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Background: Stem cells play an important role in acute myeloid leukemia (AML).

However, their precise effect onAML tumorigenesis and progression remains unclear.

Methods: The present study aimed to characterize stem cell-related gene

expression and identify stemness biomarker genes in AML. We calculated the

stemness index (mRNAsi) based on transcription data using the one-class logistic

regression (OCLR) algorithm for patients in the training set. According to the

mRNAsi score, we performed consensus clustering and identified two stemness

subgroups. Eight stemness-related genes were identified as stemness

biomarkers through gene selection by three machine learning methods.

Results: We found that patients in stemness subgroup I had a poor prognosis and

benefited from nilotinib, MK-2206 and axitinib treatment. In addition, the mutation

profiles of these two stemness subgroups were different, which suggested that

patients in different subgroups had different biological processes. There was a strong

significant negative correlation between mRNAsi and the immune score (r= -0.43,

p<0.001). Furthermore, we identified eight stemness-related genes that have

potential to be biomarkers, including SLC43A2, CYBB, CFP, GRN, CST3, TIMP1,

CFD and IGLL1. These genes, except IGLL1, had a negative correlation with mRNAsi.

SLC43A2 is expected to be a potential stemness-related biomarker in AML.

Conclusion: Overall, we established a novel stemness classification using the

mRNAsi score and eight stemness-related genes that may be biomarkers. Clinical

decision-making should be guided by this new signature in prospective studies.
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1 Introduction

Acute myeloid leukemia (AML) has an incidence of 4.3 per

100,000 adults aged over 15 per year and a 5-year survival rate of

24% (1). It is characterized bymalignant clonal expansion of progenitor

cells accompanied by differentiation arrest (2). There are two common

causes of AML, including underlying hematological disorders and prior

therapy (for example, exposure to topoisomerases II, alkylating agents,

or radiation) (3). Based on their cytogenetic profile, AML patients can

be classified into favorable, intermediate, and adverse risk groups, but

the prognosis within these categories varies widely. In recent years,

considerable progress has been made in developing treatments that are

less burdensome for AML patients. Despite advances in supportive

care, cytarabine- and anthracycline-based regimens and allogeneic

stem cell transplantation remain the backbone of therapy. In

addition, up to 50% of AML patients end up relapsing after receiving

allo‐HSCT, while CAR‐T-cell treatment frequently fails due to lack of a

specific AML antigen (4), antigen loss, or failure of CAR‐T-cell

maintenance in AML patients. AML patients often experience

resistance to chemotherapy due to the deregulation of apoptosis,

especially in stem cells (5). There are increasing numbers of studies

demonstrating that AML stem cells are at the root of relapses and

multidrug resistance in the disease diagnosis and classification (6–8).

By arresting in the G0 phase, cancer stem cells can cause cancer relapse,

metastasis, multidrug resistance (9), and radiation resistance. Cancer

stem cells are believed to play a crucial role in cancer relapse, and

eliminating them is crucial to cancer treatment.

In recent years, cancer stem cells have been isolated from a variety

of solid tumors, including breast carcinoma (10, 11), brain (12, 13),

pancreatic (14, 15), colon (16, 17), head and neck (18), hepatic (19), lung

(20), prostate (21), bladder (22), ovarian malignancies (23), melanoma

(24) and musculoskeletal sarcomas (25). There is no doubt that cancer

stem cells are different from tumor bulk cells in terms of their properties,

and researchers agree that these cells represent a population of cancer

cells with specific properties. The biological activities of cancer stem cells

are regulated by several pluripotent transcription factors, such as OCT4,

Sox2, Nanog, KLF4, and MYC (26). A one-class logistic regression

(OCLR) machine learning algorithm was used to calculate stemness

indices to evaluate the degree of oncogenic dedifferentiation (27). Tian

et al. found that mRNAsi value was higher in head and neck squamous

cell carcinoma tissues than in normal tissues (28). Zhang et al. found

that the lower mRNAsi group had a better 5-year overall survival in

major lung adenocarcinomas (LUADs), and they screened several stem

cell biomarkers (29). Wang et al. classified hepatocellular carcinoma

patients into three different molecular subtypes based on 212 mRNAsi-

related genes (30). Qin et al. identified 5 mRNAsi-related genes that

were highly expressed in tumor samples compared to normal samples

(31). Stem cell therapy, which involves all procedures using stem cells,

has emerged as a promising option for cancer treatment.

Stem cells in AML have been shown to be the basis for self-renewal,

quiescence in the cell cycle, and resistance to chemotherapy (32). A

clinical perspective indicates that treatment courses must eliminate

stem cells for the disease to be eradicated and long-term remission to be

achieved (33). Patients with a higher frequency of stem cells had a

poorer prognosis with a shorter relapse-free survival (34). From

diagnosis to relapse, the leukemic stem cell frequency increased 9- to
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90-fold. This further suggests that AML stem cells may play an

important role in the treatment strategy. Carolina reported that the

IL8-CXCR2 pathway is frequently dysregulated in AML and MDS

stem cells and can serve as a novel therapeutic target in these diseases

(35). Carsten reported that CD70/CD27 signaling promotes blast

stemness and is a viable therapeutic target in AML (36). In addition,

stem cells have been shown to display high plasticity, which changes

their phenotypic appearance and functions. The tumor

microenvironment can be altered by chemo- and radiotherapeutics,

as well as senescent tumor cells. However, limited studies have been

carried out to systematically analyze AML stem cells based on high-

dimensional omics data. In order to guide clinical decision-making,

precision biomarkers are a basic scientific problem that needs to be

solved urgently.

In this research, the stemness index of AML patients was evaluated

by transcriptome analysis. All AML patients were divided into two

subgroups, stemness subgroups I and II, based on 143 mRNAsi-related

genes by consensus clustering. Different mutations, clinical features and

survival outcomes have been reported in different stemness subgroups.

Eight mRNAsi-related genes were identified, and most genes were

negatively related to the mRNAsi score. The key genes were validated

in the test set and demonstrated stemness biological functions.

Furthermore, we recommend nilotinib for patients in stemness

subgroup I based on the half-maximal inhibitory concentration

(IC50) value calculation. In conclusion, our research provides a novel

direction of stemness therapy for AML and guides clinical decisions for

AML patients.
2 Method

2.1 Multiomic data acquisition and
patient population

We downloaded the AML gene expression data and corresponding

clinical information and follow-up data from The Cancer Genome

Atlas (TCGA). We defined the TCGA-AML dataset as the training set.

In addition, we obtained other AML gene expression and clinical data

from the Beat program (37), and we defined the Beat-AML dataset as

the test set. Finally, we enrolled 151 TCGA-AML and 451 Beat-AML

samples in our study. All expression data were converted to transcripts

per million (TPM) for downstream analyses. In Table 1, we present the

demographics and follow-up data for the two cohorts with AML.

Additionally, the whole-exome sequencing data (MAF format) of 151

AML patients were downloaded from the TCGA database.
2.2 Differential analysis of mRNAsi levels in
the high versus low stemness groups

The mRNAsi was calculated by the gene expression profiles of

normal pluripotent stem cells (PSCs), including PSCs and embryonic

stem cells (ESCs), which were collected by the Progenitor Cell Biology

Consortium (PCMC, https://progenitorcells.org/). First, the 78×8087

stemness-related matrix for 78 stem cell samples and 8087 protein-

coding genes was obtained, and the expression data were centered by
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the mean. Second, we acquired the stemness signature by the OCLR

algorithm using the glmnet R package, which is a machine learning

algorithm used to extract transcriptomic and epigenetic feature sets

derived from nontransformed pluripotent stem cells and their

differentiated progeny. Third, the Spearman correlations between

the weight vectors of the stemness signature and mRNA expression

were determined. Finally, we transformed the stemness index to the

range (0–1) through the following equation:

x = x−xmin
xmax−xmin

(1)

Then, we obtained the mRNAsi for each AML sample,

including the TCGA-AML and Beat-AML cohorts.

AML patients in the TCGA were classified into high stemness

and low mRNAsi subgroups based on their median mRNAsi scores.

We obtained the differentially expressed genes (DEGs) between the

high and low mRNAsi subgroups by the limma R package. False

positives were corrected using Benjamini−Hochberg false discovery

rate (FDR)-adjusted P values. The DEGs were determined using an

FDR of 0.01 and a fold change (FC) > 2. Then, we completed Gene

Ontology (GO) pathway analysis using the DEGs.
2.3 Stemness-based molecular
classification

We identified the molecular classification of AML patients

according to the expression of the DEGs, which was carried out using

unsupervised consensus clustering by the ConsensusClusterPlus R

package (38). Clustering was performed using 1000 iterations, and

80% of the data were sampled for each iteration. Two stemness

subgroups were identified based on the cumulative distribution

function (CDF) curves. We named these two subgroups stemness I

and stemness II.
2.4 Identifying the immune-based
molecular classification

The enrichment analysis was quantified using single-sample gene

set enrichment analysis (ssGSEA) (39) based on 29 immune signatures

(40). Similarly, we identified three immune-related subgroups based on

the ssGSEA score using unsupervised hierarchical clustering. Then, we

calculated the stromal score, immune score and ESTIMATE score

using the Estimation of Stromal and Immune cells inMalignant Tumor

tissues using Expression data (ESTIMATE) (41), which is a method
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that uses gene expression signatures to infer the fraction of stromal and

immune cells in tumor samples. We also compared the tumor-

infiltrating immune cells (TIICs) among the three immune-related

subgroups, and CIBERSORT was used to quantify the compositions of

22 types of TIICs Robust enumeration of cell subsets from tissue

expression profile (42).
2.5 Construction and validation of the
stemness subtype predictor using
multiple machine learning algorithms

As mentioned before, we used the TCGA-AML dataset as the

training set and the Beat-AML dataset as the test set. First, we

selected the most important genes using least absolute shrinkage

and selection operator (LASSO) regression, random forest and

Boruta (RF), and extreme gradient boosting (XGBoost) analyses

based on the training set. In this training process, the expression of

the DEGs was used as the input data, and the outcome was the

binary variable that represented the two stemness groups separately.

Then, we took the intersection of these three important gene sets to

obtain the final list, which was the most important stemness-related

gene set and was visualized by a Venn plot. For these genes, we

calculated the Pearson correlation coefficients with mRNAsi, IC50,

MMR genes and RNA modulations. Finally, multivariable logistic

regression analysis was performed on the key genes to construct and

test the predictive model, and the areas under the receiver operating

characteristic (ROC) curve (AUC) were used to evaluate the

performance of the three machine learning methods.
2.6 The prediction of drug response
and survival analysis

The pRRophetic R package was used to predict the

chemotherapeutic response, and the IC50 was used as a measure

based on the Genomics of Drug Sensitivity in Cancer (GDSC) database

(43, 44). In addition, multivariable survival analysis was performed to

evaluate the prognosis of patients in different stemness subgroups, and

we adjusted for covariates including age, morphology and sex.
3 Results

3.1 Identification of two stemness
subgroups with DEGs

We calculated the mRNAsi value by the OCLR algorithm, which

was based on the gene expression and PSCs in the training set. These

151 mRNAsi values were ranked in ascending order, and the median

value of mRNAsi was used as the threshold (Figure 1A). According to

the threshold, all TCGA-AML patients were divided into two groups:

high and low mRNAsi groups. Then, differential expression analysis

between these two groups was performed. A total of 143 DEGs were

identified, including 7 downregulated and 136 upregulated genes. We
TABLE 1 Demographics and clinicopathological features of AML
patients.

TCGA-AML (N=151) Beat-AML
(N =451)

Age (mean (SD)) 54.17 (16.07) 56.96 (17.97)

Sex (male (%)) 83 (55%) 258 (57.2%)

Dead (%) 97 (64.2%) 238 (52.8%)

Survival Time(mean (SD)) 375.6 (388.91) 419.56 (466.75)
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plotted the volcano map for these DEGs (Figure 1B). The GO

functional enrichment analysis of these DEGs was performed by the

enrichGO function (Figure 1C), including extracellular matrix binding,

immunoglobulin binding, phagocytic vesicle, collagen trimer,

regulation of angiogenesis and respiratory burst. Based on 143 DEGs,

we identified stemness subgroups I and II by unsupervised consensus

clustering (Figure 1D). There were 59 patients in stemness subgroup I,

with the remaining 92 patients in stemness group II. The heatmap

showed that the different stemness subgroups have their own unique

patterns of expression. We also found immune cell composition

differences between stemness group I and stemness group

II (Figure 1E).
3.2 Different stemness subgroups showed
distinct mutation and survival patterns

As previously mentioned, all TCGA-AML samples were

categorized into two groups, which were named stemness

subgroup I and stemness subgroup II. As shown in Figures 2A, B,
Frontiers in Immunology 04
the different stemness subgroups showed distinct mutation

patterns. For the patients in stemness subgroup I, NPM1, which

is the gene for nucleophosmin and belongs to the nucleophosmin/

nucleoplasmin family of proteins (45), was the most frequently

mutated gene. RUNX1, which is a transcription factor that is widely

expressed in hematopoietic cells and indispensable for the

establishment of definitive hematopoiesis (46), was the most

frequently mutated gene in stemness subgroup II. DNMT3A was

the second most frequently mutated gene in stemness subgroups I

and II; DNMT3A encodes a DNA methyltransferase and was

independently associated with a poor outcome (47). In addition,

these two stemness subgroups showed their own specific mutation

patterns, which consisted of different mutated genes. Considering

the effect of age, morphology and sex on survival, we performed

survival analysis after adjusting for these covariances. There was a

significant survival difference between these two stemness

subgroups after correcting for other confounding factors

(Figure 2C). However, when we performed survival analysis based

only on patients in the M1, M2 andM3 groups, the results indicated

that the TCGA-AML patients in stemness subgroup II presented
positive regulation of cytokine production
activation of immune response 

leukocyte migration   
immune response−regulating signaling pathway 

humoral immune response  
regulation of inflammatory response 

respiratory burst   
regulation of peptidase activity 

phagocytosis
complement activation   

negative regulation of immune system
leukocyte chemotaxis   

positive regulation of tumor necrosis
regulation of angiogenesis

regulation of vasculature development 
ficolin−1−rich granule   

secretory granule membrane  
collagen−containing extracellular matrix  

tertiary granule   
secretory granule lumen  

cytoplasmic vesicle lumen  
vesicle lumen   

ficolin−1−rich granule membrane  
endocytic vesicle   

ficolin−1−rich granule lumen  
collagen trimer   

platelet alpha granule  
phagocytic vesicle   

endocytic vesicle membrane  
endoplasmic reticulum lumen

pattern recognition receptor activity 
immune receptor activity  

inhibitory MHC class I receptor
carbohydrate binding   

MHC class I receptor activity
cargo receptor activity

scavenger receptor activity  
amyloid−beta binding   

complement receptor activity
peptide binding

low−density lipoprotein particle receptor activity
lipoprotein particle receptor activity 

complement binding
immunoglobulin binding   

extracellular matrix binding  

0 5 10 15 20
Gene_Number

BP

CC

MF

The Most Enriched GO Terms

mRNAsi
Stemness_group

−2
−1
0
1
2 mRNAsi

0

0.5

1
Stemness_group

1
2

DA B

C

****** ***** ** ***** ****

0.00

0.25

0.50

0.75

T.c
ell

s.C
D4.m

em
ory

.re
sti

ng

Plas
ma.c

ell
s

Mas
t.c

ell
s.r

es
tin

g

Mon
oc

yte
s

Eos
ino

ph
ils

B.ce
lls.

na
ive

NK.ce
lls.

res
tin

g

T.c
ell

s.C
D8

Mac
rop

ha
ge

s.M
2

T.c
ell

s.r
eg

ula
tor

y..
Tre

gs
.

B.ce
lls.

mem
ory

T.c
ell

s.C
D4.n

aiv
e

T.c
ell

s.C
D4.m

em
ory

.ac
tiv

ate
d

T.c
ell

s.f
oll

icu
lar

.he
lpe

r

T.c
ell

s.g
am

ma.d
elt

a

NK.ce
lls.

ac
tiv

ate
d

Mac
rop

ha
ge

s.M
0

Mac
rop

ha
ge

s.M
1

Den
dri

tic
.ce

lls.
res

tin
g

Den
dri

tic
.ce

lls.
ac

tiv
ate

d

Mas
t.c

ell
s.a

cti
va

ted

Neu
tro

ph
ils

C
el

l c
om

po
si

tio
n

TME Cell composition

Stemness_group 1
Stemness_group 2

E

*：p<0.05; **:p<0.01; *** p<0.001; ****: p<0.0001

FIGURE 1

Differential expression analysis between the high and low mRNAsi groups. (A) An overview of mRNAsi in TCGA-AML. Columns represent samples ranked
by mRNAsi from low to high (top row). (B) Identification of DEGs between the mRNAsi high and low groups according to the median value. (C) Functional
enrichment analyses of DEGs, including significantly enriched biological processes, cellular components, and molecular functions. (D) Heatmap of the
expression patterns of 143 DEGs, with red indicating high expression and blue indicating low expression. (E) The tumor immune microenvironment cell
composition difference between stemness group I and stemness group II. *, **, *** and **** represent the P value <0.05, 0.01, 0.001, 0.0001 respectively.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1202825
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2023.1202825
significantly better overall survival (p = 0.046) than those in

stemness subgroup I. The median overall survival time in

stemness subgroup II patients was 396 days, which was longer

than that of stemness subgroup I patients (365 days). This result

suggested that mutations may rewire tumor development, which in

turn changes their prognosis.
3.3 The patients in stemness subgroup I
were sensitive to nilotinib

We screened candidate chemotherapy drugs for AML patients

using the pRRophetic R package in the training set. The IC50 value

was estimated for each drug for individual patients. The IC50 value

was inversely related to drug sensitivity. Finally, we found that the

IC50 values of nilotinib were significantly lower in patients in

stemness subgroup I (Figure 2D), which indicated that patients in

subgroup I were more sensitive to nilotinib than patients in

stemness subgroup II. The Beat-AML study provided drug

response information, so we analyzed the IC50 value directly. We
Frontiers in Immunology 05
found that patients in subgroup I were more sensitive to nilotinib,

which was consistent with the results in the training set. Therefore,

nilotinib is expected to become the specific drug for patients in

stemness subgroup I. Similarly, MK-2206 and axitinib were more

suitable for patients in stemness subgroup I.
3.4 Association between the stemness
subgroups and tumor
immune microenvironment

To identify the immune-related subgroups, we obtained the

enrichment score of 29 immune signatures representing the overall

immune activity using ssGSEA. All TCGA-AML patients were

divided into three immune-related subgroups: high immunity

group (48 patients), median immunity group (77 patients) and low

immunity group (26 patients). As Figure 3A shows, the patterns of

these three immune subgroups were distinct. To understand the full

picture of the immune system, we evaluated the microenvironmental

components using the ESTIMATE and CIBERSORT methods. The
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Pearson correlation between immune and stemness is shown in

Figure 3B. The correlation value between mRNAsi and the stromal

score was -0.36 (p<0.001), and a similar trend was found in the

correlation between mRNAsi and the immune score (R = -0.43,

p<0.001). Thus, these results suggest a negative relationship between

stemness and immunity. Interestingly, the relationship between

mRNAsi and the ESTIMATE score was in agreement with

previous findings. In addition, we compared the abundances of 22

types of immune cells among the three immune subgroups

(Figure 3C). We found that there were several immune cell type

differences in these immune subgroups, including mast cells, plasma

cells, CD4 T cells, native B cells, eosinophils, monocytes, NK cells,

macrophages and memory B cells. Once more, the results

demonstrated that the immune subgroups represented distinct

immune activities and cells. As shown in Figure 3D, the

distributions of the mRNAsi score, stromal score, immune score

and ESTIMATE score were significantly different among the different

immune-related subgroups. The association between immunity and

stemness may provide a combination treatment strategy for

AML patients.
Frontiers in Immunology 06
3.5 Construction and validation of the
stemness subgroup classification

In the training set, three machine learning methods, including

LASSO, RF and XGBoost, were employed to identify the key genes

that play important roles in stemness based on the 143 screened

DEGs. These three machine learning methods identified 25, 33 and

27 genes separately (Figure 4A), and the final 8 key genes were the

intersection of these three gene lists. To explore the performance of

the three machine learning methods, the AUC was used to measure

the feature selection capability (Figure 4B). The AUC was greater

than 0.975 regardless of which methods were employed in the

training set, and this value dropped in the test set but was still

approximately 0.9. The results of multivariable survival analysis in

the test set demonstrated that patients in stemness subgroup II had

better overall survival than those in stemness subgroup I (p<0.001)

(Figure 4C). This result was consistent with the survival analysis

result in the training set. Therefore, our stemness classification

could bring clinical benefit for AML patients. By plotting the key

gene expression profile in the test set, the stemness subgroups were
A B

DC

FIGURE 3

The tumor immune microenvironment patterns and immunogenomic features of AML associated with mRNAsi. (A) The immune subtypes of patients
were categorized on the basis of the overall immune activity of AML. (B) Correlation analyses between mRNAsi and the stromal score, immune
score, ESTIMATE score and tumor purity evaluated by the ESTIMATE algorithm. (C) Comparisons of the abundances of 22 immune cells in three
immune subtypes. ∗ means P<0.05, ∗∗ means P<0.01, ∗∗∗ means P<0.001, and ∗∗∗∗ means P<0.0001. (D) Comparisons of mRNAsi, the infiltration
level of stromal and immune cells and the ESTIMATE score in different immune subtypes by boxplots.
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clearly present. These results confirmed that the 8 key genes indeed

play a large role in the stemness process (Figure 4D).
3.6 Analysis of the most important genes
associated with stemness

For the 8 key genes that play an important role in the stemness

process, we calculated the Pearson correlation value between these

genes and the IC50 value of nilotinib.We aimed to investigate the effect

of these 8 stemness-related genes on the response to nilotinib treatment

and to identify their potential biological functions. As shown in

Figure 5A, most genes were inversely related to the IC50 value of

nilotinib, including SLC43A2, CYBB, CFP, GRN, CST3, TIMP1 and

CFD. The correlation value between SLC43A2 and the IC50 value of
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nilotinib was -0.34, which demonstrated that SLC43A2 is associated

with nilotinib sensitivity. Interestingly, only IGLL1 showed a positive

correlation value (0.12) with the IC50 value of nilotinib. Then, we also

plotted the Pearson value between these genes and mRNAsi, and we

found a similar trend (Figure 5B). Notably, SLC43A2 also exhibited the

strongest relationship with mRNAsi, which further demonstrated the

important function of SLC43A2. Next, we investigated the correlation

between SLC43A2 and RNA modulator gene expression. Surprisingly,

we discovered that high SLC43A2 expression was associated with a

majority of RNA modulator genes in the TCGA-AML dataset,

including m1A, m5C and m6A (Figure 5C). Interestingly, most of

the relationships were negative except for TRMT6, TET2 and

ALKBH5. Next, we discovered that SLC43A2 was negatively

correlated with multiple mismatch repair (MMR) genes in AML

(Figure 5D), which indicates that SLC43A2 was affected by MMR.
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FIGURE 4

Construction and validation of the Stemness Subtype Predictor. (A) Venn diagram identified the seven most critical stemness subtype-specific genes
that were shared by three feature selection algorithms. (B) The performances of three machine learning algorithms (LASSO, RF, and XGBoost) for
feature selection were evaluated in the training set and test set. AUCs were generated by ROC analysis. (C) Forest plot of survival analysis. (D) Beat
RNA sequencing data were used to further validate the clinical application value of the stemness-based classification, which was visualized by
heatmaps. *** represent the P value < 0.001.
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Thus, SLC43A2 was expected to be a potential stemness-related

biomarker in AML.
4 Discussion

Previous studies have investigated the risk stratification of the

stemness index in clinical cohorts with multiple cancers. However,
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the stemness index has not been explored in terms its

comprehensive prognostic value in AML. Furthermore, no studies

have investigated the functional annotation of stemness index-

associated genes. In our study, we identified two stemness

subgroups based on gene expression data by consensus clustering.

The survival analysis demonstrated that patients in stemness

subgroup I had a poor prognosis. In addition, we identified eight

mRNAsi-related genes (SLC43A2, CYBB, CFP, GRN, CST3,
A B

D

C

FIGURE 5

SLC43A2 plays an important role in tumorigenesis. The correlation values between SLC43A2 and nilotinib IC50 (A) and mRNAsi (B). (C) The heatmap
shows the correlation between SLC43A2 expression and RNA modulations in AML. (D) The scatter plot displays the associations between SLC43A2
and 5 MMR genes in AML.
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TIMP1, CFD and IGLL1) using three machine learning methods,

including LASSO, XGBoost and RF. Most of the key genes were

negatively related to the mRNAsi score, especially SLC43A2, for

which the correlation coefficient with mRNAsi was -0.39. Nilotinib

was suggested to be the most appropriate candidate for the

treatment of patients in stemness subgroup I. These results

suggested that the stemness profile could benefit AML patients.

SLC43A2 is a methionine transporter that tumor cells express at

high levels, allowing them to monopolize methionine consumption.

By inhibiting tumor SLC43A2 genetically and biochemically, T cells

were able to restore H3K79me2, thereby boosting spontaneous and

checkpoint-induced immunity (48). That is, SLC43A2 should be

negatively correlated with immunotherapy response. In our study,

we found that SLC43A2 was negatively correlated with the mRNAsi

score. SLC43A2 has dual roles in the combination treatment of

immunotherapy and stemness therapy. Researchers have found that

cancer stem cells accelerate tumor recurrence and radiotherapy and

chemotherapy resistance. AML patients can benefit greatly from

immunotherapy, which is a powerful anticancer treatment. One

important concern when considering combination therapy is the

prediction of benefit, especially when potentially combining

immunosuppressive therapies and stemness therapy. Shi et al.

constructed a five-gene signature based on tumor stemness and

immune-related specific genes to predict the response to

radiotherapy or immunotherapy and relapse in LUAD (49).

Furthermore, for the feasibility of the synthesis of such drugs, the

dual identity of the drug target should be considered. In addition,

we found a significant difference in the two classification types of

immune and stemness, which further suggested that combination

therapy can cure AML patients.

Axitinib, MK-2206 and nilotinib were the most appropriate

drugs for patients in stemness subgroup I. Axitinib is being tested in

phase III trials for solid carcinomas and inhibits VEGFR-1, -2, and

-3 (50). Saha reported that axitinib exerts direct cytotoxic activity

against a number of patient-derived glioblastoma stem cells (51).

The AKT inhibitor MK-2206 decreased cell proliferation in CRC

cells, resulting in a significant reduction in stemness (52). David

reported that the combination of the Hedgehog pathway inhibitor

LDE225 and nilotinib eliminates stem and progenitor cells (53).

Hence, these three drugs could act in stem cells, albeit not

necessarily acting on the same drug targets. The patients in

stemness subgroup I had higher mRNAsi values, which means

that they had more cancer stemness capability. All three drugs were

recommended for stemness subgroup I, and the results of the drug

analysis were logically reasonable.

Nevertheless, there are still several limitations in our study.

First, to validate this study, only one cohort with AML patients was

included, and the representativeness of the data was not strong. In

the future, we need to expand the sample size from our own center.

Second, due to the limitation of the available data, we aim to

establish an AML cohort to test the combination response of

immunotherapy and stemness therapy. In conclusion, we
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developed a novel stemness classification for AML patients using

consensus clustering to guide clinical treatment. Eight biomarker

genes were found to be closely related to AML stem cell

characteristics, and seven genes were negatively related to the

mRNAsi score. SLC43A2 is expected to be a potential stemness-

related biomarker in AML.
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