical
monocytes show higher expression of
activation markers

After assessing the expression of TLRs we investigated whether

the expression of the immune checkpoints CD86, PDL1 and CD40
Frontiers in Immunology 04
and the activation markers HLA-DR and CD11c was different in

GCA/PMR as well. To this end we determined and compared the

mean fluorescence intensity of these markers in each monocyte

subset between GCA/PMR patients and HC (Figure 4).

Interestingly, whereas classical monocytes show a reduced

expression of HLA-DR and CD11c which could be indicative of a

reduced activation, non-classical monocytes show an opposite

pattern in GCA/PMR. Non-classical monocytes in GCA/PMR had

elevated per cell expression of CD11c, but also of CD86 and CD40.

PDL1 appeared to be elevated in non-classical monocytes and

showed a trend towards higher expression in classical monocytes in

GCA/PMR. Expression of HLA-DR on non-classical monocytes

remained unchanged between the study groups. Intermediate
A

B

FIGURE 1

t-distributed Stochastic Neighbor Embedding (t-SNE) visualization of antigen presenting cell counts. (A) t-SNE plots of antigen presenting cell counts
in HCs, GCA and PMR patients. (B) Marker expression of CD16, CD14, CD1c, CD141 and CD303 in the combined t-SNE plots of HCs and GCA/PMR
patients for the identification of clusters with non-classical monocytes (CD14lowCD16+), intermediate monocytes (CD16+CD14+), classical
monocytes (CD14+CD16-), conventional dendritic cells (CD141/CD1c+) and plasmacytoid dendritic cells (CD303+). HC, healthy control; GCA, giant
cell arteritis; PMR, polymyalgia rheumatica; t-SNE, t-distributed Stochastic Neighbor Embedding.
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monocytes of GCA/PMR patients had, in contrast to non-classical

monocytes, a reduced expression of CD40 and showed no differences

in the expression of other markers. When comparing patients with

GCA and patients with PMR, we found that CD40 expression on

classical and intermediate monocytes was particularly low in PMR

(p<0.05, Supplementary Figure 5). No other differences were found in

expression levels between patients with GCA and PMR.

In summary, classical monocytes of GCA/PMR patients overall

appeared to be less activated, whereas non-classical monocytes

showed a higher expression of activation markers compared to HCs.
Frontiers in Immunology 05
3.5 Reduced expression of activation
markers in cDC2 and aberrant expression
of immune checkpoints in pDCs
in GCA/PMR

After assessing the surface marker expression by monocytes, we

assessed the same surface marker expression by cDC2s and pDCs

(Figure 5). As the population of cDC1 cells was very small,

expression of the surface markers by cDC1 cells could not be

determined. cDC2 and pDCs had different expression levels
A

B

FIGURE 2

Frequencies and counts of monocytes and dendritic cell subsets. (A) Frequencies of classical monocytes, intermediate monocytes and non-classical
monocytes among total monocytes (upper row) and cell counts (lower row) in GCA/PMR and HCs. (B) Frequencies of cDC1, cDC2 and pDCs among
total PBMCs (upper row) and absolute cell counts (lower row) in GCA/PMR and HCs. Red line depicts the median. Closed circles represent GCA
patients and open circles PMR patients. GCA, giant cell arteritis; PMR, polymyalgia rheumatica; HC, healthy controls; cDC1, conventional dendritic
cell subset 1; cDC2, conventional dendritic cell subset 2; pDC, plasmacytoid dendritic cell. Statistical significance by Mann-Whitney U tests is
indicated and p values are reported in the graphs.
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between GCA/PMR and HCs. cDC2 had a reduced expression of

HLA-DR and CD11c (trend, p=0,065) compared to HCs whereas

these markers were unchanged within the pDC subset. pDCs

however, had higher expression of CD86 in GCA/PMR patients

and lower expression of CD40. No changes were found regarding

PDL1 expression in DC subsets of patients and controls.
3.6 Single-cell RNA sequencing of
monocytes and DCs in GCA

To gain more insight into the function of APCs and potential

areas of future research in monocytes and DCs, we utilized the

previously published scRNAseq dataset obtained by our group

performed in PBMCs of three GCA patients and three HCs (18).

In Figure 6 three volcano plots are shown that illustrate

differentially expressed genes within CD16- monocytes, CD16+

monocytes and cDCs. Genes of interest have been highlighted in

the graphs in green and purple. Some genes (in blue) have a high

fold change between HC and GCA but are related to HLA type.

Genes in grey are previously shown to be highly donor specific (e.g.

RPS26) (18). The complete list of genes with a fold change of >0,4

and an adjusted p value of <0.05 can be found in the

Supplementary. Results in pDCs are not shown, as only two genes

were differentially expressed: RPS26, which was donor specific, and

HLA-DRB5, related to HLA type.

Some genes that are higher expressed by GCA patients than

HCs, are related to immune function and inflammation. Enhanced

gene expression by CD16- monocytes in GCA patients included for

instance the expression of CLU, which is related to a protein

involved in TNF-a secretion by macrophages (19) and

phagocytosis of late apoptotic cells (20). Other genes that had a

higher expression in GCA were PLAC8, previously found to

upregulated on activated monocytes (21), PIM1 which is related

to a protein regulating proinflammatory cytokine responses in

synoviocytes (22) and PHLDA1, which was recently found to be

related to TLR4 activity (23). In addition, increased expression of

PPBP, encoding CXCL7 was found in CD16- monocytes of GCA

patients as well. CD16+ monocytes showed upregulation of PIM1 as

well, and in addition upregulation of CFD, related to the

complement system and IFITM1, related to the interferon (IFN)
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pathway. Other genes, such as INSIG1 and MIDN, which were

upregulated on monocytes are associated with metabolism and

regulators of glucokinase activity.

Decreased expression of genes in GCA patients included THBS1 in

CD16- monocytes, encoding thrombospondin-1. Thrombospondin-1

has been associated with anti-inflammatory properties by being secreted

by apoptotic monocytes, to mediate engulfment and decrease immune

responses (24). Mice deficient for thrombospondin-1 have defective IL-

10 production by macrophages and deficient inflammation resolution

after injury (25). Despite exerting anti-inflammatory functions,

thrombospondin-1 is associated with vascular inflammation properties

as well, as evidenced by a THBS1 knockout mouse model of chemically

induced abdominal aortic aneurysm (26). TREM1was downregulated as

well and encodes for proteins associated with monocyte activation after

acute bacterial and fungal infections (27). Interestingly, both monocyte

subsets had decreased expression of CLEC12A in GCA, encoding for

proteins that negatively regulate inflammation (28).

Many of the genes that were differentially expressed in cDCs of

GCA patients have an undefined function in DCs. Of interest is the

upregulation of the IFITM2 gene, which is like IFITM1 related to

the IFN pathway. Furthermore, FCER1A, related to DC regulation

was downregulated in GCA (29).

Together, these results indicate that GCA patients had

differentially expressed genes within monocytes and DCs related

to inflammation and metabolism.
4 Discussion

Our study provides new insights into the role of monocytes and

DCs in the pathogenesis of GCA and PMR. We found that patients

with GCA/PMR exhibit a shift in monocyte subset proportions,

with higher proportions of classical and intermediate monocytes,

and reduced proportions of non-classical monocytes. Moreover, we

observed a phenotypic shift in monocytes of GCA/PMR patients.

Classical monocytes showed reduced expression of TLR2, HLA-DR,

and CD11c, whereas non-classical monocytes exhibited higher

expression of TLR2, CD86, CD40, and CD11c. Furthermore, both

classical (trend) and non-classical monocytes had a higher

expression of PDL1. Additionally, our results indicate that GCA/

PMR patients exhibit lower percentages of the cDC1 subset and
TABLE 1 Associations of proportions of monocyte and dendritic cell (DC) subsets with C-reactive protein (CRP) levels at the time of GCA/PMR
diagnosis, as a reflection of systemic inflammation.

Spearman R correlation with CRP at diagnosis (mg/L)

As % of total PBMCs As % of total monocytes

Classical monocytes 0.26 0.32 #

Intermediate monocytes -0.01 -0.17

Non-classical monocytes -0.20 -0.35 *

cDC1 -0.41 *

cDC2 -0.52 *

pDC -0.24
Shown are the Spearman R coefficients of the correlation between the percentage of each subset and the CRP. *: p<0.05, #: p<0.10 (trend). PBMCs, peripheral blood mononuclear cells.
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reduced expression of HLA-DR and CD11c (trend) on cDC2.

Interestingly, CRP appears to be associated with a shift from non-

classical monocytes to classical monocytes, as well as reduced

percentages of cDC1 and cDC2 cells. These findings add to the

knowledge on the pathogenesis of GCA/PMR and may have

implications for the development of new therapeutic approaches.

The changes in the distribution of monocyte and DC subsets

align with previous findings of our group and others in GCA/PMR
Frontiers in Immunology 07
patients and other inflammatory diseases. Reduced non-classical

monocyte proportions have been described in our cohort before, in

non-overlapping patients and controls (30). Circulating DC subsets

have been studied less frequently in inflammatory diseases.

Previously, lower counts of circulating cDCs have also been

described in inflammatory conditions such as Sjögren’s syndrome

(31), and other types of vascular inflammation, such as coronary

artery disease (32). In this study we did not observe significantly
A

B

FIGURE 3

Expression of TLRs on APCs in GCA/PMR. Expression of TLR2 and TLR4 on monocyte subsets (A) and DC subsets (B). Graphs illustrate the mean
fluorescence intensity (MFI). Red line depicts the median. Closed circles represent GCA patients and open circles PMR patients. GCA, giant cell
arteritis; PMR, polymyalgia rheumatica; HC, healthy controls; TLR, toll-like receptor. Statistical significance by Mann-Whitney U tests is indicated and
p values are reported in the graphs.
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reduced proportions of the main cDC subset, cDC2, however we did

show that a lower proportion of these cells associates with a stronger

systemic inflammation. This potentially reflects enhanced

migration from the blood to the tissues in patients with a strong

systemic inflammatory response. In patients with early rheumatoid
Frontiers in Immunology 08
arthritis, disease activity was also found to be associated with

reduced proportions of cDCs (33). We did measure lower

proportions of the rare CD141+ cDC1 subset, which also aligns

with the aforementioned study in rheumatoid arthritis. That study

however also reported evidence of enhanced activation (CD86
FIGURE 4

Mean fluorescence intensity of APC-associated markers on monocytes. Graphs illustrate the mean fluorescence intensity (MFI) of CD86, PDL1,
CD40, HLA-DR and CD11c on classical monocytes, intermediate monocytes and non-classical monocytes in GCA/PMR and HCs. Red line depicts
the median. Closed circles represent GCA patients and open circles PMR patients. GCA, giant cell arteritis; PMR, polymyalgia rheumatica; HC, healthy
controls; PDL1, programmed death ligand 1; HLA-DR, human leukocyte antigen-DR. Statistical significance by Mann-Whitney U tests is indicated and
p values are reported in the graphs.
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expression) of the cDC2 subset, which was not substantiated in our

study, as we rather showed reduced HLA-DR expression on cDC2.

Finally, the increased classical/intermediate proportions are not in

line with the lack of expansion of non-classical monocyte and cDC1

counts, which indicates that there are potential defects in the
Frontiers in Immunology 09
developmental transitions from classical/intermediate monocytes

towards these phenotypes.

The contrasting activation patterns observed in monocyte subsets

of GCA/PMR patients; reduced expression in classical and enhanced

activation of non-classical monocytes, has not been described before
FIGURE 5

Mean fluorescence intensity of APC-associated markers on dendritic cells. Graphs illustrate the mean fluorescence intensity (MFI) of CD86, PDL1,
CD40, HLA-DR and CD11c on cDC2s and pDCs in GCA/PMR and HCs. Red line depicts the median. Closed circles represent GCA patients and open
circles PMR patients. cDC2, conventional dendritic cell 2; pDC, plasmacytoid dendritic cell; GCA, giant cell arteritis; PMR, polymyalgia rheumatica;
HC, healthy controls; PDL1, programmed death ligand 1; HLA-DR, human leukocyte antigen-DR. Statistical significance by Mann-Whitney U tests is
indicated and p values are reported in the graphs.
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and could have several explanations. The exact functional similarities

and differences between monocyte subsets has not been fully

crystallized and therefore, a designation of pro- or anti-

inflammatory subsets is inappropriate. Non-classical monocytes, and

to a larger extent intermediate monocytes, are known for their

heightened ability to present antigens and sense PAMPs and

DAMPs. This has been reported before and is supported by higher

expression levels of markers such as CD86, HLA-DR and TLRs,

compared to classical monocytes (34). However, classical monocytes

are more equipped to produce high amounts of pro-inflammatory

cytokines (9). Monocytes likely follow a linear differentiation pattern

from classical to intermediate to non-classical monocytes. The

differentiation step from intermediate to non-classical monocytes

could occur outside the blood (35). The increased activation marker

expression by non-classical monocytes could indicate increased

antigen expression activity and involvement in the disease

pathogenesis. Also, in other (auto)inflammatory diseases such as

systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA)

involvement of non-classical monocytes in the development of the

disease has been reported (36). In SLE, non-classical monocytes seem

to contribute to activation of T cells and B cells and (indirectly) to

auto-antibody production. Furthermore, in a murine RA model,

non-classical monocytes were able to differentiate into

inflammatory macrophages.

The decreased activation marker expression on classical

monocytes in GCA/PMR is less expected, due to their capacity to

produce high amounts of pro-inflammatory cytokines. Their

reduced expression could indicate a state of exhaustion caused by

either long-term inflammation or long-term exposure to viruses

(37–39). This is also supported by the trend towards increased

expression of PDL1. However, this explanation is less likely as this

would be expected to affect the intermediate and non-classical

monocytes as well. The finding that non-classical monocytes

show higher activation markers alongside increased expression of

PDL1 in GCA/PMR makes this explanation even less likely. Indeed,

PDL1 expression, just as PD1, has been known to be upregulated in

response to pro-inflammatory stimuli, as a counter mechanism to

dampen the inflammation (reviewed in (40)).
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As monocytes have a high turn-over rate, reduced expression of

activation markers in classical monocytes of GCA/PMR papers could

also be indicative of a large pool of recently recruited classical

monocytes from the bone marrow (35). Recent studies on patients

with mild COVID-19 ormyocardial infarction demonstrated changes

to monocyte subsets equivalent to the findings in this study: a

disappearance of non-classical monocytes and an accumulation of

proinflammatory classical monocytes with low HLA-DR expression

(41, 42). The authors linked these changes to high serum levels of IL-6

and calprotectin (S100A8/S100A9), which our group also reported on

in GCA/PMR (43), and potentially contributes to accelerated trans-

endothelial migration of monocytes.

In addition to our flow cytometry analysis, we also employed an

scRNA sequencing pilot study on APCs in GCA patients and HCs, in

which we detected mainly aberrations in monocytes and cDCs, rather

than pDCs. In general, these findings point at an upregulation of genes

involved in glucose metabolism and proinflammatory responses, and

a downregulation of genes involved in the regulation of immune

response. Our group have previously reported on metabolically active

APCs in GCA patients which is in line with these findings (44). Taken

together, these findings hint at a shifted balance in APCs of GCA

patients toward a dysregulated, proinflammatory phenotype of APCs

in GCA patients. The genes identified could be targets to study in

larger scale studies, that should also validate whether these changes

translate to the protein level.

The present study has several strengths that contribute to our

understanding of the role of monocytes and DCs in GCA and PMR.

Firstly, we focused on newly-diagnosed, well-characterized patients,

and age-matched controls, which reduces the potential confounding

effects of treatment and other factors. Secondly, we conducted in-

depth phenotyping of monocytes and DCs, including the

measurement of absolute counts, and employed sophisticated

analysis methods such as tSNEs. Finally, we included an analysis

of scRNA sequencing data which could provide further clues on

disease-specific processes. However, there are also some weaknesses

that should be considered. Firstly, the sample size is relatively small,

which limits the statistical power and generalizability of our

findings. Secondly, we did not include any functional data, such
A B C

FIGURE 6

Volcano plots of differentially expressed genes in APCs from GCA patients and HCs. Differentially expressed genes in (A) CD16- monocytes,
(B) CD16+ monocytes, (C) cDCs between HCs and GCA patients (n=3). Purple dots show highlighted genes that are downregulated in GCA
patients, green dots are genes upregulated in GCA patients, grey dots are genes that are differentially expressed but show high donor specificity
and blue dots are genes differentially expressed due to HLA type differences between donors. Only statistically significant differentially expressed
genes are indicated in the graphs.
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as the ability of monocytes and DCs to respond to stimuli or their

ability to induce T cell activation. For pDCs, other, more relevant

TLRs such as TLR7 and TLR9 should be studied in future studies as

well. Also, the number of patients and controls was particularly

limited for the scRNA sequencing data, and only patients with

GCA, not PMR were included. Lastly, it is challenging to

understand how the changes in circulating monocytes and DCs

that we observed relate to the tissue-specific processes that occur in

the inflamed arteries and synovia of GCA and PMR patients.

In conclusion, our study provides novel insights on monocytes and

DCs inGCA and PMRpatients.We observed a shift inmonocyte subset

proportions and phenotypic changes in monocytes of GCA/PMR

patients, as well as altered percentages of DC subsets. However, the

question of how these phenotypic changes in blood cells associate with

the processes occurring at the inflammatory sites remains unanswered.

Nonetheless, our study provides important insights into the systemic

immune changes that occur in GCA and PMR and lays the groundwork

for future studies to address these limitations. Potentially, these studies

could explore the potential therapeutic implications of targeting

monocytes and DCs in GCA/PMR.
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