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Low switched memory B cells
are associated with no humoral
response after SARS-CoV-2
vaccine boosters in kidney
transplant recipients

Mariana Seija1,2†, Joaquin Garcı́a-Luna3†,
Florencia Rammauro4,5†, Andreı́na Brugnini3, Natalia Trı́as3,
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Introduction: The humoral response after SARS-CoV-2 vaccination and

boosters in kidney transplant recipients (KTRs) is heterogeneous and depends

on immunosuppression status. There is no validated immune measurement

associated with serological response in clinical practice. Multicolor flow

cytometric immunophenotyping could be useful for measuring immune

response. This study aimed to study B- and T-cell compartments through

Standardized EuroFlow PID Orientation after SARS-CoV-2 vaccination and

their association with IgG SARS-CoV-2 seropositivity status after two doses or

boosters.

Methods: We conducted a multicenter prospective study to evaluate humoral

response after SARS-CoV-2 vaccination in KTRs. Heterologous regimen: two

doses of inactivated SARS-CoV-2 and two boosters of BNT162b2 mRNA (n=75).

Homologous vaccination: two doses of BNT162b2 mRNA and one BNT162b2

mRNA booster (n=13). Booster doses were administrated to KTRs without taking

into account their IgG SARS-CoV-2 seropositivity status. Peripheral blood

samples were collected 30 days after the second dose and after the last

heterologous or homologous booster. A standardized EuroFlow PID

Orientation Tube (PIDOT) and a supervised automated analysis were used for

immune monitoring cellular subsets after boosters.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1202630/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1202630/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1202630/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1202630/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1202630/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1202630&domain=pdf&date_stamp=2023-10-24
mailto:daniela.lens@gmail.com
mailto:mninvaez@gmail.com
mailto:sbianchi@fmed.edu.uy
https://doi.org/10.3389/fimmu.2023.1202630
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1202630
https://www.frontiersin.org/journals/immunology


Seija et al. 10.3389/fimmu.2023.1202630

Frontiers in Immunology
Results: A total of 88 KTRs were included and divided into three groups

according to the time of the first detected IgG SARS-CoV-2 seropositivity:

non-responders (NRs, n=23), booster responders (BRs, n=41), and two-dose

responders (2DRs, n=24). The NR group was more frequent on mycophenolate

than the responder groups (NRs, 96%; BRs, 80%; 2DRs, 42%; p=0.000). Switched

memory B cells in the 2DR group were higher than those in the BR and NR groups

(medians of 30, 17, and 10 cells/ul, respectively; p=0.017). Additionally, the

absolute count of central memory/terminal memory CD8 T cells was higher in

the 2DR group than in the BR and NR groups. (166, 98, and 93 cells/ul,

respectively; p=0.041). The rest of the T-cell populations studied did not show

a statistical difference.

Conclusion: switched memory B cells and memory CD8 T-cell populations in

peripheral blood were associated with the magnitude of the humoral response

after SARS-CoV-2 vaccination. Boosters increased IgG anti-SARS-CoV-2 levels,

CM/TM CD8 T cells, and switched MBCs in patients with seropositivity after two

doses. Interestingly, no seropositivity after boosters was associated with the use

of mycophenolate and a lower number of switched MBCs and CM/TM CD8 T

cells in peripheral blood.
KEYWORDS
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Introduction

Several studies have reported that kidney transplant recipients

(KTRs) show a decreased antigen-specific humoral immune

response after two doses of SARS-CoV-2 vaccines compared with

the healthy population (1–12) Therefore, extra boosters were

recommended to achieve seroconversion and produce high titers

of the IgG anti-receptor-binding domain (RBD) of SARS-CoV-2 in

KTRs (13–21).

We have previously demonstrated that a two-dose-two-booster-

heterologous vaccination scheme combining inactivated virus vaccine

(Sinovac®) and BNT162b2 mRNA (Pfizer/BioNTech) improved

humoral response in KTRs. Additionally, we have demonstrated

that the seroconversion achieved with this scheme was

approximately 70%, similar to the response obtained with 2 doses-

1-booster-homologous BNT162b2 mRNA vaccination (20, 21).

Several reports have shown that seroconversion depends on the

immunosuppression treatment. KTRs who received mycophenolate

were less likely to seroconvert, whereas KTRs on mTOR inhibitors

such as everolimus had higher SARS-CoV-2 IgG levels (1–10, 20,

22). B cell-depleting therapy with rituximab (RTX) also reduced the

humoral response (22–24). Other clinical features associated with

diminished humoral response to vaccination were a recent kidney

transplant, advanced age, and impaired kidney function (20–24).

Immunological response after SARS-CoV-2 vaccination is

heterogeneous and there is no clinical tool to anticipate it in

clinical practice. There is no specific post-transplant measure of

immunosuppression burden. Clinicians rely on drug levels, viral
02
screening, and patients’ features to predict the risk of rejection

versus overimmunosuppression (25–27).

Multicolor flow cytometric (FC) immunophenotyping has

become a key tool in the evaluation of immunological disorders

and could be useful for measuring immune response in KTRs (28–

30). We hypothesized that lymphocyte immune profiling could be

associated with the humoral response after boosters.

B cell composition is altered after kidney transplantation and

has been correlated with the SARS-CoV-2 vaccination response

(26). Impaired B- and T-cell function in KTRs has been described

with triple immunosuppression based on an antimetabolite

(mycophenolate), a calcineurin inhibitor (cyclosporine or

tacrolimus), and prednisone, and it is associated with the degree

of immunosuppression (27).

Immunological memory in the humoral system is provided by

memory B cells and bone marrow-resident long-lived plasma cells

(PCs). Memory B cells (MBCs) play a critical role in antibody

production. These cells are produced during the immune response

by a germinal center (GC)-dependent or a GC-independent

pathway. In the GC-independent pathway, naïve B cells become

activated after encountering their antigen (e.g., vaccine) and

undergo clonal expansion and affinity maturation to unswitched

memory B cells and short-lived plasma cells (31, 32). Unswitched

MBCs carry IgM and IgD isotypes on the surface. They migrate to

GCs to undergo a class switch recombination to become switched

MBCs or PCs (33). However, a small number of switched memory B

cells can also be produced outside of germinal centers, in a GC-

independent pathway (32, 33).
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Vaccination also has the capacity to shape the memory CD8 T-

cell pool (34). Memory CD8 T cells increase after vaccination and

boosters and persist long-term (35). Memory T-cell repertoire can

recirculate in tissues and potentially be more responsive after re-

encountering the antigen (34). CD8+ T cells can continue to be

protective when antibody titers decline (34). This study aimed to

study B and T-cell compartments after SARS-CoV-2 vaccination

and their association with the time of the first detected IgG SARS-

CoV-2 seropositivity after two doses or boosters.
Materials and methods

We conducted a multicenter prospective study to evaluate

humoral immune response after SARS-CoV-2 vaccination in

KTRs after homologous and heterologous vaccination. Details of

the Uruguay Vaccination Campaign are in the Supplementary

Material (Figure 1A; Supplementary Figure S1).

The study group was composed of KTRs from all kidney

transplant centers in Uruguay (INU-Hospital Italiano, Hospital

Evangélico, and Hospital de Clıńicas). The inclusion criteria were

age >18 years old, kidney or kidney-pancreas transplant, informed

consent, no prior PCR-confirmed COVID-19 during the

vaccination and study period, and received two prior doses of

CoronaVac® or two doses of BNT162b2 as an initial vaccination

and a subsequent homologous or heterologous booster according to
Frontiers in Immunology 03
the recommendations of the Uruguayan National Health

Authority (Figure 1A).

The Uruguayan National Health Authority recommended

vaccination for KTR patients with two initial doses of

CoronaVac® or two doses of BNT162b2 mRNA between March

and June 2021. Later, in August 2021, booster doses with BNT162b2

mRNA were recommended for all solid organ transplant recipients

without taking into account seroconversion status. As shown in

Figure 1A, patients with two initial doses of BNT162b2 mRNA

received one booster with the same vaccine (homologous

vaccination) while patients receiving two doses of inactivated

SARS-CoV-2 (CoronaVac®) received two boosters of BNT162b2

mRNA (heterologous vaccination). Therefore, all KTRs received

either a homologous or heterologous scheme depending on the

types of initial doses received (Figure 1A).

The humoral response was studied after the two initial doses

and after every booster, as previously reported (20, 21) (Figure 1B).

For the purpose of this study, we only included patients with

available blood samples after two initial doses and after boosters

with immunophenotypic analysis. Hence, the study group was

composed of 88 KTRs who received either a heterologous scheme

(n=75) or a homologous scheme (n=13). KTRs were divided into

three groups according to the time of the first detected IgG SARS-

CoV-2 seropositivity: non-responders (NR), booster responders

(BR), and initial two-dose responders (2DR). Non-responders

(NR) are those who did not respond after two initial doses and
A

B

C

FIGURE 1

Flow diagram for the study participants. (A) Uruguayan Vaccination Scheme KTRs. heterologous regimen combination of two doses of inactivated
SARS-CoV-2 (CoronaVac®) and two boosters of BNT162b2 mRNA. Homologous vaccination: two doses and one booster of BNT162b2 mRNA.
(B) Humoral response after SARS-CoV-2 vaccination study cohort: the IgG anti-SARS-CoV-2 study was conducted 30 days after the second dose
and after every booster. Immunophenotypic analysis was performed after the last booster. The study group was composed of 88 KTRs:
heterologous scheme (n=75) and homologous scheme (n=13). (C) Groups according to the time of the first detected IgG SARS-CoV-2 seropositivity.
Initial two-dose responders (2DRs): KTRs who were seropositive after two initial doses. Booster responders (BRs): KTRs who were seronegative after
the initial two doses but did respond to the boosters (heterologous or homologous). Non-responders (NRs): those who did not respond after two
initial doses and after boosters (heterologous or homologous). Seropositivity was defined as specific IgG antibodies against the receptor-binding
domain (RBD) fragment of SARS-CoV-2 spike protein >10 BAU/ml. KTR, kidney transplant recipient.
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after boosters (heterologous or homologous). Booster responders

(BR) are those who did not respond to the initial two doses but did

respond to the boosters (heterologous or homologous). Finally, the

initial two-dose responders (2DR) are KTRs who were seropositive

after two initial doses (Figure 1C). A detailed flow chart of the study

population is featured in Figure 1.
Data collection and samples

Clinical data were recorded. The estimated glomerular filtration

rate (eGFR) was estimated using the CKD-EPI formula.

Peripheral blood (PB) samples were collected 30–40 days after

the last heterologous or homologous booster (Supplementary

Figure S1). Freshly collected blood was centrifuged in the clot

activator and gel tube (2,500 rpm, 15 min). Sera were separated

and stored at −20°C until analysis. For immunophenotypic analysis,

PB samples were collected in BD Vacutainer tubes containing

K2EDTA (Becton/Dickinson, San Jose, CA) after the last

heterologous or homologous booster. For each sample, a white

blood cell (WBC) count was determined using a hematology

analyzer (Unicel DxH 800 Beckman Coulter).
IgG antibodies against the Receptor-
Binding Domain

The level of serum-specific IgG antibodies against the Receptor-

Binding Domain (RBD) fragment of SARS-CoV-2 Spike protein

was determined using a COVID-19 IgG QUANT ELISA Kit

(developed by Universidad de la República, Institut Pasteur de

Montevideo, and ATGen) according to the manufacturer’s

instructions. The assay has a sensitivity of 97.7% and a specificity

of 96.2%. Quantitative test results were expressed in binding

antibody units (BAU)/ml referred to by the First WHO

International Standard for anti-SARS-CoV-2 immunoglobulin

(NIBSC code: 20/136) used for assay calibration (20, 21, 36).

Seropositivity was defined as specific IgG antibodies against the

RBD fragment of SARS-CoV-2 Spike protein >10 BAU/ml. The

value of 10 BAU/ml was defined as the assay cutoff, according to the

manufacturer’s instructions. Samples above this value are

considered positive (36).
The standardized Euroflow PID orientation
tube and supervised automated analysis

For flow cytometric analysis of major circulating leukocytes, we

used the 8-color/12-marker standardized EuroFlow primary

immunodeficiencies (PID) Orientation Tube (PIDOT) and a

supervised automated analysis (Infinicyt, Cytognos, SL) (28–30).

Briefly, non-nucleated red cells were lysed prior to staining, following

the EuroFlow bulk lyse SOP (available at euroflow.org/protocols).

Then, surface staining was performed with a reconstituted PIDOT

lyophilized antibody cocktail (Cytognos) plus CD27 and CD45RA

added as drop-in antibodies. Details about the specific antibody clones
Frontiers in Immunology 04
and fluorochrome-conjugated reagents used are provided in

Supplementary Table 1. Staining and data acquisition of all samples

were performed within 24 h after blood collection.

Data were acquired on a BD FACSCanto II™ flow cytometer

(BD Biosciences), and instrument settings and data acquisition were

performed according to the EuroFlow guidelines available at

euroflow.org/protocols. Standard instrument settings were

monitored by BD Cytometer Setup and Tracking (CS&T) beads

(BD) and eight-peak Rainbow bead calibration particles

(Spherotech, Lake Forest, IL). Data were exported as an FC

standard file for further analysis.

Data Analysis: All FC standard data files were analyzed

automatically using the Infinicyt module and the EuroFlow

PIDOT database, with a special focus on the lymphoid

populations. All major blood lymphocyte populations, including

naïve B cells and post-GCs, memory B cells (MBCs), and plasma

cells (PCs), as well as CD4 and CD8 maturation subsets, double

negative (DN) gamma/delta T cells, and NK cells, were analyzed.

Additionally, neutrophils, eosinophils, monocytes, CD16+

monocytes, and plasmacytoid dendritic cells were included.

The T-cell subsets were automatically analyzed and classified as

naïve (CD27+CD45RA+), central memory/transitional memory (CM/

TM; CD27+CD45RA-), effector memory (EM; CD27-CD45RA-) and

terminally differentiated (TD; CD27-CD45RA+) CD4+ T cells; and

naïve (CD27+CD45RA+), CM/TM (CD27+CD45RA-), EM (CD27-

CD45-), and TD (CD27-CD45RA+) CD8+ T cells. Additionally, CD4/

CD8 double negative and CD4/CD8 double-positive T cells were

studied (35, 36). B-cell subsets were subdivided into naïve B cells

(IgM+IgD+CD27−), unswitched memory B cells/plasma cells

(unswitched MBC/PC; IgM+IgD+/−CD27+), and switched memory

MBCs/PCs (IgM−IgD−CD27+) (28–30).

The absolute counts per microliter of the lymphocyte subsets

identified by flow cytometry were calculated using a double platform

approach with the absolute leukocyte counts determined before sample

processing with a hematological analyzer population (Unicel DxH 800

Beckman Coulter) and the Infinicyt Statistics Configure tool.

All blood lymphocyte (sub)populations were compared with

established Euroflow age-matched reference values. We classified all

subpopulations below and above percentile 5 of the age-matched

reference value because immunosuppression treatment decreases

lymphocyte counts.

Reference populations were obtained from the Euroflow PIDOT

database from multicentric healthy adult volunteers with no sign or

suspicion of immunological or hematological diseases, including an

abnormal infection rate or a known history of allergies (29, 30).
Statistical analysis

Continuous variables were tested for normal distribution

(Kolmogorov–Smirnov). Normally distributed variables were

expressed as mean ± standard deviation (SD), non-normally

distributed as median and interquartile range. Qualitative

variables were expressed as numbers and percentages. The chi-

square test was used to compare categorical variables. Continuous

variables were compared using a t-test (normally distributed) or
frontiersin.org
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Kruskal–Wallis/Mann–Whitney test (non-normally distributed)

with Bonferroni correction. As a normal distribution could not be

demonstrated for any of the continuous variables, they were

represented as median and interquartile range. Correlations of

baseline levels of B cells, T cells, and anti-RBD IgG were

calculated using Spearman’s rank correlation. P<0.05 was

considered statistically significant. IBM® SPSS® version 22

(Chicago, IL) statistical software was used for statistical analyses

Graph Pad 8 was used to construct charts.
Results

Baseline patient characteristics according to the first time of

detected IgG SARS-CoV-2 seropositivity are detailed in Table 1.

Only 27% of KTR patients achieved seropositivity after the initial

two doses of vaccination (2DR), whereas in most KTRs, seroconversion

was observed after boosters (BR, 47%). Meanwhile, 26% of KTR

patients remained seronegative (NR group).

The relative frequency of differentmaintenance immunosuppression

regimens was different among the responder groups in our study. The

proportion of patients on everolimus was higher in seroconversion

groups than in non-responder patients (2DR, 33%; BR, 22%; and NR,

4%; p=0.046). However, patients with mycophenolate were the most

frequent in the NR group (NR, 96%; BR, 80%; 2DR, 42%; p=0.000;

Table 1). Age, diabetes, lymphocyte count, and glomerular filtration rate

were similar in the three groups. The time from transplantation was

lower in NR than in the BR and 2DR group, although this difference was

not statistically significant (median 42, 67, and 70 months; p=0.485).

IgG RBD SARS-CoV-2 (BAU/mL) levels (shown in Table 1)

were measured after 1 month of heterologous/homologous

boosters. As expected, KTR patients in the 2DR group were the

ones who had the highest levels of IgG anti-SARS-CoV-2 after the

boosters (2DR 4,229 [2,773–12,555] vs. BR 291 (78–1,047) vs. NR

2.5 [1–5] BAU/ml) (Table 1). There were no differences in the IF

analysis and in IgG anti-RBD titers between the homologous and

heterologous KTRs (data not shown).

The composition and function of immune cell populations are

age-dependent. Therefore, the analysis of the PIDOT tube includes

age-specific reference ranges for the PIDOT database. In this study,

we also analyzed the frequency of patients with values below the 5th

percentile of the age-reference range for each subpopulation studied

for the different response groups studied: NR, BR, and 2DR (29, 30).

We divided lymphocyte subpopulations below and above the 5th

percentile of the age-matched reference value because

immunosuppression treatment decreases lymphocyte counts.
B-cell populations according to
the time of the first detected IgG
SARS-CoV-2 seropositivity

We analyzed all main circulating lymphocytes using the

standardized PIDOT orientation tube and a supervised automated

analysis that includes a database with age-matched reference values

for each population studied (a representative clustering is shown in
Frontiers in Immunology 05
Figure 2). For B-cells, we analyzed three subsets: naïve B cells

(IgM+IgD+CD27−), unswitched memory B cells or unswitched

plasma cells (UnswMBCs/PCs; IgM+IgD+/−CD27+), and switched

memory B cells or switched PCs (swMBCs/PCs; IgM−IgD−CD27+)

(Figure 3 and Table 2). Then, we analyzed the proportion of KTR

patients falling below the 5th percentile of the age-matched

reference value for each population studied.

We found that the only subset associated with seropositivity was

swMBCs/PCs. Naïve B cell and unswMBC/PC absolute counts were

similar among vaccination response groups. The proportion of KTR

patients with unswMBC/plasma cells below the 5th percentile was

comparable in the three groups (naïve B cells, NR 48%, BR 27%, and

2DR 41%, p=0.201; unswMBC/PC, NR 52%, BR 44%, and 2DR

37%, p=0,597; Figures 3B, C, Table 2).

swMBC/PC counts in the NR group were lower than those in

BR and 2DR (10 cells/ul (6–13), 17 cells/ul (10–25), and 30 cells/ul

(10–55), respectively; p =0,017; Table 2). The proportion of patients

with swMBC/PC cells below the 5th percentile of the age reference

was higher in the NR group than in the BR and 2DR groups (52%,

27%, and 21%, respectively; p=0.045; Figure 3E). Additionally, the

ratio of swMBCs-PCs/unsw MBCs/PCs was lower in the NR group

than in the responder groups (NR, 1.1; BR, 1.86; 2DR, 2.73;

p=0.024; Figure 3F).
T-cell compartment according to
the time of the first detected IgG
SARS-CoV-2 seropositivity

For T cells, we analyzed CD4 and CD8 maturation subsets

naïve, central memory/transitional memory, effector memory, and

terminally differentiated and DN gamma/delta T cells. T-cell values

below the 5th percentile of the age reference were more frequent in

the NR and BR groups than in the 2DR group, although this

difference was not statistically significant (NR, 26% and BR, 22% vs.

2DR, 8%; p=0.257).

CD8 T-cells, naïve CD8 T-cells, effector memory, and terminally

differentiated CD8 T-cell counts were similar among groups. However,

the central memory/transitional memory (CM/TM) CD8 T-cell

absolute count was significantly higher in the 2DR group than in the

NR and BR groups (p=0.041; Figure 4, Table 2). CD4 T-cell and their

subsets, double negative T-cell, and NK cell counts were similar among

groups (Table 2 and Supplementary Figures 2B–E).
Myeloid cell compartment according to
the time of the first detected IgG SARS-
CoV-2 seropositivity groups

The percentage of monocytes below the 5th percentile of age

reference was higher in the 2DR group than in the BR and NR

groups (2DR, 21%; NR, 2%; BR, 2%; p=0.023). However, the

absolute number of total monocytes and CD16+ monocytes was

similar among groups (2DR, 539; no SC, 609; and BR, 605 cells/ul;

p=0.277; Figure 5).
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Correlation between IgG SARS-CoV-2
levels, lymphocyte populations, and
clinical parameters

The Spearman correlation matrix was used to analyze the

correlation between IgG anti-RBD SARS-CoV-2, lymphocyte

absolute counts, and continuous clinical parameters. We
Frontiers in Immunology 06
summarized the representative correlations in Figure 6. There was

a moderate correlation between IgG anti-RBD SARS-CoV-2 and

switched memory B cells (Rho=0.3, p=0.005) and the ratio of

switched/unswitched (Rho=0.27, p=0.011). Additionally, there

was a weak correlation between the time of post-kidney

transplantation and IgG anti-RBD SARS-CoV-2 (Rho=0.24,

p=0.032). There was no association of IgG anti-RBD SARS-CoV-
TABLE 1 Clinical characteristics of patients according to the time of the first detected IgG anti-RBD SARS-CoV-2 seropositivity.

Variable Time of the first detected
IgG SARS-CoV-2
Seropositivity

p-value

NRs
Non-responders

BRs
Booster responders

2DRs
Two-dose responders

N, (%) 23(26%) 41(47%) 24 (27%)

Vaccine scheme
Heterologous, n (%)
Homologous, n (%)

20 (87%)
3 (13%)

36 (87.8%)
5 (12.2%)

19 (79.2%)
5 (20.8%)

0.615

Age years, median (IQR) 55(47-55) 61 (43-54) 54 (39-53) 0.705

Sex, men n (%) 9 (39%) 13 (32%) 10 (41%) 0,687

Comorbidities, n (%)
Stroke
Ischemic heart disease
Peripheral arteriopathy

1 (4%)
0
0

1 (2%)
3 (7%)
1 (2%)

0
0
0

0.604
0.169
0.560

Diabetes mellitus, n (%) 5 (22%) 12 (29%) 3 (13%) 0.295

Time since transplantation: months,
median (IQR)

42 (31-110) 67 (31-158) 70 (27-42)
0.485

Triple immunosuppression, n (%) 20 (87%) 27 (66%) 13 (54%) 0.049

Antimetabolite, n (%)
None
Mycophenolate
Azathioprine

1 (4%)
22 (96%)
0 (0%)

6 (15%)
33 (80%)
2 (5%)

9 (37%)
10 (42%)
5 (21%)

0,000

Calcineurin inhibitors, n (%)
None
Tacrolimus
Cyclosporine

1 (4%)
19 (83%)
3 (13%)

4 (10%)
28 (68%)
9 (22%)

3 (12%)
20 (83%)
1 (4%)

0,306

Prednisone, n (%) 22 (96%) 97 (90%) 23 (96%) 0.593

Everolimus, n (%) 1(4%) 9 (22%) 8 (33%) 0,046

Rituximab, n (%) 0 2 (5%) 0 0.309

Thymoglobulin, n (%) 7 (30%) 5 (12%) 5 (21%) 0.203

Rejection in the last 3 months, n (%) 0 1 (2%) 0 0.561

Lymphocyte count, cells/ul, median (IQR)
1658

(951-2289)
1613

(1153-2243)
1618

(1474-2217)
0.416

IgG RBD SARS-CoV-2 (BAU/mL) after 1 month homologous or
heterologous boosters, median (IQR)

2.5 (1-5) 291 (78-1047)
4229

(2773-12555)
0,000

GFR ml/min/1.73m2, median (IQR) 64 (55-47) 61(43-64) 62 (47-63) 0.637
fro
Uruguayan Vaccination Scheme: heterologous regimen combination of two doses of inactivated SARS-CoV-2 (CoronaVac®) and two boosters of BNT162b2 mRNA. Homologous vaccination:
two doses and one booster of BNT162b2 mRNA. The IgG anti-SARS-CoV-2 study was conducted 30 days after the second dose and after every booster. Immunophenotypic analysis was
performed after the last booster. Groups according to the time of first detected IgG SARS-CoV-2 seropositivity: initial two-dose responders (2DR), KTRs with IgG anti-SARS-CoV-2
seropositivity after two initial doses; booster responders (BR), KTRs who were seronegative after the initial two doses but did respond to the boosters (heterologous or homologous); and non-
responders (NR), those who did not respond after two initial doses and after boosters (heterologous or homologous). Seropositivity was defined as specific IgG antibodies against the receptor-
binding domain (RBD) fragment of the SARS-CoV-2 spike protein >10 BAU/ml. KTR, kidney transplant recipient; eGFR, estimated glomerular filtration rate using the CKD EPI Formula; RBD,
receptor-binding domain; SD, standard deviation; CNI, calcineurin inhibitors; IQR, interquartile range; triple immunosuppression, antimetabolite+calcineurin inhibitor+prednisone. Non-
normally distributed as median and interquartile range (IQR).
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2 with age, glomerular filtration rate, or other T- and B-

cell subpopulations.
Discussion

An essential feature of vaccine evaluation and improvement is

understanding the underlying immune mechanisms. There are several

studies describing antibody responses to SARS-COV-2 vaccination and

some of them also describe cellular responses (1–22, 37–57). However,

there is little evidence concerning the response of T- and B-cell

subpopulations in vaccinated KTRs. This study describes cellular

immune responses following SARS-COV-2 vaccination and evaluates

which features of this response correlate with the time of the first

detected IgG SARS-CoV-2 seropositivity.
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Immune profiles were studied after two doses-one booster-

homologous and two doses-two boosters-heterologous SARS-CoV-

2 vaccination. All patients received boosters independently of

seropositivity status. Taking into account that the normal range

of circulating lymphocyte subsets varies with age (28–30), we used

the Euroflow PIDOT flow cytometry approach that includes a

database with age-matched reference values. This approach

enables us to compare lymphocyte subpopulation counts in KTR

patients with the normal age-reference range. We calculated the

frequency of patients with values below the 5th percentile of the age-

reference range for each subpopulation studied.

Here, we found that KTRs who respond to vaccines or boosters

had a more prominent expansion of switched memory B cells after

SARS-CoV-2 boosters. Non-responder KTRs had significantly

lower switched MBC/PC cell counts than patients who
A

B

C

FIGURE 2

Flow cytometric analysis of B- and T-cell populations using the EuroFlow primary immunodeficiencies Orientation tube (PIDOT) and a supervised
automated analysis (Infinicyt, Cytognos, SL). A representative clustering showing the supervised automated analysis of one patient. (A) After gating
leukocytes as CD45+ and lymphocytes on FSC and SSC, the markers CD3 and CD19 in combination with TCRgd and CD16 + 56 were used to define
B cells (dark orange), TCRgd+ T cells (lilac), TCRgd- T cells (light blue), and NK cells (brown). (B) The T-cell subsets were further subdivided into naïve
(CD27+CD45RA+; dark green), central memory/transitional memory (CM/TM; CD27+CD45RA-; bright green), effector memory (EM; CD27-CD45RA-
; green), and terminally differentiated (TD; CD27-CD45RA+; light green) CD4+ T cells and into naïve (CD27+CD45RA+; dark blue), CM/TM (CD27
+CD45RA-; blue), EM (CD27-CD45-; pale blue), TD (CD27-CD45RA+; turquoise), and dim positive CD27 effector (EffCD27dim; CD27int-CD45RA+;
light blue) CD8+ T cells. (C) The B-cell subsets could be further subdivided into naïve (Naïve B cells, IgM+IgD+CD27−; pink), unswitched memory B
cells/plasma cells (Unswitched MBCs/PCs; IgM+IgD+/−CD27+; yellow), and switched memory MBCs/PCs (IgM−IgD−CD27+; orange).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1202630
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Seija et al. 10.3389/fimmu.2023.1202630
responded. Additionally, the percentage of patients with swMBCs/

PCs below the 5th percentile of the normal range was 50% in the

non-responder group compared with 20% in both seropositivity

groups. This is in line with previous reports in which a reduced
Frontiers in Immunology 08
number of switched MBCs was associated with a low humoral

response in KTRs and in autoimmune disease (22, 23, 26).

The presence of switchedMBCs/PCs in the blood is an indicator of

a functional germinal center reaction (35). In the germinal center,
A B

C D

E F

FIGURE 3

B-cell compartments according to the time of the first detected IgG anti-RBD SARS-CoV-2 seropositivity. Heterologous regimen combination of
two doses of inactivated SARS-CoV-2 (CoronaVac®) and two boosters of BNT162b2 mRNA. Homologous vaccination: two doses and one booster
of BNT162b2 mRNA. Groups according to the time of first detected IgG SARS-CoV-2 seropositivity: initial two-dose responders (2DRs), KTRs who
were seropositive after two initial doses; booster responders (BRs), KTRs who were seronegative after the initial two doses but did respond to the
boosters (heterologous or homologous); and non-responders (NRs), those who did not respond after two initial doses and after boosters
(heterologous or homologous). (A). B cells. (B). Naïve B cells. (C) Unswitched memory B cells and plasma cells. (D) Switched memory B cells. (E) B-
cell composition compartment. (F) Switched/unswitched memory B-cells ratio. In (A–D), plots show the absolute number of B-cells using the PID
orientation tube (PIDOT). Patients with B-cell counts below percentile 5 (p5) of the age-matched reference are in red and those above percentile 5
are in black. The horizontal bar in the graphs represents the median with the interquartile range. *p < 0.05: comparison of the proportions of
lymphocytes below and above the 5th percentile using the chi-square test. #p< 0.05: comparison of the absolute number of lymphocytes using
Kruskal–Wallis with Bonferroni correction.
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antigen-specific B cells undergo somatic hypermutation and affinity-

based selection (58). SARS-CoV-2 mRNA-based vaccines induce a

robust germinal center response in mice and humans (47, 58, 59). On

the other hand, kidney transplant immunosuppression blunts T-B

cooperation and decreases the humoral response (60–64).

KTRs in the 2DR group had higher switched MBC counts and

IgG anti-SARS-CoV-2 levels after boosters. This may reflect a lower

immunosuppression burden. We found that KTRs in this group

were more frequently on mTOR inhibitors (everolimus) and less

frequently on mycophenolate. This is in line with previous studies

that have shown that humoral immune responses were better

preserved with everolimus than with mycophenolate (58, 65, 66).

Memory B cells seem better correlated with serological responses
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with mRNA vaccines and protein-based vaccines (67). The increase

of antibodies after boosters is due to a significant expansion of

memory B cells in the healthy population (58). Here, we showed

that IgG anti-SARS-CoV-2 levels were associated with switched

MBC counts, and higher levels were observed in the 2DR group

than in the booster responders.

KTRs in the two-dose responder group also had more

circulating CD8 CM/TM T cells than booster responders and

non-responders. The central memory (CM) or effector memory

(EM) differentiation states of CD4+ and CD8+ T cells have

implications for durability and the responses upon antigen re-

exposure. In immunocompetent individuals, low IgG levels after

SARS-CoV-2 vaccination were associated with a low frequency
TABLE 2 Lymphocyte subpopulations according to the time of the first detected IgG anti-RBD SARS-CoV-2 seropositivity.

Variable Time of the first detected
IgG SARS-CoV-2
Seropositivity

p- value

NRs
Non-responders

BRs
Booster responders

2DRs
Two-dose responders

B cells, cell/ul, median (IQR) 63 (24-84) 77 (40-116) 74 (45-193) 0.214

Naïve B cells, cell/ul, median (IQR) 28 (9-53) 42 (26-74) 36 (15-90) 0.484

Unswitched MBCs, cell/ul, median (IQR) 8 (4-20) 7 (5-15) 12 (4-20) 0.590

Switched MBCs, cell/ul, median (IQR) 10 (6-13) 17 (10-25) 30 (10-55) 0.005

T cells, cell/ul, median (IQR)
1527

(687-1847)
1331

(863-1749)
1374

(1189-1934)
0.444

CD4 T cells, cell/ul, median (IQR)
631

(272-945)
539

(342-922)
714

(421-846)
0.568

Naïve CD4 T cells, cell/ul, median (IQR)
98

(38-255)
103

(39-190)
129

(58-242)
0.889

CM/TM CD4 T cells, cell/ul, median (IQR)
284

(143-395)
258

(163-418)
297

(208-442)
0.738

Effector memory CD4 T cells, cell/ul, median (IQR) 67(35-157) 82 (45-136) 88 (65-203) 0.356

TD CD4 T cells, cell/ul, median (IQR) 20 (6-60) 26 (7-77) 22 (5-42) 0.738

CD8 T cells, cell/ul, median (IQR)
605

(288-916)
546

(271-861)
568

(409-959)
0.471

Naïve CD8 T cells, cell/ul, median (IQR) 34(24-127) 37(22-97) 69(28-154) 0.505

CM/TM CD8 T cells, cell/ul, median (IQR)
98

(49-128)
93

(60-158)
166

(101-239)
0.041

Effector memory CD8 T cells, cell/ul, median (IQR) 35(13-80) 48(23-113) 56(21-117) 0.558

TD CD8 T cells, cell/ul, median (IQR) 41(17-75) 49 (19-108) 45(24-109) 0.843

Double-negative T cells, cell/ul, median (IQR) 6(3-11) 11(5-28) 10(3-29) 0.268

NK cells, cell/ul, median (IQR) 25 (12-51) 26(11-83) 38(21-69) 0.736

Monocytes, cell/ul, median (IQR)
609

(409-888)
605

(485-713)
539

(254-974)
0.667

Plasmocytoid DC, cell/ul, median (IQR) 7(5-10) 7(6-13) 8(4-17) 0.491
fr
Non-normally distributed as median and interquartile range. GC, germinal center; MBCs, memory B cells; CM, central memory; TC, transitional memory; TD, terminally differentiated;
DC, dendritic cell; NRs, non-responders; BRs, booster responders; 2DRs, two-dose responders.
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of specific CD8+ T-cell memory and failed to control the delta

and omicron variants of COVID-19 (34). This is in line with

recent studies that showed IFNg–producing CD8-T cells

correlate with IgG titer and neutralization (68). In this study,

anti-SARS-CoV-2 IgG levels were not correlated with CD8 CM/

TM T cells.

In summary, we showed that boosters increase CM/TM CD8 T

cells and switched MBCs in patients with a first detected IgG SARS-

CoV-2 seropositivity after two doses. This could be explained by an

increase in SARS-CoV-2 specific SARS-CoV-2 MBCs or CM/TM

CD8 T cells; unfortunately, we did not measure these SARS-CoV-2

specific subpopulations.

In this study, seropositivity and IgG levels were not associated

with different subpopulations of CD4 T cells. This was also observed

in patients with other types of immunosuppression, such as

hematological malignancies and solid organ transplants (69). By

contrast, other researchers showed that low CD4 T-cell counts were

associated with a diminished humoral response in patients with

immunosuppression (19, 58, 70).

We also showed that two-dose responder KTRs had a higher

percentage of monocytes below the 5th percentile. Monocytes

displayed a negative correlation with antibody titers in

hemodialysis patients (71). In addition, some studies have

demonstrated that inflammatory monocytes (CD14+, CD16+, and

HLA-DR+) suppress vaccine responses (71–73). However, we did

not find differences among groups in terms of CD16+

monocyte counts.

As we indicated previously, the present study did not assess

SARS-CoV-2-specific B and T subsets. Nevertheless, the use of a

single screening flow cytometry tube for immunodeficiency can

enable a fast, standardized, and validated analysis of the

immunophenotypic profile, making it a convenient method for

studying the immune response in all clinical flow cytometry

laboratories. The major advantage is that data can be fully

exchanged between different clinical laboratories in any country.

This information may be important to facilitate the development

of a more effective vaccination scheme for patients on

immunosuppression treatment. It should be noted that we used

the PIDOT European database as a reference population, which

may have differences with the Uruguayan population in

lymphocyte counts due to environmental factors. However, it is

worth noting that these discrepancies are expected to be minimal,

given that Uruguayan individuals possess over 70% European

genetic ancestry and have a similar diet and infection pattern to

Europe (74).

In conclusion, switched memory B-cell counts in peripheral

blood were associated with the humoral response after SARS-

CoV-2 vaccination and boosters. Boosters increase IgG anti-

SARS-CoV-2 levels, CM/TM CD8 T cells, and switched MBCs

in patients with seropositivity after two doses. CD8+ T cells can

continue to be protective when antibody titers decrease.

Meanwhile, no seroconversion after boosters was associated
A

B

C

FIGURE 4

Myeloid cell compartment according to the time of the first
detected IgG anti-RBD SARS-CoV-2 seropositivity. Heterologous
regimen combination of two doses of inactivated SARS-CoV-2
(CoronaVac®) and two boosters of BNT162b2 mRNA. Homologous
vaccination: two doses and one booster of BNT162b2 mRNA.
Groups according to the time of the first detected IgG SARS-CoV-2
seropositivity: initial two-dose responders (2DRs), KTRs who were
seropositive after two initial doses; Booster responders (BRs), KTRs
who were seronegative after the initial two doses but did respond to
the boosters (heterologous or homologous); and non-responders
(NRs), those who did not respond after the initial two doses and
after boosters (heterologous or homologous). (A) Neutrophils. (B)
Monocytes. (C) Dendritic cells. In (A–C), plots show the absolute
number of cells using the PID orientation tube (PIDOT). Patients
with cell counts below the fifth percentile of the age-matched
reference are shown in red and those above the fifth percentile are
shown in black. The horizontal bar in the graphs represents the
median with the interquartile range. *p < 0.05, comparison of the
proportions of cells below and above the 5th percentile using the
chi-square test. #p< 0.05, comparison of the absolute number of
cells using Kruskal–Wallis with Bonferroni correction.
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FIGURE 5

CD8 T-cell compartments according to the time of first detected IgG anti-RBD SARS-CoV-2 seropositivity. Heterologous regimen combination of
two doses of inactivated SARS-CoV-2 (CoronaVac®) and two boosters of BNT162b2 mRNA. Homologous vaccination: two doses and one booster
of BNT162b2 mRNA. Groups according to the time of the first detected IgG SARS-CoV-2 seropositivity: initial two-dose responders (2DRs), KTRs
who were seropositive after two initial doses; booster responders (BRs), KTRs who were seronegative after the initial two doses but did respond to
the boosters (heterologous or homologous); and non-responders (NRs), those who did not respond after two initial doses and after boosters
(heterologous or homologous). (A) CD8 T cells. (B) Naïve CD8 T cells. (C) CM/TM CD8T cells. (D) Effector memory T CD8 cells. (E) Terminally
differentiated CD8 T cells. (F) Composition of the CD8 T-cell compartment. In (A–E), the plots show the absolute number of T cells using the PID
orientation tube (PIDOT). Patients with a CD8 T-cell count below the fifth percentile of the age-matched reference are shown in red and those
above the fifth percentile are shown in black. The horizontal bar in the graphs represents the median with the interquartile range. *p < 0.05,
comparison of the proportions of lymphocytes below and above the 5th percentile using the chi-square test. #p< 0.05, comparison of the absolute
number of lymphocytes using Kruskal–Wallis with Bonferroni correction. CM, central memory; TM, transitional memory; TD, terminally differentiated.
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with the use of mycophenolate and a lower number of switched

MBCs and CM/TM CD8 T cells in peripheral blood. This

information regarding B- and T-cell compartments could help

the planning of a more effective vaccination scheme in KTRs based

on the immune system response.
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