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Growing evidence demonstrates a continuous interaction between the immune

system, the nerve and the muscle in neuromuscular disorders of different

pathogenetic origins, such as Duchenne Muscular Dystrophy (DMD) and

Amyotrophic Lateral Sclerosis (ALS), the focus of this review. Herein we

highlight the complexity of the cellular and molecular interactions involving

the immune system in neuromuscular disorders, as exemplified by DMD and ALS.

We describe the distinct types of cell-mediated interactions, such as cytokine/

chemokine production as well as cell-matrix and cell-cell interactions between T

lymphocytes and other immune cells, which target cells of the muscular or

nervous tissues. Most of these interactions occur independently of exogenous

pathogens, through ligand-receptor binding and subsequent signal transduction

cascades, at distinct levels of specificity. Although this issue reveals the

complexity of the system, it can also be envisioned as a window of opportunity

to design therapeutic strategies (including synthetic moieties, cell and gene

therapy, as well as immunotherapy) by acting upon one or more targets. In this

respect, we discuss ongoing clinical trials using VLA-4 inhibition in DMD, and in

ALS, with a focus on regulatory T cells, both revealing promising results.
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1 Introduction

1.1 Neuromuscular diseases: a focus on
DMD and ALS

Neuromuscular disorders (NMD) encompass a vast number of

pathological conditions affecting the nervous system and the

skeletal muscle and their communication, frequently causing

muscle wasting and weakness. Some NMD, such as Duchenne

Muscular Dystrophy (DMD), have a defined genetic origin and

others, like Amyotrophic Lateral Sclerosis (ALS), can have a genetic

origin or arise from sporadic mutations.

DMD is a genetic disorder due to mutations in the gene

encoding the dystrophin protein. It is an X-linked disease mainly

affecting boys, with a relatively high incidence (1/1500 boys born

alive) It is characterized by continuous cycles of skeletal muscle

degeneration and regeneration ultimately resulting in muscle

wasting and loss of ambulation between 8-14 years of age (1). It

has been shown that intramuscular inflammatory infiltrates, which

are found in DMD patients, are mainly composed by T lymphocytes

(especially CD8+ T cells) and macrophages (2). The most

commonly used DMD model is the C57BL/10ScSn (mdx) mouse,

which carries a naturally occurring point mutation in exon 23 of the

dystrophin gene, an absence of the full-length Dp427 protein

isoform (3, 4) and to a lesser extent genetic variation of the mdx

model (5–7). Other DMD murine models include the D2.mdx

mouse, corresponding to the mdx mice bred on the DBA2/J

background (8–10), and the dystrophin/utrophin double-

knockout (dko) mouse (11–14), among others.

ALS is a neurological disorder characterized by the loss of

motor neurons (MN) and paralysis of the skeletal musculature (15).

It affects mostly middle-aged individuals (16), being the most

common MN disorder in adults (17). The disease is characterized

by muscular weakness due to progressive atrophy leading to

paralysis and death, 3 to 5 years after diagnosis (18), secondary to

respiratory failure (19). The diagnosis of ALS is clinical, based on

the patient’s history and symptomatic examination, usually

supported by electrophysiological investigation (20). Around 10%

of the ALS cases have a familial history (fALS), caused by mutations

in one or several genes, mostly inherited in an autosomal dominant

pattern (21). Of these, around 20% are associated with mutations

in the Cu/Zn superoxide dismutase 1 (mSOD1) gene and

approximately 40% in the chromosome 9 open reading frame 72

(C9orf72) gene, in Europe and the United States, and can drastically

vary, notably in Asian patients (21–23). Experimental models for

both mutations have been developed, namely the mSOD1 and the

C9orf72 mice (24) that despite some limitations, recapitulate some

of the main pathophysiological aspects of the disease.
1.2 General features of T-cell development
and generation of regulatory T cells

T cells develop in the thymus, from common lymphoid

progenitors of bone marrow origin. These precursors migrate into
Frontiers in Immunology 02
the bloodstream and enter the thymus through vessels present at the

corticomedullary junction of the thymic lobules, where they receive

a signal from the microenvironment that activates specific genes,

leading to commitment to the T cell lineage (25).

T cells maturation occur via positive and negative selection

processes occurring through the interaction of the T-cell receptor

(TCR) with class I or class II major histocompatibility complex

(MHC) molecules associated with self-peptides. Those complexes

are expressed by the thymic epithelium (TEC) and thymic dendritic

cells (DC) (25) and largely prevent the development of cells with

autoimmune potential. During the double-negative (DN; CD4-

CD8-) stage, cells undergo gene rearrangement of the b chain or

the gd chains of the T-cell receptor, determining whether the

thymocytes will be ab or gd, although most develop into ab (25).

Cells that do not successfully rearrange die; in contrast, cells that

undergo a successful rearrangement proliferate intensively. At this

stage, cells express a pre-TCR that is associated with the CD3

molecular complex necessary for receptor signaling. Pre-TCR

expression leads to cell proliferation, arrest of rearrangement of

b-chain genes and expression of CD4 and CD8 coreceptors,

determining the double-positive stage (DP; CD4+CD8+), which

represents about 80% of thymocytes (25). At this stage, the

rearrangement of the a chain genes begins, leading to the

expression of the definitive TCRab complex, making DP cells

responsive to specific antigens and then subject to positive or

negative selection processes (25). Cells whose TCRs are able to

bind pMHC with moderate avidity are positively selected, following

the differentiation process (26). Thymocytes that express TCRs

associated with MHC class I-bound self-peptides loose expression

of the CD4 molecule and become TCRhiCD4-CD8+ (about 5%),

whereas those that express TCRs associated with MHC class II

become TCRhiCD4+CD8- (about 10%). At this final stage of

intrathymic T-cell development, the single-positive (SP)

thymocytes are now mature cells ready to leave the thymus and

exert their effector and regulatory functions in the periphery of the

immune system. In fact, some clones that recognize self-antigens

with high avidity differentiate into CD4+CD8-CD25+Foxp3+

regulatory T cells (Treg), through a mechanism that appears to be

dependent on the avidity and duration of TCR signaling and TGF-b
and cytokine-mediated survival, such as IL-2, IL-7, and IL-15 (27,

28). Treg cells are CD4+ T lymphocytes, characterized by the

expression of the transcription factor FOXP3, surface expression

of CTLA-4, the glucocorticoid-induced TNF receptor family related

protein (GITR) and CD25 (the IL-2 receptor alpha chain).

Tregs can also differentiate from CD4+ T cells in the periphery

of the immune system (peripheral Tregs) or within the thymus

(central Tregs); the latter maturing under the direct influence of the

thymic microenvironment (29). These thymus-derived cells

represent the majority of Tregs in the periphery compared to

Tregs differentiated from conventional naïve T cells (30).

In the periphery, after encountering the specific antigen and

being activated, naïve T CD4+ cells even differentiate into types 1, 2

or 17 T-helper (Th) cells, among others, depending on the stimulus

they receive. Although morphologically indistinguishable, these cells

present distinct patterns of secreted cytokines and, consequently,

specific responses (31).
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CD8+ T cells, also known as cytotoxic T lymphocytes, are very

important in the immune defense against intracellular pathogenic

agents and also in the surveillance of tumor formation, acting

through the induction of the cell death pathway (apoptosis) in the

target cell (32).
2 T-cell immune responses in
Duchenne Muscular Dystrophy

Several studies have aimed at clarifying the participation of the

immune system in the pathophysiology of DMD. During the

disease process, immediately after muscle damage, degenerating

muscle fibers release Danger Associated Molecular Patterns

(DAMP), in addition to pro-inflammatory cytokines and

chemokines which attract innate immune cells. Thus, the muscle

is first invaded by mast cells and neutrophils and a pro-

inflammatory response dominates the scene with the stimulation

of pro-inflammatory macrophages and proliferation of Th1

lymphocytes (33). During muscle repair, macrophages first

acquire a pro-inflammatory phenotype. In this phase,

proliferation of myoblast progenitors and initial differentiation

occurs, followed by a switch from proinflammatory into anti-

inflammatory macrophages, necessary to resolve inflammation

and promote myofiber growth, as shown by in vivo and ex vivo

analysis using a murine model (33, 34). These events are crucial for

the whole regenerative process and depend on T cells. In fact, it has

been shown that genetic deletion of CD8+ T lymphocytes impairs

pro-inflammatory macrophage infiltration due to the absence of the

chemokine CCL2 and is likely to be related to a defective muscle

regeneration in a cardiotoxin-induced mouse skeletal muscle

injury/regeneration model (35). These data indicate the

importance of chemokines secreted by CD8+ T cells upon

monocyte/macrophage migration to the muscle (Figure 1A).

Moreover, Rag2–Il2rb–Dmd– immunodeficient mice, which lack

T, B, and NK cell activity, presented a delayed degeneration/

regeneration process when compared with the immunocompetent

mdx mice (36).

In DMD it has been proposed that the lack of dystrophin has a

consequence on muscle cell injury resulting in the release of

intramuscular antigens that can be specifically recognized by cells

of the adaptive immune response, such as B and T lymphocytes

(37). Accordingly, T cells detected within the DMD muscle tissue

predominantly express TCR belonging to the Vb2 family (38). In

particular, Vb expansions point to T-cell clones that are selected

during these immune responses, suggesting that T-lymphocytes

expressing Vb2 are involved in an antigen-driven late effector cell-

mediated immune response. Moreover, most DMD patients exhibit

a conserved sequence of four amino acids in the complementarity-

determining region (CDR) 3 of the Vb2 TCR, further suggesting

specific recognition of muscle antigens (38, 39). Similarly, in the

mdx mouse, T cells expressing Vb8.1/8.2 predominated the pool of

all TCR-Vb+ expressing cells. Moreover, the Vb8.1/8.2-expressing T
cells were not present in the spleen, suggesting they may expand in

the dystrophic mdx muscle (40). It should be noted that DMD
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muscle fibers were invaded by CD8+ T cells expressed MHC class I

molecules on their surfaces (41). Expression of MHC I is increased

in dystrophic muscle as observed in myofibers invaded by CD8+ T

cells compared to muscle from healthy individuals, which have little

expression of MHC I (41, 42). Once activated, cytotoxic CD8+ T

lymphocytes could then migrate and recognize specific peptides on

the surface of muscle fibers triggering the release of death-related

molecules including perforin, granzyme and tumor necrosis factor

(TNF)-a, resulting in consequent tissue injury (43).

The analysis of a cohort of 75 DMD patients, has revealed that

there is an increase in the percentage of circulating CD4+ and CD8+

T lymphocytes expressing high levels of CD49d (the alpha chain of

the VLA-4 integrin) and this is positively correlated with a faster

disease progression. Furthermore, T cells from patients with a more

rapid disease progression exhibited higher trans-endothelial and

fibronectin-driven migratory responses when compared to healthy

individuals (44). The DMD patients with poorest prognosis

who lost ambulation before ten years of age included in this

study showed an increase in VLA-4 expression on T cells and a

higher expression of the interstitial VLA-4 ligand, fibronectin,

within the muscle. Furthermore, CD49d+CD4+CD3+ as well as

CD49d+CD8+CD3+ T lymphocytes were seen intermingled with

the fibronectin-containing network of the injured muscle (seen in

Figure 1B). Lastly, T cells from DMD patients adhered more

strongly to myotubes compared to circulating T cells from

healthy subjects (44). Similar results were found in an animal

model for DMD, namely the Golden Retriever Muscular

Dystrophy dog. Higher numbers of circulating CD4+CD49dhigh T

cells at early stages of the disease were found to be highly predictive

for the loss of ambulation of the dogs before 6 months of age (45).

Increased expression of interferon (IFN)-g, transforming growth

factor (TGF)-b and chemokines, such as CCL14, CCL2, CXCL12

and CXCL14 has also been observed in the muscle of DMD patients

(46). Considering that extracellular matrix (ECM) elements can

interact directly with immune cells functioning as a substrate for

binding soluble factors such as cytokines and chemokines, it is

plausible to think that a combined action involving an increase in

fibronectin expression and in chemokines/cytokines could enhance

the recruitment of inflammatory cells to this area, thus maintaining

and eventually enhancing inflammation and fibrosis.

As mentioned above and taking into account the studies

performed in DMD patients, it is conceivable that the muscle

damage initially caused by the absence of dystrophin could result

in the exposure of antigens on the surface of muscle fibers.

Activated T lymphocytes with high expression of CD49d

(CD49dhigh) could migrate to muscle tissue directed by a

chemotactic/haptotactic gradient. Moreover, CD49dhigh T cell

subsets obtained from DMD patients exhibited a higher in vitro

migration capacity across endothelia and through fibronectin, when

compared to CD49dlow T cell subpopulations from healthy donors

(44). Once within the muscular tissue, CD8+CD49dhigh T

lymphocytes could recognize antigens on the surface of the fibers

causing their destruction.

Overall, effector T cells are important in DMD pathophysiology

(43) and disease progression with a special role for the CD49dhigh T

cell subpopulations, which in turn can be used as a prognostic
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FIGURE 1

CD49dhigh T lymphocytes are involved in the Duchenne Muscular Dystrophy (DMD) pathophysiology. Effector T cells are important in DMD pathophysiology
and progression, with a special role for the CD49dhigh T cell subpopulations. (A) During the post-injury phase of muscle repair, macrophages initially acquire
a pro-inflammatory phenotype followed by a switch into anti-inflammatory macrophages, necessary to solve inflammation and promote myofiber growth.
These events are crucial for the regenerative process and depend on T cells, notably CD8+ and regulatory T cells. (B) Immunostaining in a quadriceps
muscle biopsy obtained from a DMD patient at the onset of the disease, showing the in situ detection of CD8+ (green) CD49d+ (red) cells. Nuclei were
visualized using DAPI (blue). (C) The scheme illustrates the notion that CD49d inhibitors can be envisioned as a therapeutic approach to decrease
inflammation-mediated tissue damage, by blocking VLA-4-mediated T lymphocyte transendothelial migration; (1) as well as the intramuscular migration of
the cells through a fibronectin-containing extracellular network; (2) and the CD49dhigh T cell adhesion to myoblasts/myotubes, (3) with consequent inhibition
of muscle cell apoptosis. Figure created using the Adobe Illustrator software. Immunofluorescence micrography gently provided by Dr. Fernanda Pinto Mariz
(Pediatric Institute, Federal University of Rio de Janeiro, Brazil).
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marker of disease progression (44). Moreover, CD49d inhibitors

can be envisioned as a therapeutic approach to decrease

inflammation-mediated tissue damage (Figure 1C), with

consequent amelioration in the quality of life of DMD patients.

To test this approach a phase II clinical trial using small interfering

RNA (siRNA) to inhibit CD49d expression in T cells in adolescent

males aged 10 to 18 years with a diagnosis of non-ambulatory DMD

for at least 3 months is ongoing (http://www.anzctr.org.au/Trial/

Registration/TrialReview.aspx?ACTRN=12618000970246) (47, 48).

Within the context of T-cell biology in DMD, is also of note the

presence and action of DCs, although the studies on this subject

remain rather scarce. DCs are at the interface between innate and

adaptive immunity, being professional antigen-presenting cells

(APCs), presenting foreign antigens as peptides for T cell

recognition and mediating their activation and differentiation.

DCs are present in normal skeletal muscle and MHC II+ cells

increase after injury (49). The participation of these cells to the

disease process is plausible, since they express Toll-like receptor

(TLR) 7, which can bind to RNA and trigger cytokine production,

enhancing or at least maintaining the cycle of inflammation/

degeneration/regeneration (50). Among the cytokines released,

TGF-b seems to be strongly induced in symptomatic DMD

patients (51, 52). It is interesting to note that, at least in vitro,

DCs interact with myoblasts, increasing their proliferation and

migration, as well as cytokine secretion by these cells (53).
3 Amyotrophic Lateral Sclerosis and T
cell response

In contrast to DMD, ALS is a composite disease with non-cell

autonomous mechanisms contributing to neurodegeneration. For

instance, activation of glial cells such as microglia and astrocytes is a

typical hallmark, contributing to the disease phenotype through a

local inflammatory response (54). In the healthy adult brain, resting

microglia monitor the surrounding microenvironment, interact

with nearby cells, and play a key role in the central nervous

system (CNS) development, homeostasis and repair (55–57).

Through pattern recognition receptors (PRR), microglial cells

sense molecules frequently found in pathogens (the Pathogen-

Associated Molecular Patterns; PAMPs) or molecules released by

damaged cells, the DAMPs, leading to the production of soluble

molecules and modifications in their interactions with neurons (58).

The accumulation of misfolded proteins in the MNs is probably one

of the first events in neurodegeneration, leading to inflammation

following the release of DAMPs, such as reactive oxygen species

(ROS), which, in turn, activate glial and immune cells (59).

When activated, microglia exist in a variety of phenotypic states,

with two extremes, as depicted in Figure 2. One corresponds to a

protective phenotype, which produces anti-inflammatory cytokines,

such as interleukin (IL)-4, IL-13, IL-10, as well as progranulin, and

neurotrophic factors, such as insulin-like growth factor (IGF)-1,

which contributes to neuroprotection by suppressing inflammation,

cleaning cell debris and promoting ECM reconstruction (60–62).

The other extreme is a harmful phenotype, capable of producing

ROS and pro-inflammatory mediators, including the subunit of
Frontiers in Immunology 05
nicotinamide-adenine-dinucleotide-phosphate (NADPH) oxidase

(NOX) 2, IL-1a, IL-1b, IL-6, IL-12, IL-23, TNF-a, inducible
nitric oxide synthase (iNOS), matrix metalloproteinase (MMP) 12

and IFNs, leading to neurodegeneration (61, 63). Studies using

animal models of ALS have shown that microglial activation occurs

before disease onset, concomitant with loss of the neuromuscular

junctions (NMJ), and increases during disease progression (64–66).

The NMJ, the functional unit of skeletal muscles, is composed of

terminal axons of presynaptic MN, post synaptic skeletal muscle

and associated glial cell types, the Schwann cells (67). Results from

different ALS models have shown that MN degeneration begins in

terminal axons and ascends to the cell body in a phenomenon called

“axonal dieback” (68–70). Expression of the mutated protein only in

skeletal muscles leads to abnormalities in the NMJ due to

mitochondrial dysfunction and activation of cell death pathways

(71). Transgenic mice engineered to overexpress mSOD1 in specific

tissues show MN degeneration only when the mutant protein is

expressed in both neurons and microglia or astrocytes (70, 72).

Similarly, selective reduction of mSOD1 in microglia or astrocytes

of ALS mice increases their survival (73, 74).

Astrocytes are the most abundant glial cells and a key

component in the CNS environment, being involved in a variety

of homeostatic functions, through the secretion of neurotrophic

factors (75). They are capable of amplifying either neuroprotective

or neurotoxic effects mediated by the microglia and can directly or

indirectly influence the fate of MNs. Experiments using a cell

transplantation approach have revealed a detrimental role for

mSOD1-ALS astrocytes (76). In fact, reactive astrocytes surround

both upper and lower degenerating MNs and several molecules

have been linked to the astrocyte-mediated toxicity in ALS. For

example, ALS astrocytes display a reduced ability to provide

metabolic support to MNs and to effectively regulate the

extracellular levels of neurotransmitters, such as glutamate.

Excessive stimulation of glutamate receptors causes excitotoxicity,

thereby increasing the influx of calcium, which can be toxic to

neurons (Figure 2). Other molecules secreted by activated astrocytes

that can cause neurotoxicity are pro-inflammatory cytokines and

inflammatory mediators, such as NOX2, iNOS, ROS, IFN-g,
prostaglandin D2 (PGD2) and TGF-b (77–81). In fact, it has been

demonstrated that astrocytes from ALS patients secrete more IL-6

and have elevated levels of NOX2, iNOS and ROS production,

exacerbating the inflammatory response and MN degeneration

(82, 83).

The link between microglia, astrocytes and the adaptive

immune system is demonstrated by the crosstalk between these

activated resident cells and the CNS-infiltrating peripheral immune

components such as T cells. Accordingly, reactive microglia coupled

with infiltrating T cells were found in autopsies of ALS patients (84).

The CD4+ T cell infiltration is likely related to an increase in the

chemokine CCL2 and microglial activation (85–87). Moreover, the

expression of the chemokine receptors CXCR3 and CXCR4, as well

as the chemokines CCL2, and CCL5, are also increased in T cells

from ALS patients, compared to healthy controls (88). Recent data

highlighted the protective role of these infiltrating CD4+ cells in

ALS. During the dismantling of the neuromuscular junction, with

axonal retraction and demyelination, several antigens are presented
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at the site of the injury, which leads to an immune response (16).

However, whether the antigenic origin is neuronal or muscular is

not yet known, although it seems that the debris formed during

axonal disconnection from its target musculature are the source of

antigens that lead to activation of a neuroprotective immune

response. Consequently, there is an induction of debris clearance

and an initial repair phase culminating in exacerbation of disease

progression (19).

T cells isolated from the cerebrospinal fluid of ALS patients

appear to have undergone clonal expansion, also suggesting

antigen-mediated activation (89). Jones et al. (2015) established

that MHC class II-mediated antigen presentation is necessary

for CD4+ T cells to confer neuroprotection. Following axonal

degeneration, MHC class II-expressing antigen presenting cells in

the draining lymph nodes initially activate peripheral CD4+ T cells,
Frontiers in Immunology 06
which are subsequently reactivated by CNS-residing MHC class II+

APCs expressing the same antigen, also supporting the idea that

glial cells can present antigens to T cells (90, 91).

Th2 CD4+ cells confer neuroprotection by producing anti-

inflammatory cytokines, such as IL-4, IL-5 and IL-13, which in

turn enhance the neuroprotective effects of activated microglia (92).

However, the antigen presentation following axonal disconnection

leads to the differentiation of several CD4+ T cell subsets in the

draining lymph nodes and a predominant Th1 and Th17 response is

observed in mSOD1 mice (93). Th1 and Th17 cells are CD4+ T cell

subtypes that promote neuroinflammation, by producing pro-

inflammatory cytokines. Th1 cells produce IFN-g that promotes

activation of a harmful microglia, increasing the release of ROS and

NO. In turn, the microglia exacerbate the proliferation and function of

Th1 cells (66, 92, 94). Neurotoxic effects are also attributed to IL-6
FIGURE 2

Amyotrophic Lateral Sclerosis (ALS) different protective versus harmful phenotypic responses. Schematic representation of T-cell implication in the
inflammatory events in ALS caused by toxic accumulation of mutated proteins and consequent release of damage-associated molecular patterns
(DAMPs). Antigens released during the axonal degeneration are carried by antigen-presenting cells, like dendritic cells, until draining lymph nodes,
where they are presented to naïve T cells. The activation of CD4+ T cells generates different subtypes of T helper (Th) cells. In the CNS, quiescent
microglia and astrocytes are activated and secrete pro-inflammatory factors, including oxygen-reactive species (ROS), tumor necrosis factor-a
(TNF-a), interferon gamma (IFN-g). These factors attract infiltrating Th1 and Th2 CD4+ cells, increasing inflammation by releasing TNF-a, IL-6 and
IFN-g, for instance. Likewise, the pro-inflammatory cytokines inhibit the development of the anti-inflammatory regulatory T (Treg) cells. Further,
astrocytes in ALS display reduced expression of the glutamate transporter-1 (GLT-1) and fail to effectively regulate the extracellular levels of
glutamate. The antigens released during axonal dismantling also activate protective responses that contribute to neuroprotection, by suppressing
inflammation, cleaning cellular debris and promoting extracellular matrix rebuilding. There is activation of protective microglia, which produce anti-
inflammatory cytokines, as well as neurotrophic factors and Th2 CD4+ cells, which in turn confer neuroprotection by producing anti-inflammatory
cytokines, ultimately enhancing the neuroprotective effects of activated microglia. Anti-inflammatory Treg cells are also increased in number,
favoring the neuroprotective response, by inhibiting the harmful inflammatory environment, through the secretion of IL10, IL-4 and TGF-b. Figure
created using the Adobe Illustrator software.
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released by Th1 cells. In addition, Th1 and Th17 cells produce high

amounts of TNF-a. Both, IL-6 and TNF-a, are known to inhibit the

development of the anti-inflammatory IL-10-producing Treg cells

(95, 96).

Whether there is a difference in the number of T cells in ALS is

still controversial. There are studies showing both decreased or

elevated numbers of CD4+ T cells during disease progression in the

peripheral blood of ALS patients in comparison to healthy controls

(97, 98). To elucidate this question, the different CD4+ T cell

subpopulations should be considered, since changes in the total

number may correlate with modulation in specific CD4+ T-cell

subsets rather than CD4+ T cells as a whole. Indeed, it seems there is

a shift from a supportive Th2 to a deleterious Th1 response as the

disease progresses. In this sense, some studies showed reduced

numbers of CD4+ T cells (99) and increased proportions of

proinflammatory effector T cells (100, 101) in ALS patients.

Although over the course of ALS, part of the CD4+ T cell

response is harmful, it has been shown that total CD4+ T cell

deletion accelerates the disease. When mSOD1 mice were crossed

with T cell receptor b chain (TCRb) deficient mice (TCRb-/-; that
lack TCRab+CD4+ and TCRab+CD8+ T cells), there was an

increased rate of disease progression, although the time of disease

onset was not modified (90). Similar results were observed when

mSOD1 mice were crossed with Rag2−/− mice (lacking B and T

lymphocytes) or CD4−/− mice (deficient in CD4+ T lymphocytes),

thus attributing a neuroprotective role to the CD4+ T cells, but not

to the CD8+ T or B cells (102). Accordingly, the reconstruction of

the CD4+ T-cell populations following wild-type (WT) bone

marrow transplantation to mSOD1/RAG2−/− recipient mice in a

stable phase of the disease conferred neuroprotection and increased

survival (102).

Interestingly, in a slow initial stage of ALS, neuroprotective

activity has been suggested by increasing the levels of

CD4+CD25hiFoxP3+ Treg cells. In contrast, the number of

circulating Tregs decrease significantly with the rapid progression

of the disease. Therefore, it has been suggested that a decrease in

Tregs, together with a decrease in FoxP3 expression levels, are

associated with short-term survival in ALS patients (103). It should

be noted that dysfunction in Treg activity can directly influence the

activation of pro-inflammatory microglia, contributing to motor

neuron excitotoxicity (104). ALS patients demonstrate an

unbalanced ratio among T cell subgroups with an increased

number of pro-inflammatory T cells, including Th1 and Th17,

and reduced Treg/Th2 lymphocytes (105). In the same way,

adoptive transfer of endogenous mSOD1 Tregs during the stable

phase of ALS to mSOD1/RAG2−/− recipient mice promoted

neuroprotection, postponed the disease onset and considerably

increased survival (106).

Recent studies have further highlighted the immunologic

alterations in ALS patients and its correlation with disease

progression. Proteomic analysis of plasma and peripheral blood

mononuclear cells (PBMCs) from ALS patients demonstrated the

activation of molecular pathways involved in immunoregulation

and cell senescence in faster progressing ALS patients (107). Indeed,

Yildiz and colleagues showed that lymphocytes from ALS patients

are skewed towards a senescent and late memory state when
Frontiers in Immunology 07
compared wi th those f rom hea l thy contro l s (108) .

Immunosenescence is a process reflecting immune dysfunction,

by remodeling of the immune system, with reduction in the number

of peripheral blood naïve cells and a relative increase in the

frequency of memory cells. This leads to a decline in efficacy of

the immune response during aging and is closely correlated with the

development of infections, autoimmune diseases, and malignant

tumors (109).

In addition, a study comparing 89 newly diagnosed ALS

patients in Sweden observed that high frequency of CD4+ effector

T cells in the blood and cerebrospinal fluid was associated with poor

survival, whereas a high frequency of activated Treg in the blood

was associated with a better survival (110).

Overall, these studies attributed the neuroprotective capacity of

the CD4+ T cells to CD4+CD25+ and CD4+CD25+FoxP3+ Treg cells

and suggest that the T cell phenotypes at the time of diagnosis can

be good predictors of disease prognosis, as will be described below.
4 Immune crosstalk in DMD and ALS:
role of regulatory T cells

Migration and maintenance of Tregs in the muscle depends on

at least two different mechanisms (1): The first is controlled by the

ATP/P2X axis and was initially demonstrated in the mdx mouse

model of DMD (111), in which blocking the ATP/P2X7 interaction

with periodate-oxidized ATP resulted in an increased number of

Treg within the injured muscle. In the absence of ATP/P2X7

signaling, not only do Tregs migrate more intensely to the lesion

but muscle damage is reduced, indicating that ATP, released by

dying cells, downregulates Treg migration, and that, in the absence

of Tregs, muscle damage is more severe (111) (2). Secondly, there is

an effect of the IL-33 mediated mechanism of Treg arrival and

maintenance within the muscle. IL-33 is an alarmin produced by

fibroadipogenic progenitors (FAPs) and skeletal muscle stem cells

which can bind to the IL-1 receptor-like 1 protein (also named ST2)

present on CD4+ T cells (including Tregs), macrophages and

FAPs. In fact, FAP-derived IL-33 is crucial for Treg accumulation

within the muscle, and consequently, muscle regeneration

(Figure 1A) (112).

It is well known that both T cells (CD4+ or CD8+) need to

engage their antigen recognition receptor through MHC

interaction, so that they can interact specifically with other cells.

Studies in mouse models revealed that after transferring muscle

specific T cells to a normal recipient, muscle Tregs were only

observed within the muscle. In addition, studies in mdx mice

have shown that antigen specific Treg cells induced an accelerated

rate of regeneration when compared to polyclonal Treg cells (113).

Similarly, muscle injury and inflammation were mitigated by the

expansion of the Treg cell population, being exacerbated in

conditions of Treg cell depletion (114).

As mentioned previously, in ALS, the neuroprotective capacity

of the CD4+ T cells has been attributed to the CD4+CD25+FoxP3+

Treg cell fraction. It was observed that Tregs in the slow phase of the

disease can support a microglial anti-inflammatory phenotype and

the expression of neurotrophic factors in the spinal cord through
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IL-4 secretion. In parallel, they suppress effector T cell proliferation

via the secretion of IL-4, IL-10 and TGF-b (115). Likewise, when

mSOD1 Treg isolated from spleen and lymph nodes are co-cultured

with mSOD1 adult microglia they inhibit NOX2 production and

induce NO synthase expression, through IL-4 secretion (115). Thus,

infiltration of CD4+CD25+FoxP3+ Tregs in the CNS suppresses

neuroinflammation and promotes activation of protective microglia

in murine models of ALS (116), with an up-regulation of anti-

inflammatory cytokines with a predominance of a neuroprotective

phenotype (106).

In contrast, Tregs isolated from mSOD1 mice at a later stage of

the disease fail to prolong survival of mSOD1/RAG2−/− recipient

mice (106). As the disease progresses, the level of pro-inflammatory

cytokines increases, while the number of Treg declines, possibly due

to the loss of FoxP3 expression in Treg cells (106). For instance,

increased TNF-a release by Th1 and Th17 cells induces Treg

dysfunction by inhibiting FoxP3 phosphorylation (96). Moreover,

elevated levels of IL-6 released by Th1 cells inhibit the development

of FoxP3+ Tregs (117), leading to the loss of the ability of Treg cells

to sustain an anti-inflammatory response in the microglia,

exacerbating a harmful phenotype (Figure 2).

Similar to what has been reported in mice, in ALS patients the

endogenous Treg cells increase at an early slowly-progressing

disease stage. During the course of the disease the development of

Tregs is inhibited and their number decreases in parallel to a rapid

ALS progression, likely due to the loss of FoxP3 (106, 118).

Moreover, in patients, specific Treg subtypes have been correlated

with the rate of ALS progression. In the blood of ALS patients with

rapid disease progression, there is a reduction in the number of

CD45RO+ Tregs, the memory cells, which are classified as

functionally active with higher levels of FoxP3 expression, when

compared to the resting naïve CD45RA+ Treg cells (116). Moreover,

the rate and severity of ALS progression was inversely correlated

with the total Treg counts, total FoxP3+ Treg counts and effector

CD45RO+ Treg counts, while the number of resting CD45RA+ Treg

did not correlate with disease progression (116).

In addition to this reduction in number, Tregs from patients

with rapid disease progression have an impaired ability to inhibit

the proliferation of their corresponding effector T cells, when

compared to those of patients with slow disease progression, or

with healthy controls (103). The Treg suppression capacity was

correlated with FoxP3 mRNA and protein levels, indicating

that a stable expression is essential to maintain their regulatory

capacity (103).

One major problem in the treatment of ALS is that to be

successful, the treatment needs to be administered at the time of

diagnosis. At present it is estimated that there is a delay of more

than one year between disease onset and clinical diagnosis (119),

and most of the patients are currently diagnosed at mid stage of

progression where reversing neurodegeneration may be very

difficult, demonstrating the importance of a predictive factor for

the disease. For this reason, increasing the number and function of

Treg cells seems like a good therapeutic strategy and some clinical

trials aim to target the Treg cells, either by promoting their

expansion in vivo or by in vitro functional stimulation followed

by autologous transplantation, as a way of improving quality of life
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of ALS patients (104). One trial ongoing is MIROCALS, which is a

phase II study of Low-dose IL-2 (Ld-IL-2) as a Treg Enhancer for

Controlling Neuroinflammation in Newly Diagnosed ALS Patients

(https://clinicaltrials.gov/study/NCT03039673?a=1).

5 Thymus defects underlying
peripheral T cell biology abnormalities
in DMD and ALS

The thymus is a primary lymphoid organ responsible for the

maturation and differentiation of T lymphocytes (120, 121). During

this process, key maturation events correspond to the positive and

negative selection, both driven by interactions between developing

thymocytes and microenvironmental cells (particularly thymic

epithelial cells (TECs), involving both the MHC complex and

TCR, respectively present in microenvironmental components

and developing thymocytes (122). Negative selection largely

prevents autoimmunity and is directly under the control of the

transcription factors Aire and Fezf2 expressed by TEC in the

medullary region of the thymic lobules (121). Negative selection

induces thymocyte death by apoptosis; positive selection rescues

developing thymocytes from death and induces their progression

towards CD4+ or CD8+ SP thymocytes, which eventually leave the

organ to colonize the peripheral lymphoid organs (123). Lastly, the

intrathymic production of central Tregs and subsequent export

towards the periphery of the immune system further prevents the

development of autoimmunity. Accordingly, central Treg deficiency

is related to autoimmune events (124).

Interestingly, the thymus may play a role in the skeletal muscle

regeneration process. A study carried out in a model of induced

skeletal muscle injury showed that the mean cross-sectional area of

regenerating myofibers and the number of myofibers in 8–10 weeks

of age thymectomized mice were impaired compared to euthymic

controls (125). In addition to this defect in muscle regeneration,

thymectomized mice also showed decreased levels of myoblast

determination proteins, MyoD 1 and myogenin (MyoG),

important myogenic factors for skeletal muscle regeneration. This

study further showed that the number of Pax7-positive satellite cells

in the muscle was increased in the injured control, compared to

thymectomized mice, providing evidence that the thymus can

regulate the number of satellite cells during this process of muscle

degeneration and regeneration. Interestingly, the authors showed

in vitro that thymocyte-conditioned medium promoted the

proliferation of satellite cells. The CD3+CD4+CD8+ thymocyte

subset significantly induced proliferation in satellite cells,

although CD4+CD8− and CD4−CD8+ SP thymocytes also

displayed a significant effect compared to the control. In contrast,

Treg cells had no significant effect in a muscle injury model of

thymectomized mice (125). In view of the above data, it seems that

the thymus plays a role in the skeletal muscle by its influence

on regeneration.

Pioneer studies had previously revealed a thymic atrophy in

mdx dystrophic mice, with a decrease in thymocyte numbers,

densification of the TEC network and increase in ECM contents.

Of note, the peak of thymocyte depletion coincided with the stage of
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disease severity (126). These findings have recently been confirmed

and expanded by Farini and coworkers, who showed that the

disorganized thymic morphology was correlated with an

abnormal intrathymic T cell development and changes in the

maturation stages of DN thymocytes. These events coincide with

an increase in the relative numbers of SP cells and Tregs in the

thymus of mdx mice compared to controls (127). In addition, the

authors showed that transplanting the involuted thymus of mdx

animals into nude mice, resulted in a significant increase in the

expression of the transcription factors RORgt and T-bet, as well as

an increase in the numbers of CD4+ and CD8+ T cells infiltrating

the muscle, compared to nude animals that received the thymus of

healthy donors. These results indicate that the process of thymic

involution may be a determining factor in DMD pathophysiology

and one of the postulated mechanisms was a dysregulation in the

release of autoimmune or Treg cells (33).

Despite the lack of studies that aim to characterize in detail the

role of the thymus in ALS, evidence suggests that thymic function is

compromised in ALS-SOD1 patients and in the mSOD1 mouse

model. In 2010, Seksenyan and colleagues demonstrated a thymic

defect in parallel to the MN dysfunction in mSOD1 mice and ALS

patients. In this study, the authors observed a reduction in the

absolute number of total thymocytes in mSOD1 mice. This

reduction was reflected in all thymocyte populations, defined by

the expression of CD4 and CD8 coreceptors, i.e., CD4-CD8- DN,

CD4+CD8+ DP, CD4+CD8- and CD4-CD8+ SP cells. These changes

were also observed in ALS patients at the final disease stage.

Moreover, sections of the thymus of mSOD1 mice in advanced

stages of the disease stained with hematoxylin and eosin, showed a

loss of definition in the cortical and medullary regions (128), which

may reveal an abnormal thymic architecture during ALS

progression and, consequently, impaired T cell development.

Indeed, the analysis of signal joint T-cell receptor rearrangement

excision circle (sjTREC) in PBMCs from ALS patients, revealed

decreased numbers of sjTREC compared to healthy controls

regardless of the age of the patients, possibly indicating a

reduction in the export of naïve T cells from the thymus of ALS

patients (128).
6 Concluding remarks

The data discussed above provide evidence concerning the

complexity of the cellular and molecular interactions involving

the immune system in two very different neuromuscular

disorders, DMD and ALS, which may reflect similar defects

common to other neuromuscular diseases. Distinct types of

interactions have been described, comprising among others

cytokine/chemokine production, cell-cell and cell-matrix

interactions between T lymphocytes and other cells of the

immune system with target cells of the muscular or nervous

tissues. Although this reveals the complexity of the system, it also

can be envisioned as a window of opportunity to design novel
Frontiers in Immunology 09
therapeutic strategies (including synthetic moieties, cell and gene

therapy, as well as immunotherapy) by acting upon one or more

targets. In this respect, ongoing clinical trials on DMD patients

through VLA-4 inhibition, and in ALS, focusing on regulatory T

cells, have both shown promising results.
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