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Bioinformatic analysis of hub
markers and immune cell
infiltration characteristics of
gastric cancer

Chao Li1,2†, Tan Yang1†, Yu Yuan1, Rou Wen2 and Huan Yu2*

1School of Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 2School of
Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
Background: Gastric cancer (GC) is the fifth most common cancer and the

second leading cause of cancer-related deaths worldwide. Due to the lack of

specific markers, the early diagnosis of gastric cancer is very low, and most

patients with gastric cancer are diagnosed at advanced stages. The aim of this

study was to identify key biomarkers of GC and to elucidate GC-associated

immune cell infiltration and related pathways.

Methods: Gene microarray data associated with GC were downloaded from the

Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were

analyzed using Gene Ontology (GO), Kyoto Gene and Genome Encyclopedia,

Gene Set Enrichment Analysis (GSEA) and Protein−Protein Interaction (PPI)

networks. Weighted gene coexpression network analysis (WGCNA) and the

least absolute shrinkage and selection operator (LASSO) algorithm were used

to identify pivotal genes for GC and to assess the diagnostic accuracy of GC hub

markers using the subjects’ working characteristic curves. In addition, the

infiltration levels of 28 immune cells in GC and their interrelationship with hub

markers were analyzed using ssGSEA. And further validated by RT-qPCR.

Results: A total of 133 DEGs were identified. The biological functions and

signaling pathways closely associated with GC were inflammatory and immune

processes. Nine expression modules were obtained by WGCNA, with the pink

module having the highest correlation with GC; 13 crossover genes were

obtained by combining DEGs. Subsequently, the LASSO algorithm and

validation set verification analysis were used to finally identify three hub genes

as potential biomarkers of GC. In the immune cell infiltration analysis, infiltration

of activated CD4 T cell, macrophages, regulatory T cells and plasmacytoid

dendritic cells was more significant in GC. The validation part demonstrated

that three hub genes were expressed at lower levels in the gastric cancer cells.

Conclusion: The use of WGCNA combined with the LASSO algorithm to identify

hub biomarkers closely related to GC can help to elucidate the molecular

mechanism of GC development and is important for finding new

immunotherapeutic targets and disease prevention.
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1 Introduction

GC is one of the most common malignancies in the human

digestive tract. According to Global Cancer Statistics, GC has

become the fifth most frequently diagnosed cancer and the third

leading cause of cancer deaths, making it a major global health crisis

(1). In China, the total number of new cases of GC in 2020 was

478,000, ranking 2nd in the number of incidences of malignant

tumors and 373,000 deaths, ranking 3rd in the number of deaths

from malignant tumors (2). The above figures are sufficient to show

that GC is highly malignant, has a low survival rate and poor

prognosis and is a serious threat to human health and life.

GC is a malignant disease caused by a combination of factors,

such as Helicobacter pylori infection, unhealthy lifestyle, genetics

and immune cell imbalance. The pathogenesis of GC is still not

fully understood, but the activation of proto-oncogenes caused by

the abovementioned oncogenic factors is an important molecular

mechanism. The molecular mechanisms involved in the

pathogenesis of the disease still need to be further elucidated.

Clinical treatments for GC based on surgical resection,

chemotherapy, radiotherapy or a combination of targeted

therapies have difficulty completely removing the tumor lesions,

and the tumor is prone to progression or recurrence with high

toxic side effects, with a 5-year survival rate of patients as low as

10% to 15% (3–5). It is important to emphasize that GC is usually

asymptomatic in the early stages, and some patients are already at

an advanced stage when diagnosed, with a survival rate of only

24% (6). Therefore, it is important to develop effective

biomarkers for the prognosis of gastric cancer and for

targeted therapy.

The tumor microenvironment (TME), due to its key role in

cancer progression and drug resistance, has emerged as a potential

immunotherapeutic target for a variety of malignancies, including

GC. The TME consists of different cell types, including immune

and inflammatory cells (lymphocytes and macrophages), stromal

cells (fibroblasts, adipocytes and pericytes), small cell organelles,

RNA, blood vessels and lymphatic vessels, extracellular matrix

(ECM) and secreted proteins. The cells involved in the GC

immune microenvironment are called tumor infiltrating

immune cells (TIICs) (7). Immunotherapy in the treatment of

advanced GC improves survival and is associated with good

survival in GC patients, according to the results of the

CheckMate 649 case study presented at the European Society for

Medical Oncology (ESMO) 2020 virtual meeting (8, 9). However,

recent studies have found that abnormal activation of the immune

system may also be a key factor in the development of GC (10). In

short, tapping into immune cell-related targets is an effective

pathway to optimize tumor immunotherapy.

Due to advances in genomic technology, bioinformatics

analysis of gene expression profiles has become increasingly

popular in molecular mechanistic studies and is playing an

increasingly important role in the discovery of disease-specific

biomarkers. Weighted gene coexpression network analysis was

proposed by Zhang & Horvath in 2005 as a systematic algorithm

widely used for bioinformatics data, avoiding the drawbacks of
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traditional differential gene screening methods, which tend to

miss core molecules in the regulatory process and make it

difficult to explore the whole biological system, and has been

widely used to screen molecular diagnostic markers or

therapeutic targets for complex diseases (11, 12). This provides

a new way to predict the function of coexpressed genes and to

find genes that play a key role in human disease. LASSO is a

regression method that allows the calculation of correlation

coefficients between variables and more accurate screening of

variables (13). There have been a host of studies on screening GC

biomarkers based on bioinformatics methods both domestically

and internationally, but there are problems with a small sample

size and a single data analysis method as well as lack of further

exper imenta l ver ificat ion (14–16) . Thus , this ar t ic le

comprehensively utilizes various bioinformatics methods to

integrate and analyze gene datasets from multiple platforms,

and expand sample size and validated by in vitro cellular

exper iments , for improv ing the sc ient ific nature of

bioinformatics analysis, and in order to more accurately

explore the pathogenesis and therapeutic targets of GC, and

provide molecular biology basis and new research ideas and

directions for subsequent experimental research.

Based on the above, this study used the GSE54129 and

GSE65801 datasets to construct a gene weighted coexpression

network by the WGCNA algorithm to screen out pivotal modules

that are highly relevant to the development of GC, analyze the

biological functions of the pivotal modules and use the LASSO

regression model to screen key genes and validate them with the

GSE118916 dataset, and then further identify important prognostic

molecular markers and assess the extent of associated immune cell

infiltration, with a view to providing new references for studying the

development of GC, potential molecular mechanisms and

therapeutic targets. Flowchart of our study was shown Figure 1.
2 Materials and methods

2.1 Expression data and clinical
data collection

The flow chart of the study is shown in Figure 1. Acquisition

of gene microarray data: Three gastric cancer datasets

(GSE54129, GSE65801, GSE118916) were selected from the

GEO database of NCBI (https://www.ncbi.nlm.nih.gov/geo/)

based on the following three conditions: the samples were from

human gastric tissue specimens, a case control group was

available, and the number of samples was ≥20 to ensure the

representativeness of the datasets. The datasets GSE79973,

GSE65801 and GSE118916 were based on GPL570, GPL14550

and GPL15207, respectively. GSE54129 contained 111 cases of

cancer and 21 cases of normal tissues; GSE65801 contained 32

cases of cancer and 32 cases of normal tissues; GSE118916

contained 15 cases of cancer and 15 cases of normal tissues.

GSE118916 contained 15 cases of cancer and normal tissues.

Detailed information is shown in Table 1.
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2.2 Cells

The normal gastric cell line (GES-1) and gastric cancer cell line

(MKN-45) were obtained from iCell Bioscience Inc. ,

(Shanghai, China).
2.3 Data processing and analysis

The main analysis software used in this study was Rstudio

desktop version, which is based on the Integrated Development

Environment (IDE) for the R language, with better visualization,

operability and simplicity. R packages are a collection of R language

functions, example data and precompiled code. The main R packages

used in this study are “WGCNA”, “clusterprofiler” and “ggpubr”.
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2.3.1 Data preprocessing
The downloaded raw data were preprocessed for information

extraction, background correction and normalization, construction

of gene expression matrices, and conversion of probe names to gene

names, followed by the next step of analysis.

2.3.2 Screening of differentially expressed
genes (DEGs)

The R language (version 4.1.2) limma data package (Linear

Models for Microarray Data) was used to normalize the data and

screen for differentially expressed genes. |LogFC|>1 and corrected

P<0.05 were used as conditions to screen for upregulated and

downregulated genes. The pheatmap and ggplot packages in R

language were used to plot heatmaps and volcano maps for

DEGs, respectively.

2.3.3 Construction of protein interaction
networks

A protein interaction network (PPI) of differential genes was

constructed using the String (http://string-db.org/) database,

with an interaction score >0.4 as the threshold condition. The

PPI network was imported into Cytoscape software for

visualization, and the connectivity of the nodes was calculated.

The systematic analysis of the interactions of a large number of

proteins in biological systems is important for understanding the

working principles of proteins in biological systems, the response

mechanisms of biological signals and energy substance

metabolism in specific physiological states such as diseases, as

we l l a s unde r s t and ing the func t i ona l connec t i on s

between proteins.
2.3.4 Gene Ontology (GO) enrichment analysis
of DEGs and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis

GO analysis is a common method for enrichment studies of

gene functions, which are classified into three categories:

biological process (BP), molecular function (MF) and cellular

component (CC). KEGG is a database that integrates a large

amount of information on genomes, diseases, biological

pathways and system functions. The GO function analysis and

KEGG pathway analysis of differentially expressed genes were

performed using the R 4.1.2 software clusterProfiler and

enrichplot tools to derive the biological functions of DEGs,

setting FDR P<0.05.
TABLE 1 The main features of 3 selected datasets included in this analysis.

Database
ID

Platform Author Year Tissue
sample

Number of treatment (GC group) Number of control (normal group)

Training set
GSE54129

GPL570 Liu B 2017 Gastric tissue 111 21

GSE65801 GPL14550 Hao L 2015 Gastric tissue 32 32

Validation set
GSE118916

GPL15207 Li L 2019 Gastric tissue 15 15
FIGURE 1

Flowchart of integrated bioinformatic analysis of hub markers and
immune cell infiltration characteristics of GC.
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2.3.5 Gene set enrichment analysis
Gene set enrichment analysis (GSEA) is a computational

method in which all sequenced genes are first sorted in

descending order of difference, and then the input gene set is

ranked to determine its enrichment in different biological

functions and signaling pathways.

GSEA is a computational method used to determine whether a

set of a priori defined genes show statistically significant and

consistent differences between two biological states. The

downloaded GEO matrix files were collated and grouped into GC

and normal groups. To verify the functional differences between the

normal and GC groups in the dataset, we performed gene function

enrichment analysis on the set of genes between the two groups

using the gene set enrichment analysis (GSEA) method. The raw

data were calculated by R language with corresponding P.adjust, q

value, P value and log2 gene expression fold-change (FC). GSEA

was performed using the cluster Profiler package, which is available

on the Molecular Characterization Database website (https://

www.gsea-msigdb.org/gsea/msigdb/index.jsp), to obtain the

corresponding analysis. Pathways with |NES|>1, P<0.05 and FDR

q<0.25 were generally considered to be significantly different.

2.3.6 Construction of weighted gene
coexpression networks

Genes with expression greater than all quartiles of variance were

extracted and then imported into the R software platform

“WGCNA” package to construct a GC-weighted gene

coexpression network. Sample clustering trees were drawn, outlier

samples were excluded, and sample numbers in the gene expression

matrix were ensured to correspond to sample numbers in the

clinical information. The optimal soft threshold b was calculated

by the scale-free network, followed by the construction of the

adjacency matrix by the power of the b operation. The

topological overlap matrix (TOM) was then established to

measure the similarity between genes, and the topological overlap

matrix was used as the basic element to construct a hierarchical

clustering tree. The dynamic hybrid cut method was used to divide

and merge the modules and to draw the gene tree. After module

partitioning, the module eigengene (ME) was calculated for each

module and correlated with the clinical traits of GC patients and

normal subjects, and the Pearson correlation coefficient was used to

calculate the degree of correlation between the module eigenvectors

and the clinical traits of the sample.

2.3.7 Hub gene screening
To find the true core target genes, we took intersections of

previously analyzed differential gene datasets and genes from the

characterization module with the help of Venn plots. The relevant

genes were then screened and used for further analysis.

2.3.8 LASSO regression model building and ROC
curve analysis

The LASSO regression model can calculate the correlation

coefficients of the independent variables and incorporate the

independent variables with coefficients that are not zero into the
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model, thus achieving dimensionality reduction. It can effectively

avoid overfitting in dealing with high-dimensional data,

multivariate covariance problems and overall variable selection

and provides conditions for extracting characteristic genes.

Receiver operating characteristic (ROC) curves are used to

evaluate the accuracy of the model. After plotting the ROC curve,

the area under the curve (AUC) value can be calculated, which is a

probabilistic value that indicates the accuracy of the prediction

model; the higher the AUC value, the better the model can classify

the sample. In this study, the LASSO regression model was used to

screen key genes that were highly correlated with the development

of GC, and ROC curves were plotted to evaluate the accuracy of the

LASSO regression model.

2.3.9 Analysis of immune cell infiltration and its
correlation with characteristic hub genes

Tumor-infiltrating immune cells were assessed using the

ssGESA algorithm to estimate the proportion of immune cells

in the tumor tissue. These immune cells included macrophage,

central memory CD4 T cell, activated CD8 T cell, activated

memory CD4 T cell, type 17 T helper cell, neutrophil and 28

other species. To improve accuracy, samples were screened at P<

0.05, and histograms of the proportion of each immune cell in all

eligible samples, heatmaps of correlations between immune cells

and violin plots of the proportion of immune cells in GC tissue

versus normal tissue samples were plotted. Spearman correlation

analysis was then used to analyze the association between hub

genes and the 28 immune infiltrating cells, with correlation

coefficients greater than 0 being positive and correlation

coefficients less than 0 being negative, and the absolute

value of the correlation coefficient representing strong,

weak or no correlation, with P ≤ 0.05 being considered

statistically significant.

2.3.10 Cell culture and RT-qPCR validation
Normal and cancer cells were cultured in RPMI-1640 medium

(Gibco) at 37 °C with 5% CO2, and 10% fetal bovine serum (Gibco)

and 1% penicillin-streptomycin solution (Gibco) were added to all

media, and the cells could be processed for passaging when they

were logarithmically grown.

Total RNA was extracted from normal gastric cells (GES-1) and

gastric cancer cells (MKN-45) using TRIzol. Real-time fluorescence

quantitative PCR was performed using HiScript® II Q RT SuperMix

kit and SYBR Green Master Mix (Vazyme, Nanjing, China). Data

were normalized to the GAPDH expression level of the internal

reference control, and the relative expression levels of hub genes in

different groups were calculated using the 2-DDCt method. The

primers were synthesized and designed by wuhan huayan

Biotechnology CO., LTD (Wuhan, China). The primer sequences

are shown in Table 2.

2.3.11 Statistical analysis
Analysis of variance results were obtained by R software

(version 4.2.3), and t-test was used for comparison between the

two groups, with P<0.05 being a significant difference.
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3 Results

3.1 Screening of DEGs

After merging and eliminating the batch effect of the

GSE54129 and GSE65801 datasets, 133 differentially expressed

genes were screened to obtain a heatmap and volcano map using

differential genes. In this paper, the differentially expressed

genes were analyzed by hierarchical c lustering using

the”pheatmap” package in R. The top 50 differentially

expressed genes heatmap was output, with red representing

increasing gene expression levels and green representing

decreasing gene expression levels. Differential gene expression

profiles existed between the normal control and GC groups

(Figure 2A). The volcano plot (Figure 2B) can reflect the overall

gene expression, the horizontal coordinate represents -log10

(corrected P value), the vertical coordinate represents log (fold

change), each point represents a gene, red points represent

differential gene expression upregulation, green points

represent differential gene expression downregulation, and

black points represent differentially expressed genes that are

not significant.
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3.2 Results of functional enrichment
analysis of DEGs and their PPI construction

GO enrichment analysis of 133 differential genes was performed

using the clusterProfiler package in R. The differential genes were

normalized in terms of biological pathways involved, function and

cellular localization (Table 2). The GO analysis showed that these genes

were mainly involved in the following biological processes: extracellular

matrix organization, extracellular structure organization, external

encapsulating structure organization and digestion. The main MF

categories included extracellular matrix structural constituent,

peptidase regulator activity, extracellular matrix structural constituent

conferring tensile strength, and glycosaminoglycan binding. The main

CCs were collagen-containing extracellular matrix, endoplasmic

reticulum lumen, collagen trimer and basal cells (Figure 3A). KEGG

pathway analysis revealed that these genes were mainly enriched in

gastric acid secretion, ECM-receptor interaction, protein digestion and

absorption and amino acid metabolism (Figure 3B). To further

understand the potential connections between the proteins, we

constructed a PPI network of DEGs with a PPI enrichment P value

of <1.0e-16. The network consisted of 263 edges and 131 nodes with

tight connections between nodes (Figure 3C). Furthermore, GSEA
BA

FIGURE 2

Differentially expressed genes between GC patients and healthy controls. (A) Heatmap of the top 50 up- and down-regulated genes. (B) DEGs
volcano plot between healthy controls and GC tissue.
TABLE 2 RT-qPCR primer sequences.

Gene Primer Sequence (5’-3’) PCR Products

Homo GAPDH
Forward TCAAGAAGGTGGTGAAGCAGG

115bp
Reverse TCAAAGGTGGAGGAGTGGGT

Homo ADH7
Forward GATGGCACCACCAGATTTACA

282bp
Reverse CCTAGATGCACCAGCTGACTTA

Homo CWH43
Forward CCCAGGAGGTGTCTACGCT

241bp
Reverse CAGTTTTCTCTCATAGGCTTTA

Homo SCNN1B
Forward GGAGCGGGACCAAAGCA

125bp
Reverse GCAGCCAGACGATGTTA
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showed that the gene set was mainly enriched in the normal group of

macrophages, B cells, CD4 T cell, T cell, cytokines and immune organs

(Figures 4A, B), and the top 5 significantly enriched gene sets in normal

control group and GC group see Table 3 for details.
3.3 Identification of key modules based
on WGCNA

The downloaded dataset was first preprocessed, and samples

were screened to remove missing values to ensure reliable network
Frontiers in Immunology 06
construction, yielding 196 samples and 17,348 genes for subsequent

analysis in the construction of WGCNA. A hierarchical clustering

tree was created based on dynamic hybrid cuts using scale-free

coexpression networks and topological overlap. Based on the scale-

free topology criterion, the optimal soft threshold b = 6 was

determined based on the scale-free fit index R2 = 0.9. A total of

nine modules were obtained by dynamic hybrid cutting

(Figures 5A, B), corresponding to the colors black, blue, brown,

green, green-yellow, gray, magenta, pink and purple, and the

numbers of module genes were 223, 2574, 446, 614, 101, 115, 159,

201 and 125, in that order. The most relevant hub modules to GC
B

C

A

FIGURE 3

Functional enrichment analysis of DEGs and their PPI construction. (A) GO enrichment analysis. The first circle indicates the name of the GO; the second
circle represents the number of genes on each GO. (The redder the color, the more significant the enrichment of DEGs); the third circle indicates the
number of differential genes enriched on each GO term; and the fourth circle represents the proportion of genes. (B) KEGG pathway enrichment
analysis. The different line colors indicate the different pathways to which they belong. Yellow dots are pathways, with larger dots indicating more genes
involved. The other dots represent genes, the redder the gene the higher the expression level in GC patients and vice versa, the bluer the color. The top
eight pathways for significant enrichment of differential genes were demonstrated. (C) Protein-protein interaction (PPI) network.
BA

FIGURE 4

Enrichment plot for GSEA. (A) Active gene sets in healthy controls. (B) Active gene set in GC group.
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were screened by calculating the correlation coefficient (R) and P

value for each module (Figure 6A). The heatmap from this study

shows that the pink module (201 genes) was highly positively

correlated with GC (R = 0.63, P = 2e-23) (Figures 6B, C), and

subsequently, the 201 core genes of the pink module (cor = 0.41, P =

1.5e-09) were screened for subsequent analysis based on GS > 0.5

and MM > 0.8 (Figure 6D).
3.4 Screening for hub genes

Thirteen crossover genes were obtained after taking the

intersection of the DEG dataset and the gene set in the feature

module (Figure 7A). Subsequently, LASSO analysis was used to

screen three genes from the crossover genes as pivotal genes for GC,

including ADH7, CWH43 and SCNN1B (Figures 7B, C).
3.5 Identification and validation of
differential expression analysis of key
genes and their diagnostic value

The screened hub genes were extracted for expression to

construct differential expression box plots. The differential

expression box plot showed that all three key genes were

underexpressed in GC patients (P < 0.001) (Figure 8A). The

AUC areas for the three gene models were 0.868, 0.845 and 0.877,

respectively (Figure 9A), indicating that the model is highly

accurate and that ADH7, CWH43 and SCNN1B may be

involved in affecting the development of GC. Subsequently, the

independent dataset GSE118916 was used as the validation

dataset to identify their expression levels and diagnostic value

to further validate the clinical application of the pivotal genes.

The results showed that the expression levels of ADH7, CWH43
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and SCNN1B in the GC group were significantly lower than those

in healthy controls in the validation set (P < 0.001), which was

consistent with the results of the training set data (Figure 8B).

ROC curves were used to further validate the diagnostic value of

the three pivotal genes in the validation dataset. The results

showed that ADH7, CWH43 and SCNN1B had high diagnostic

va lue wi th AUC values o f 0 .942 , 0 .987 and 0 .964 ,

respectively (Figure 9B).
3.6 Analysis of immune cell infiltration
and its correlation with characteristic
hub genes

Immune cell infiltration was assessed by the ssGSEA algorithm

on tissue samples from the dataset, involving a total of 28 immune

cell species. The majority of immune cells were found to be highly

infiltrated in GC tissue (Figure 10A). Among them, activated CD4 T

cell, activated dendritic cell, CD56 bright natural killer cell, gd T cell,

immature dendritic cell, MDSC, macrophage, mast cell, monocyte,

natural killer T cell, natural killer cell, plasmacytoid dendritic cell,

regulatory T cell, T follicular helper cell, type 1 helper cell, central

memory CD4 T cell and regulatory T cell were extremely

significantly increased in GC tissues (P<0.001), and activated CD8

T cell (P=0.006), neutrophil (P=0.003), type 2 helper cell (P=0.004)

and e 0.004) and effector memory CD8 T cell (P=0.036) were also

significantly increased in GC tissue. In contrast, activated B cell

(P=0.535), CD56bright natural killer cell (P=0.600), eosinophil

(P=0.284), immature B cell (P=0.065), type 17 T helper cell

(P=0.275), effector memory CD4 T cell (P=0.095), memory B cell

(P=0.182) and central memory CD8 T cell (P=0.535) did not differ

significantly in GC tissue (Figure 10B). We then performed a

correlation analysis to further explore the association of the hub

genes with the 28 immune cells. We found that ADH7, CWH43 and
TABLE 3 Top 5 significantly enriched gene sets in normal control group and GC group.

Gene set name NES pvalue p.adjust qvalues

Enriched in normal control group

GSE19888 CTRL VS T Cell membranes ACT mast Cell down -1.692957907 0.000161482 0.001895759 0.001302505

GSE21670 Untreated vs TGFB treated CD4 T Cell up -1.554264308 0.001274963 0.009257259 0.006360315

GSE2585 CD80 high vs low MTEC up -1.657193329 0.000254598 0.002690672 0.00184866

GSE2706 Unstim VS 2H LPS DC up -1.634072618 0.000987185 0.007658545 0.005261899

GSE37301 Rag2 KO VS Rag2 and Ets1 KO NK cell down -1.593873519 0.000661997 0.005698322 0.003915103

Enriched in treat (GC) group

GSE10325_CD4 T Cell VS Myeloid down 2.298424482 1.00E-10 1.08E-08 7.44E-09

GSE10325 Lupus B Cell VS Lupus Myeloid down 2.403164632 1.00E-10 1.08E-08 7.44E-09

GSE10325 Lupus CD4 T Cell VS Lupus Myeloid down 2.593696725 1.00E-10 1.08E-08 7.44E-09

GSE11057 CD4 Eff Mem VS Pbmc down 2.176921036 1.00E-10 1.08E-08 7.44E-09

GSE11057 Pbmc VS Mem CD4 T Cell up 2.206216446 1.00E-10 1.08E-08 7.44E-09
fr
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SCNN1B were significantly associated with type 1 helper cell, T

follicular helper cell, regulatory T cell, plasmacytoid dendritic cell,

natural killer T cell, and natural cells. In addition, CWH43 and

SCNN1B were also negatively correlated with type 1 helper cell,

macrophages and gd T cell (P<0.05). Interestingly, SCNN1B was

also negatively correlated with activated CD4 T cell (P<0.001,

P<0.01, P<0.05). ADH7 and CWH43 were significantly positively

correlated with CD56 bright natural killer cell (P<0.05), while

SCNN1B was significantly positively correlated with monocyte

(P<0.01) (Figure 10C). These results suggest that hub genes may

influence malignant tumor progression by regulating the

abundance of infiltrating immune cells in the nodal GC

tumor microenvironment.
3.7 Expression of hub genes in two groups
of cells

To verify our predicted results, we did further validation by in

vitro cellular experiments. As shown in Figure 11, it was confirmed

that ADH7, CWH43 and SCNN1B all showed low expression in

gastric cancer cells (p < 0.05). This is consistent with the results of

our bioinformatics analysis.
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4 Discussion

In recent years, the understanding of the pathogenesis of gastric

cancer has been deepened, and a series of targeted drugs have been

explored continuously, but the current exploration of gastric cancer

targets is not comprehensive and in-depth enough for a multitarget,

multilevel systemic therapy (17). Therefore, it is of great clinical

importance to expand the research and discovery of potential

targets for gastric cancer. Based on the multilevel concept of

“disease-phenotype-molecule”, combined with the application and

development of computer technology and artificial intelligence in

the field of medical biology, bioinformatics has become one of the

necessary tools for molecular marker research based on big data,

which can be used to screen molecular markers related to disease

phenotypes (18, 19). Individualized treatment and predictable

outcomes of molecular pathways associated with gastric cancer

have opened up many research directions, such as the use of

molecular markers as useful tools in clinical work to assist in the

diagnosis and treatment of gastric cancer patients, to assess the

efficacy of treatments and to explore new therapeutic modalities

(20, 21).

In this study, we obtained gastric cancer and normal tissue gene

microarray datasets from the GEO database and performed DEG
B

A

FIGURE 5

(A) Soft thresholds for determining the best scale-free topological model fit index (left) and average connectivity (right), with the red horizontal line
indicating R2 = 0.9. (B) The distribution of the connectivity of each node in the network (left) and node degree power distribution (right).
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B

C D

A

FIGURE 6

Identification of key modules based on WGCNA. (A) GC-related gene clustering dendrogram. In the figure, the top half is a hierarchical clustering
tree diagram of the genes, and the bottom half is the gene modules, or network modules. Genes with relative relatedness are located on the same
or adjacent branches. (B) Heatmap of correlation analysis of the modules and clinical traits. (C) Gene significance in the modules. (D) Scatter plots of
GS score and MM for genes in the pink module.
B

C

A

FIGURE 7

LASSO screening for hub genes. (A) Venn diagram of intersecting genes between DEGs and the pink module. (B) Coefficients distribution trend of
LASSO regression. (C) Distribution of hub genes in cross validation.
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analysis on these combined datasets. GO and KEGG analyses

showed that gastric cancer tissues differed significantly from

normal tissue cells in BP, CC, and MF, mainly in biological

processes such as collagen catabolic processes, extracellular matrix

disassembly, and collagen protofibril tissue synthesis. The

differential cellular components included extracellular regions,

protein extracellular matrix, collagen trimer, etc., and both BP

and CC play an important role in the migration of tumor cells.

The extracellular matrix (ECM) is a loose connective tissue located

outside the cell and contains a variety of biomolecules, such as

collagen, adhesion factors, glycoproteins, and cytokines (22). It is
Frontiers in Immunology 10
physiologically important in intercellular signaling, intercellular

interactions and regulation of cell proliferation, differentiation

and migration (23). The ECM has been shown to be an

independent risk factor for lymph node metastasis in early gastric

cancer. Furthermore, the overall results of KEGG enrichment

suggest that GC is accompanied by disturbed gastric acid

secretion, amino acid metabolism and energy metabolism. The

answer to this phenotype is well documented in the

previous literature. Tumor cells are able to survive and proliferate

in a nutrient-poor microenvironment through metabolic

reprogramming, where abnormal glucose metabolism plays an
B

A

FIGURE 8

Expression levels of the three Hub genes between the normal control and GC groups. (A) Boxplot of these hub genes in the training dataset. (B) Boxplot
of hub genes in the validation dataset. (***P<0.001).
B

A

FIGURE 9

Diagnostic value of the three genes. (A) ROC curves of hub genes in the training dataset. (B) ROC curves of hub genes in the validation dataset.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1202529
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1202529
important role in maintaining the malignant character of the tumor

(24). Tumor cells obtain the energy necessary for growth and

proliferation by glycolysis, even in conditions of adequate oxygen

(25). Excessive gastric acid promotes the progression of gastric

cancer. Gastrin, an inducer of gastric acid secretion, has been shown

to be a valuable screening marker for gastric cancer (26, 27).

Most studies are currently based only on systems biologymethods

or machine learning algorithms for cancer marker screening. The use

of a single systems biology approach ormachine learning algorithm for

data analysis may lead to somemissing data or too much confounding

data, so the combination of two or more methods can improve the

confidence in the results (28). In this study, three biomarkers, ADH7,

CWH43 and SCNN1B, were included in the model that used multiple

bioinformatics methods to screen for gastric cancer. Based on the

literature available to date, ADH7 belongs to the alcohol

dehydrogenase family, a gene expressed mainly in the upper

gastrointestinal tract, and has been shown to be involved in the

metabolism of xenobiotics by cytochrome P450: it is associated with

the metabolism of ethanol that occurs in gastroesophageal tissues and

is then absorbed into the bloodstream. In addition, single nucleotide
Frontiers in Immunology 11
polymorphisms in ADH7 are susceptibility factors for cancer and drug

dependence (29). SCNN1B encodes the b subunit of the epithelial

sodium channel (ENaC), which is involved in the control of

transepithelial transport of water and electrolytes and cell

differentiation in different organs. Current studies on ENaC in

cancer have shown that in breast cancer and neuroblastoma,

SCNN1A gene silencing caused by hypermethylation in the

promoter region of the SCNN1A gene, which encodes the a subunit

of ENaC, is the main reason for the poor prognosis of patients with

these tumors and diseases. Recently, SCNN1B was found to inhibit the

growth andmetastasis of gastric cancer cells, and the expression level of

SCNN1B was positively correlated with the survival rate of gastric

cancer patients and reduce the expression level of Glucose-Regulated

Protein 78 [GRP78, Recent studies have also found that GRP78

expression is elevated in cancer cells and plays an important role in

the development of cancer tumors (30, 31)]. In addition, activation of

downstream proteins leads to caspase-dependent apoptosis and cell

cycle arrest through induction of the unfolded protein response (UPR)

(32–34). A recent study identified CWH43 as a prognosis-related gene

in colorectal cancer (CRC), but little is known about its function (35).
B

CA

FIGURE 10

Analysis of immune cell infiltration and its correlation with characteristic hub genes. (A) Heat map of immune cell infiltration between normal control
and GC group (B) Violin diagram of the difference in immune cell infiltration between normal controls and GC. (C) Analysis of the association of 3
Hub genes with immune cells.
FIGURE 11

RT-qPCR validation of hub gene mRNA in different groups. The data presented are means ± SD (n=3). #P <0.05 and ##P <0.01 relative to the control group.
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The GC tumor microenvironment is highly complex and

heterogeneous, tumor-associated immune cells play a role in

tumorigenesis, development, invasion and metastasis, and the type

and proportion of their infiltration are closely related to the clinical

outcome of patients (36, 37). Therefore, the investigation of immune

cell infiltration and its correlation with characteristic hub genes is also

important for the pathogenesis, prevention and treatment of GC. In

this study, we used ssGSEA to assess the expression levels and dynamic

regulatory processes of 28 immune cell types in GC. The results

showed significant differences in the pattern of immune cell

infiltration between normal gastric and GC tissues, which to some

extent indicated an imbalance in the immune response in GC. Tumor-

associated macrophages (TAMs) are important components of the

gastric cancer tumor microenvironment, which can influence the

malignant biological behavior of gastric cancer and play a key role in

gastric carcinogenesis and metastasis (38, 39). In the tumor

microenvironment, TAMs secrete a large number of inflammatory

factors, growth factors, chemokines and proteases through crosstalk

with gastric cancer cells and various other cells, which play an active

role in tumor growth, inhibition of apoptosis, angiogenesis and

lymphatic metastasis (40, 41). In addition, myeloid inhibitory cells

(MDSCs) are diverse bone marrow progenitor cells that produce

arginase 1 (ARG1) to promote tumor cell growth and suppress

immune cell function (42). CD4 T cells can be differentiated into

four main subpopulations: Th1 cells, Th2 cells, regulatory cells (Tregs)

and Th17 cells. The imbalance in the ratio of T lymphocytes

alters the immune microenvironment of tumors, thus facilitating

the proliferation, invasion and metastasis of tumor cells.

Immunosuppressive effector cells modulate the intensity of the

body’s immune response, attenuate immune damage, and mediate

immune escape by suppressing the antitumor immune response,

thereby promoting tumor progression. Previous studies have shown

that a large number of immune cells and inflammatory factors are

present in the tumor microenvironment of GC, and the number and

phenotype of immune cell subpopulations in GC tissues are closely

related to the development of GC and the prognosis of patients (43–

45). To further reveal the potential mechanism of the differential

expression of hub genes on the predictive value of the immune

microenvironment in GC, this study analyzed these markers with

infiltrating immune cells and found that the expression of these three

biomarkers was significantly and negatively correlated with the level of

immune infiltration of immune cells that were significantly

upregulated in GC. This suggests that these genes may influence the

progression of GC by affecting the level of immune infiltration as well

as the interactions between immune cells. In short, these correlations

may reveal potential molecular mechanisms underlying GC

development and suggest that ADH7, CWH43 and SCNN1B play

important roles in the GC immune microenvironment.

Although there are potential suggestions from this study for the

early detection of gastric cancer and the corresponding treatment,

there are still some limitations to consider. First, the sample size

used in this trial may limit the generalizability of the study findings,

and therefore, further evaluation in a larger cohort and in a different

population would provide stronger evidence. Second, this study

primarily utilized retrospective transcriptome analysis data and

lacked validation. Therefore, in vitro, in vivo and prospective data
Frontiers in Immunology 12
still need to be collected to validate the real-world clinical

significance of the identified DEGs and core genes in relation to

gastric carcinogenesis, progression and prognosis. Finally, more

experiments are needed to elucidate the upstream regulatory

pathways and downstream mechanisms of the identified key

differentially expressed genes.

In conclusion, the present study screened and validated the key

genes ADH7, CWH43 and SCNN1B, which are significantly

associated with GC development, based on the GEO public

database, through a combination of WGCNA and lasso regression

models, providing a molecular basis for the early diagnosis and

treatment of GC, as well as for immunotherapy research and the

development of new targeted drugs.
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