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aging: implications for COVID-19
and wound healing

Yi Liu †, Changlan Xiang †, Zhenni Que †, Chenglong Li ,
Wen Wang*, Lijuan Yin*, Chenyu Chu* and Yin Zhou*
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and Technology of China; Medical Cosmetic Center, Chengdu Second People's Hospital; Minhang
Hospital, Fudan University, Shanghai, China
Neutrophils play a critical role in the immune response to infection and tissue

injury. However, recent studies have shown that neutrophils are a heterogeneous

population with distinct subtypes that differ in their functional properties.

Moreover, aging can alter neutrophil function and exacerbate immune

dysregulation. In this review, we discuss the concept of neutrophil

heterogeneity and how it may be affected by aging. We then examine the

implications of neutrophil heterogeneity and aging for COVID-19 pathogenesis

and wound healing. Specifically, we summarize the evidence for neutrophil

involvement in COVID-19 and the potential mechanisms underlying neutrophil

recruitment and activation in this disease. We also review the literature on the

role of neutrophils in the wound healing process and how aging and neutrophil

heterogeneity may impact wound healing outcomes. Finally, we discuss the

potential for neutrophil-targeted therapies to improve clinical outcomes in

COVID-19 and wound healing.
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1 Introduction

Neutrophils are critical immune cells that play a vital role in the body's response to

infection and tissue injury (1). However, recent studies have identified that these cells are a

heterogeneous population with distinct subtypes that exhibit unique functional properties

(2, 3). Recent scRNA-seq research reveals significant heterogeneity among neutrophils,

contradicting prior views of their homogeneity. By analyzing thousands of mouse

neutrophils, eight distinct subsets were identified, each with unique functions and

maturation processes under normal and infectious conditions. Bacterial infection primes

these subsets for enhanced activity without disrupting their heterogeneity, facilitating

deeper exploration of neutrophil-related diseases, biomarkers, and therapies at a single-cell

resolution (4, 5). Recent research has revealed neutrophil heterogeneity, with CD66b(+)

cells exhibiting neutrophil-like morphology in inflammation. These cells possess

immunosuppressive or proinflammatory properties and are referred to as LDNs, LDGs,
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G-MDSCs, or immunosuppressive neutrophils. However, due to the

absence of specific markers, their precise phenotype and function

remain unclear. This article provides an overview of mature and

immature neutrophil subsets with immunosuppressive or

proinflammatory characteristics, addressing unresolved questions

and gaps in our understanding of neutrophil heterogeneity (6, 7).

Aging is known to have an impact on neutrophil function, leading

to immune dysregulation, which may contribute to the severity of

certain diseases (8). In this review, we aim to discuss the concept of

neutrophil heterogeneity and its relationship with aging, specifically

examining how it may impact COVID-19 pathogenesis and wound

healing (9). We will provide an overview of the current

understanding of neutrophil involvement in COVID-19,

including the potential mechanisms underlying neutrophil

activation and recruitment (10). Additionally, we will summarize

the role of neutrophils in the wound healing process and discuss

how aging and neutrophil heterogeneity may influence wound

healing outcomes (11). Finally, we will review the potential of

neutrophil-targeted therapies to improve clinical outcomes in

COVID-19 and wound healing (12). Overall , a better

understanding of neutrophil heterogeneity and its impact on

immune function and disease pathogenesis may lead to the

development of more targeted and effective therapies (13).

Neutrophil heterogeneity is a relatively new concept that has

emerged in recent years, and there is still much to be learned

about the functional diversity of these cells (14). However, the

potential clinical implications of this heterogeneity are significant

(15). For example, recent studies have suggested that certain

subtypes of neutrophils may be more effective at clearing

infections, while others may contribute to tissue damage and

inflammation (16). This raises the possibility of selectively

targeting specific neutrophil subtypes for therapeutic purposes,

which may be particularly relevant in the context of COVID-19,

where an uncontrolled immune response can contribute to disease

severity (17). Moreover, the dysregulation of neutrophil

heterogeneity may contribute to the impaired wound healing seen

in conditions such as diabetes, highlighting the need for novel

approaches to modulate neutrophil function and heterogeneity

(18). Overall, a better understanding of the complex biology of

neutrophils and their heterogeneity will be crucial in developing
Frontiers in Immunology 02
new therapeutic strategies to improve clinical outcomes in a range

of disease settings.
2 Neutrophil basics

Neutrophils are a type of white blood cell that play a crucial role in

the immune system's response to infection and inflammation (19).

These cells are the first responders to an infection, as they are rapidly

recruited to the site of infection or injury in large numbers (20). Once

they arrive at the site of infection, neutrophils use a variety of

mechanisms to eliminate pathogens, including phagocytosis, the

release of antimicrobial agents, and the formation of neutrophil

extracellular traps (NETs) (21). Neutrophils also play a critical role

inmodulating the inflammatory response, as they release cytokines and

chemokines that recruit other immune cells to the site of infection (22).

However, in some cases, excessive neutrophil activation can contribute

to tissue damage and exacerbate inflammatory diseases. Thus,

understanding the basic biology of neutrophils is essential for

developing new therapies for infections and inflammatory disorders

(23). Table 1 provides a comparison of the characteristics and

functional properties of different neutrophil subtypes, highlighting

the heterogeneity of these immune cells. In recent years, emerging

research has shed light on the previously underappreciated ability of

neutrophils to influence adaptive immunity (39). Neutrophils can

interact with various immune cells, including dendritic cells, T cells,

and B cells, andmodulate their functions (40). This interaction suggests

that neutrophils may play a more intricate role in shaping and

regulating the adaptive immune response than previously believed

(41). Recent studies have highlighted the capacity of neutrophils to

induce the maturation of antigen-presenting cells (APCs) (42),

particularly dendritic cells (DCs). Neutrophils can directly interact

with DCs and promote their maturation by releasing pro-

inflammatory cytokines, such as TNF-a and IL-12 (43). This

activation of DCs leads to enhanced antigen presentation and

subsequent activation of T cells, bridging the innate and adaptive

immune responses (44). Notably, research has demonstrated that

neutrophils can promote DC maturation in various infectious and

inflammatory contexts (3, 45), providing valuable insights into the

dynamic interplay between these immune cell populations. Recent
TABLE 1 comparing the characteristics of different neutrophil subtypes.

Neutrophil
Subtype

Characteristics Functional Properties Reference

Low-density neutrophils
(LDNs)

Lower density than classical neutrophils, segmented
nuclei or bilobed nuclei

Increased cytokine production, pro-inflammatory phenotype,
decreased phagocytic activity

(24, 25)

High-density
neutrophils (HDNs)

Higher density than classical neutrophils, segmented
nuclei

Increased phagocytic activity, higher oxidative burst capacity (26–28)

Anergic neutrophils Reduced cytokine production, increased apoptosis Reduced ability to respond to stimuli (29–31)

Hypersegmented
neutrophils

Increased number of lobes in nucleus Associated with vitamin B12/folate deficiency (32–35)

Activated neutrophils Increased CD11b and CD62L expression, increased
ROS production

Increased ability to kill bacteria and fungi (36–38)
f
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progress in immunology has revealed an intriguing concept:

neutrophils, traditionally considered as short-lived phagocytes, can

also function as antigen-presenting cells (APCs). Neutrophils possess

the ability to phagocytose pathogens, process the captured antigens

(46), and subsequently present them on major histocompatibility

complex class II (MHC-II) molecules, similar to classical APCs such

as dendritic cells (42). This process involves the internalization of

pathogens into neutrophil phagosomes, where the antigens are

degraded and loaded onto MHC-II molecules. Consequently,

neutrophils can engage with T cells, initiating adaptive immune

responses and blurring the conventional boundaries between innate

and adaptive immunity. These findings shed light on the versatile roles

of neutrophils in orchestrating immune responses beyond their

traditional phagocytic functions. The discovery that neutrophils can

induce APC maturation and function as APCs themselves has

significant implications for our understanding of immune responses

and disease processes. This newfound role places neutrophils at the

intersection of innate and adaptive immunity, highlighting their ability

to bridge these two arms of the immune system. By directly influencing

the maturation of APCs, neutrophils contribute to the initiation and

regulation of adaptive immune responses. This finding opens up new

avenues for exploring the dynamic interplay between neutrophils,

APCs, and other immune cells, potentially leading to innovative

therapeutic strategies for infectious diseases, autoimmunity, and

cancer. Current research in the field of neutrophils functioning as

APCs has provided valuable insights into the dynamic and complex

nature of immune responses. However, there is still much to be

explored and understood regarding the specific mechanisms and

functional consequences of neutrophil-mediated APC maturation.

Future studies could focus on elucidating the molecular pathways

involved in this process, identifying the signals that trigger neutrophil

transition into APCs, and investigating the impact of neutrophil-

mediated APC maturation on various disease contexts. Continued

research in this field holds immense potential to broaden our

understanding of immune regulation and may pave the way for

novel therapeutic interventions targeting immune-related disorders.
2.1 Explain the basic characteristics of
neutrophils and their life cycle

Neutrophils, a vital constituent of granulocytes or white blood

cells, are indispensable to the innate immune response against

infection and inflammation (47). They are recognized by their

multilobed nuclei and cytoplasmic granules (48), that house an

array of enzymes and antimicrobial agents (49). Known for their

brief lifespan, ranging from a few hours to a few days (50),

neutrophils are perpetually synthesized in the bone marrow and

then dispatched into circulation. However, it's crucial to mention

that neutrophils do not solely depend on this circulation for their

immunological function. Current research underscores the

significant role of marginated and tissue-resident neutrophils as

first responders during infections and tissue injuries (51–53). These

neutrophils swiftly counteract the spread of pathogens, thereby

organizing the subsequent immune response. Once activated by

chemotactic factors such as cytokines and chemokines, neutrophils
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pathogens employing a multitude of mechanisms (54). Their life

cycle concludes with programmed cell death, or apoptosis, post

which phagocytic cells, for instance, macrophages, clear them (55).

This clearance of apoptotic neutrophils is paramount for

inflammation resolution and prevention of tissue damage (56).

Recent evidence indicates that aging significantly impacts

neutrophil functionality, potentially triggering immune

dysregulation. Aging is seemingly linked to a decline in

neutrophil efficiency, as observed in the impairment of

phagocytosis and oxidative burst, diminished cytokine

production, and altered chemotaxis (57). Such alterations

heighten the susceptibility to infections and inflammatory

diseases in the elderly (58–60). Additionally, aging can

reconfigure the gene expression profile of neutrophils, impacting

their response to stimuli. Several factors, including changes in the

bone marrow microenvironment, fluctuating levels of circulating

hormones and cytokines, and cellular damage accumulation, are

hypothesized to drive these age-related alterations in neutrophil

function (61, 62). Therefore, it is crucial to consider the effect of

aging on neutrophil functionality while conceptualizing new

therapeutic interventions for infections and inflammatory

conditions (63). Further investigations are warranted to unravel

the mechanisms propelling age-induced changes in neutrophil

function, thereby enabling the development of strategies to

modulate neutrophil functionality in older adults. Table 2

compares the impact of aging on various neutrophil functions,

including phagocytosis, cytokine production, and ROS production,

emphasizing the importance of considering the impact of aging on

immune function.
3 Neutrophil heterogeneity

Discuss the concept of neutrophil heterogeneity and

its implications

Recent studies have revealed that neutrophils are a heterogeneous

population of cells with distinct subtypes that differ in their

morphology, gene expression profile, and functional properties (87).

The concept of neutrophil heterogeneity has important implications for

our understanding of the immune response and the pathogenesis of

various diseases (88). For example, different subtypes of neutrophils

may have different functions in the immune response, with some

subtypes being more effective at phagocytosis and others being more

efficient at producing reactive oxygen species (89). Moreover,

neutrophil heterogeneity may contribute to the development of

chronic inflammation and autoimmunity, as some subtypes of

neutrophils have been shown to be involved in the pathogenesis of

these conditions (90). The identification of neutrophil subtypes has

been facilitated by advances in single-cell genomics and proteomics

techniques, which allow for the characterization of individual cells at

the molecular level (91). The discovery of neutrophil heterogeneity has

opened up new avenues for research into the immune response and the

development of new therapies for inflammatory and autoimmune

diseases (92). The potential of neutrophil-targeted therapies in various

diseases is summarized in Table 3, which lists the mechanism of action,
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preclinical and clinical trial results, and potential side effects of different

therapies. Recent advances in single-cell genomics and proteomics

techniques have enabled the identification and characterization of

different subtypes of neutrophils (106). These subtypes are

distinguished by differences in their gene expression profiles, cell

surface markers, and functional properties (107). It is notable that

low-density neutrophils (LDNs) and high-density neutrophils (HDNs)

were first identified back in 1986 (108). More recent studies have

expanded our understanding of these subtypes, revealing that LDNs are

typically more abundant in patients with autoimmune and

inflammatory diseases and are associated with increased production

of pro-inflammatory cytokines (109). In contrast, HDNs are more

efficient at phagocytosis and have a higher oxidative burst capacity

(110). Other subtypes of neutrophils have also been identified based on

differences in their response to cytokines and chemokines (111). For

example, neutrophils primed with interferon-gamma (IFN-g) have

been shown to be more efficient at phagocytosis and killing of

bacteria (112). The functional differences between these subtypes of

neutrophils have important implications for our understanding of the

immune response and the development of new therapies for

inflammatory and autoimmune diseases (113). Recent advances in

the field of neutrophil biology have clearly underlined the

heterogeneous nature of these critical immune cells (52). Neutrophils
Frontiers in Immunology 04
are no longer considered a homogenous population, but rather a highly

versatile group with subsets that differ in their phenotypes and

functions (114), crucial in maintaining homeostasis as well as

responding to disease states. The heterogeneity of neutrophils can be

influenced by several factors including the nature of the stimulus, the

microenvironment, and their maturity (115). For example, research has

highlighted the existence of low-density neutrophils (LDNs) and high-

density neutrophils (HDNs) (116), which can be distinguished based

on their buoyant density, morphological, and functional characteristics

(117). LDNs are generally associated with chronic inflammation and

are known to possess pro-inflammatory characteristics (117), while

HDNs are usually found in healthy individuals, carrying out regular

neutrophil functions such as phagocytosis and degranulation (46).

Furthermore, the process of aging also significantly impacts neutrophil

heterogeneity, introducing another level of complexity (118). The

aforementioned heterogeneity plays a critical role during wound

healing; different subsets of neutrophils have been found to be

involved at various stages of wound healing (119), from the early

inflammatory phase, where they act as the first line of defense against

potential pathogens, to later stages, where they aid in tissue repair and

regeneration (57, 120, 121). Therefore, a comprehensive understanding

of neutrophil heterogeneity, along with the factors influencing it, is

crucial for the elucidation of the complex role these cells play in health
TABLE 2 summarizing the evidence for different neutrophil-targeted therapies.

Therapy Mechanism of
Action

Preclinical Results Clinical Trial Results Potential Side
Effects

Reference

Anti-IL-8
antibodies

Block IL-8-mediated
neutrophil recruitment

Reduced lung injury in animal models of
ARDS

Ongoing clinical trials Potential
immunosuppression

(64–67)

Dornase alfa Degrade NETs and reduce
inflammation

Improved lung function in COVID-19
patients

Improved lung function in
small clinical trial

Potential
respiratory tract
infection

(68–72)

CXCR2
antagonists

Block CXCR2-mediated
neutrophil recruitment

Reduced inflammation and improved
survival in animal models of sepsis

Phase 2 clinical trial in patients
with COPD ongoing

Potential impaired
wound healing

(73–77)

MPO inhibitors Block MPO-mediated
neutrophil activation

Reduced tissue damage in animal models
of stroke and myocardial infarction

Phase 1 clinical trial ongoing Potential
immunosuppression

(78–82)

Neutrophil
elastase
inhibitors

Block neutrophil elastase-
mediated tissue damage

Reduced lung injury in animal models of
ARDS

Phase 2 clinical trial in patients
with COVID-19 ongoing

Potential impaired
wound healing

(83–86)
f

TABLE 3 Comparing the impact of aging on neutrophil function.

Function Impact of
Aging

Mechanisms Implications Reference

Phagocytosis Reduced
efficiency

Decreased expression of phagocytic receptors and ROS production Increased susceptibility to infections (93, 94)

Chemotaxis Impaired Decreased expression of chemotactic receptors Delayed wound healing and impaired
immune response

(95, 96)

Cytokine
production

Altered Increased pro-inflammatory cytokine production, decreased anti-
inflammatory cytokine production

Increased chronic inflammation and
impaired immune response

(97–99)

NET
formation

Increased Increased NET formation and decreased clearance Increased thrombosis and tissue damage (100–102)

ROS
production

Altered Decreased production, increased susceptibility to oxidative stress Increased tissue damage and impaired
immune response

(103–105)
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and disease. Recent studies have suggested that aging can impact

neutrophil heterogeneity and contribute to immune dysregulation

(120). For example, aging has been associated with changes in the

gene expression profile of neutrophils, which may alter their functional

properties and contribute to immune dysfunction (121). Moreover,

aging can lead to the accumulation of cellular damage, whichmay affect

the ability of neutrophils to respond to stimuli (57). These changes may

also affect the balance between different subtypes of neutrophils,

leading to an altered immune response (122). For example, aging has

been associated with a shift towards pro-inflammatory neutrophil

subtypes, which may contribute to chronic inflammation and

increased susceptibility to infections (123). Additionally, aging can

affect the bone marrow microenvironment, which may impact the

production and differentiation of neutrophils (124). These findings

highlight the importance of considering the impact of aging on

neutrophil heterogeneity when developing new therapies for

infectious and inflammatory diseases in older adults (125). Further

research is needed to better understand the mechanisms underlying the

impact of aging on neutrophil heterogeneity and immune function.

Recent progress in research has highlighted the potential effects of

aging and neutrophil heterogeneity on COVID-19, offering valuable

insights into disease pathogenesis and clinical outcomes. Aging is

associated with immunosenescence, a gradual decline in immune

system function, which can impair the body's ability to effectively

combat viral infections such as COVID-19. This age-related decline in

immune response is of particular concern as it may contribute to

increased disease severity and poorer outcomes in older individuals.

Additionally, studies have revealed that neutrophils, a type of white

blood cell crucial for immune defense, exhibit significant heterogeneity

in their response to viral infections. This heterogeneity can impact the

immune response to COVID-19, leading to variations in disease

progression and patient outcomes. Understanding the underlying

mechanisms and functional differences in neutrophil subsets holds

promise for developing targeted therapeutic interventions and

personalized treatment strategies for COVID-19 patients. Aging is a

significant risk factor for severe outcomes in many infectious diseases,

including COVID-19. The major contributor to this increased risk is

immunosenescence, a state of gradual immune system deterioration

that arises naturally with age. Immunosenescence impacts both the

innate and adaptive arms of the immune response, including

neutrophil function.
4 Neutrophils and COVID-19

4.1 Summarize the current understanding
of neutrophil involvement in
COVID-19 pathogenesis

COVID-19 is a respiratory illness caused by the SARS-CoV-2

virus that has rapidly spread across the globe (126), leading to a

global pandemic. Recent studies have suggested that neutrophils

may play a crucial role in the pathogenesis of COVID-19 (127).

Neutrophils are rapidly recruited to the lungs of COVID-19 patients

and have been shown to release large amounts of reactive oxygen

species (ROS) and pro-inflammatory cytokines, which contribute to
Frontiers in Immunology 05
the development of acute respiratory distress syndrome (ARDS)

and multi-organ failure (128). Moreover, neutrophil extracellular

traps (NETs) have been identified in the lungs of COVID-19

patients, which can contribute to thrombosis and tissue damage

(129). The dysregulated neutrophil response in COVID-19 may be

driven by a combination of factors, including virus-induced

immune dysregulation, cytokine storm, and bacterial co-infections

(130). These findings suggest that targeting neutrophil activation

and recruitment may be a promising strategy for the treatment of

COVID-19 (131). Several ongoing clinical trials are currently

investigating the efficacy of neutrophil-targeted therapies in

COVID-19 treatment. As we delve deeper into the interplay of

aging, neutrophil heterogeneity, and COVID-19 severity, we can

observe distinct patterns. These patterns, summarized in Table 1,

clearly show that the immunosenescence and the nature of the

neutrophil response vary significantly across age groups. These

variations can influence the severity of COVID-19 symptoms,

which generally tend to be milder in younger adults and more

severe in older individuals. This highlights the importance of age

and immune function, specifically neutrophil behavior, in

determining the clinical outcomes of COVID-19 (Supplementary

Table 1). Neutrophils are the most abundant type of white blood cell

and form an essential first line of defense against infections (132,

133). They are traditionally considered short-lived, reactive cells

that rapidly respond to infection signals (134). However, recent

studies have begun to reveal the complex and varied nature of

neutrophil biology (132). Far from being a homogenous population,

neutrophils can be differentiated into various subpopulations based

on their phenotype, function, and the context of the immune

response (46, 135). In the context of COVID-19, neutrophil

heterogeneity appears to play a critical role (136). The study

underlines the crucial role of neutrophils in COVID-19,

identifying a link between increased immature neutrophil

populations and disease severity, while suggesting potential

therapies targeting neutrophil-induced tissue damage (136).

Different neutrophil subsets can be found in patients with varying

severity of the disease (137, 138). Some subsets are associated with a

heightened inflammatory response, often linked to severe disease

and negative outcomes (24, 139, 140), while other subsets appear to

be more regulatory, promoting resolution of inflammation and

tissue repair (19). These observations have led to the emerging

concept of "neutrophil plasticity" – the ability of neutrophils to

dynamically adapt their functions in response to changes in the

environment (124, 141). The age-related decline in immune

function can exacerbate the dysregulation of the neutrophil

response, leading to an overactive, damaging immune reaction –

a situation often seen in severe COVID-19 cases (8). This study

probes the association between severe COVID-19 and the aging

immune system, particularly focusing on the exacerbated

dysregulation of neutrophil response in the elderly. It posits that

interventions targeting age-associated pathways could fortify

immunity across diverse age cohorts, hence potentially reducing

fatalities and enduring disabilities triggered by the pandemic (8).

The characteristic 'cytokine storm' in severe COVID-19, driven by a

hyperactive immune response, can cause extensive tissue damage

and organ failure, leading to critical illness or death (142, 143).
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Older individuals, due to their compromised immune system, are

more susceptible to this dysregulated immune response, explaining,

at least in part, their increased vulnerability to severe disease (144,

145). Understanding the relationship between aging, neutrophil

heterogeneity, and COVID-19 progression is essential for

developing targeted therapies (146). By identifying key

mechanisms driving neutrophil behavior in the context of age

and COVID-19, researchers may develop strategies to modulate

the immune response, mitigating the harmful effects while

promoting protective immunity (147). Such an approach could

involve the use of pharmaceutical agents to modify neutrophil

function or the design of personalized treatment strategies based

on a patient's specific neutrophil subset profile (148, 149). In

conclusion, the complexities of the aging immune system and the

multifaceted nature of neutrophil biology hold both challenges and

opportunities for tackling COVID-19. Further research in these

areas has the potential to yield significant improvements in the

clinical management of the disease, particularly for vulnerable

older populations.
4.2 Discuss the potential mechanisms
underlying neutrophil activation and
recruitment in COVID-19

The mechanisms underlying neutrophil activation and

recruitment in COVID-19 are complex and multifactorial (150).

The SARS-CoV-2 virus is known to directly infect and activate

immune cells, including neutrophils, through binding to the

angiotensin-converting enzyme 2 (ACE2) receptor (151). This

activation can lead to the release of cytokines and chemokines,

which further recruit and activate neutrophils to the site of infection

(152). Moreover, COVID-19 is associated with a cytokine storm,

which is characterized by the overproduction of pro-inflammatory

cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-

alpha (TNF-a) (153). These cytokines can activate neutrophils and

promote their recruitment to the lungs, where they contribute to the

development of ARDS and tissue damage (154). Additionally,

bacterial co-infections are common in COVID-19 patients, and

the presence of bacterial products, such as lipopolysaccharides

(LPS), can further activate and recruit neutrophils (154). The

dysregulated neutrophil response in COVID-19 may be a result of

a combination of these factors, and understanding the underlying

mechanisms may lead to the development of new therapeutic

approaches to target neutrophil activation and recruitment in

COVID-19 (155).
4.3 Evaluate the evidence for neutrophil-
targeted therapies in COVID-19 treatment

There is growing interest in the potential of neutrophil-targeted

therapies as a strategy for the treatment of COVID-19 (156). Several

preclinical studies have suggested that blocking neutrophil

recruitment and activation may improve clinical outcomes in

COVID-19. For example, the use of anti-IL-8 antibodies (10),
Frontiers in Immunology 06
which block the recruitment of neutrophils, has been shown to

reduce lung injury in animal models of COVID-19 (157). Other

approaches, such as the use of NET inhibitors, have also shown

promise in preclinical studies (158). Moreover, several ongoing

clinical trials are investigating the efficacy of neutrophil-targeted

therapies in COVID-19 treatment (159). One example is the use of

dornase alfa, an FDA-approved medication used in the treatment of

cystic fibrosis, which has been shown to degrade NETs and improve

lung function in COVID-19 patients (160). However, there are also

concerns that targeting neutrophils may impair the immune

response to the virus, and the long-term effects of these therapies

are not yet fully understood. Therefore, further research is needed to

evaluate the safety and efficacy of neutrophil-targeted therapies in

COVID-19 treatment (159).
5 Neutrophils and wound healing

Neutrophils play a critical role in the early stages of the wound

healing process (161). Once a tissue injury occurs, neutrophils are

rapidly recruited to the site of the wound, where they remove debris

and bacteria through phagocytosis and the release of reactive

oxygen species (ROS) (162). Neutrophils also release cytokines

and chemokines, which recruit other immune cells to the site of

the wound and promote angiogenesis and tissue remodeling (163).

However, the excessive accumulation of neutrophils can also

contribute to tissue damage and impair the wound healing

process (164). Therefore, the balance between the pro-

inflammatory and anti-inflammatory functions of neutrophils is

critical for optimal wound healing (165). Recent studies have also

suggested that different subtypes of neutrophils may have distinct

functions in the wound healing process (164), and that the

dysregulation of neutrophil heterogeneity may contribute to

impaired wound healing in some conditions, such as diabetes

(18). These findings suggest that targeting neutrophil function

and heterogeneity may have therapeutic potential for improving

wound healing outcomes. Recent studies have suggested that aging

and neutrophil heterogeneity can impact the wound healing process

(46). Aging is associated with a decline in neutrophil function,

including impaired phagocytosis and oxidative burst, reduced

cytokine production, and altered chemotaxis (166). These changes

may impair the ability of neutrophils to effectively remove debris

and bacteria from the site of the wound, leading to delayed wound

healing and increased susceptibility to infections (167). Moreover,

aging can also alter the gene expression profile of neutrophils and

affect their response to stimuli, which may contribute to impaired

wound healing (168). In addition, recent studies have identified

different subtypes of neutrophils that have distinct functions in the

wound healing process, such as those that are more efficient at

phagocytosis or cytokine production (169). The dysregulation of

neutrophil heterogeneity may contribute to impaired wound

healing in some conditions, such as diabetes, where an imbalance

between different neutrophil subtypes has been reported (170).

These findings highlight the importance of considering the

impact of aging and neutrophil heterogeneity on the wound

healing process when developing new therapies to improve
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wound healing outcomes (171). Further research is needed to better

understand the mechanisms underlying these effects and develop

strategies to modulate neutrophil function and heterogeneity in

older adults and those with impaired wound healing (172). The

development of neutrophil-targeted therapies may hold promise for

improving wound healing outcomes (12), particularly in conditions

where impaired neutrophil function or dysregulated neutrophil

activation is implicated in delayed healing (173). Recent studies

have investigated various approaches for targeting neutrophils in

the context of wound healing, including the use of anti-

inflammatory agents (174), such as corticosteroids, and the

inhibition of neutrophil-derived ROS and proteases (175). For

example, the use of the ROS scavenger, N-acetylcysteine (NAC),

has been shown to promote wound healing in diabetic mice by

reducing oxidative stress and promoting angiogenesis (176). In

addition, the use of protease inhibitors, such as serpinB1, has been

shown to improve wound healing outcomes by reducing the activity

of neutrophil-derived proteases (177), which can impair tissue

regeneration. Moreover, recent studies have also suggested that

modulating the balance between different subtypes of neutrophils

may have therapeutic potential for improving wound healing

outcomes (178). However, the safety and efficacy of these

therapies in humans is not yet fully understood, and further

research is needed to optimize these approaches and evaluate

their potential clinical utility (179).
5.1 Impacts of COVID-19 on wound
healing: nutritional status, skin
manifestations, and immunosuppression

In the wake of recent advancements, a better understanding of

how severe COVID-19 illness can detrimentally affect a patient's

nutritional status has been developed (180–182). Nutrition is an

integral component of wound healing, providing the necessary

elements for tissue repair and immune function (183–185).

Patients suffering from severe COVID-19, however, may

experience drastic changes in their nutritional status due to

various factors such as decreased appetite (186), increased

metabolic demand due to the infection, or digestive complications

associated with the disease (187, 188). This state of malnutrition may

subsequently impede the wound healing process (189). Insufficient

intake of protein, for example, can hinder tissue synthesis, while

deficiencies in vitamins and minerals can disrupt collagen formation

and immune response (190, 191), both crucial for wound recovery.

Hence, malnutrition not only delays wound healing but also

escalates the risk of complications, such as infection or wound

dehiscence (192, 193). This understanding underscores the need

for thorough nutritional assessment and appropriate dietary

interventions in managing wound care for COVID-19 patient

(194, 195). In light of recent studies, it has been observed that

some patients with severe COVID-19 exhibit skin manifestations

(196, 197), such as rashes or pseudo-chilblain lesions, colloquially

known as "COVID toes." These dermatological symptoms likely

arise from the virus's interaction with cells in the skin or as part of

the body's immune response to the virus (198, 199). However, the
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precise correlation between these skin changes and wound healing

remains elusive (200, 201). Some theories suggest that the increased

inflammatory response associated with these skin conditions could

potentially affect the phases of wound healing, which are

inflammation, proliferation, and remodeling (202, 203). For

instance, an exaggerated inflammatory response might lead to

prolonged or chronic inflammation, delaying the progression to

the subsequent phases of wound healing (204–206). Furthermore, if

COVID-19 affects the blood vessels in the skin, as has been suggested

by the presentation of pseudo-chilblain lesions (206, 207), this could

impair the delivery of oxygen and nutrients essential for wound

healing (208, 209). Ongoing research aims to elucidate the

mechanisms underlying these observations, which will be crucial

in tailoring wound care strategies for patients with severe COVID-

19. Progressing research has begun to understand the intersection of

COVID-19 and the immune system's responses, particularly

regarding wound healing (210). Current research explores how

COVID-19, immune responses, and wound healing are

interlinked. Chronic conditions like MetS and T2DM often cause

inflammation (211). COVID-19, due to an atypical immune

response, triggers a unique cytokine storm, exacerbating

inflammation. The prolonged inflammatory responses by SARS-

CoV-2 can result in chronic inflammation and potential damage,

such as fibrosis and pancreatic islet apoptosis (212). One of the

significant discoveries is that COVID-19 infection often results in a

reduced number of lymphocytes - a type of white blood cell that is

vital in the immune response (213, 214). This is critical because

lymphocytes, including T-cells and B-cells, play a pivotal role in the

wound healing process, which includes phases of inflammation,

proliferation, and remodeling (215, 216). They help orchestrate

other cells' activities, release cytokines, and aid in combating

potential infections at the wound site (184, 217). Therefore, a

reduction in lymphocyte count, or immunosuppression, due to

COVID-19 can potentially delay or impair the wound healing

process (218, 219). This has significant implications for patient

care, particularly for those who may require surgery or those with

pre-existing wounds. Further research is needed to fully understand

this process and develop strategies to support wound healing in the

context of COVID-19 (220, 221). Considering recent progress in

understanding the effects of severe COVID-19 on wound healing, a

multi-faceted approach is necessary for future therapy development

and improvement of mechanisms. Enhanced nutritional support

should be a focus area, considering the role of malnutrition in

impeding wound healing (222). Novel strategies to manage appetite

loss and digestion complications should be explored along with

high-protein diets or supplements and adequate micronutrient

intake. Simultaneously, dermatological treatments should be

considered for patients exhibiting skin manifestations (199, 223,

224). Unraveling the links between skin changes and wound healing

could lead to targeted topical treatments that manage inflammation

and support the skin's natural healing process. Furthermore,

immunotherapy might be crucial given COVID-19's impact on

lymphocyte counts. Therapies to restore lymphocyte function or

count, such as immunomodulatory drugs or cytokine therapies, may

offer new avenues for supporting wound healing (225). Personalized

medicine, combining nutritional support, skin care, and
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immunotherapy, could maximize patient outcomes, necessitating

further research into individual variations. Comprehensive and

ongoing research into these mechanisms will be pivotal to develop

robust therapeutic strategies and improve patient recovery and

quality of life in the context of COVID-19.
6 Conclusion

In this review, we discussed recent progress in understanding

the role of neutrophils in various physiological and pathological

processes, including immune response, aging, COVID-19, and

wound healing. We highlighted the importance of considering the

heterogeneity of neutrophils and its impact on immune function

and disease pathogenesis. We also reviewed the potential of

neutrophil-targeted therapies in various diseases, including

COVID-19, and discussed the potential effects of aging and

neutrophil heterogeneity on wound healing outcomes. The

research in this field has identified novel therapeutic targets and

provided insights into the underlying mechanisms of disease

pathogenesis. The implications of this research for future studies

and clinical practice are significant, as it may lead to the

development of more targeted and effective therapies for

infectious and inflammatory diseases and improved wound

healing outcomes. Moreover, the identification of neutrophil

subtypes and the characterization of their functions may facilitate

the development of personalized medicine approaches. However,

further research is needed to fully understand the complexity of

neutrophil biology and its impact on various disease processes.
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